Structural Design and Properties of Layered Nanocomposite Titanium Carbide-Silicide Materials

Авторы:
Аннотация:

The titanium carbide-silicide Ti3SiC2 phase with crystal lattice formed by alternative structural blocks with the block thickness in the order of 1 nm, for the first time, is fabricated by the method based on the carbo-thermal reduction of titanium and silicon oxides and high temperature processing of titanium carbide in SiO vapors. It is experimentally revealed that the Ti3 SiC2 compound (treated as a layered nanocomposite) ehxibits the unique combination of properties which are non-typical for conventional ceramic materials. In particular, the crystal structure and chemical transformations showed an increase in the paramagnetic component of magnetic susceptibility, which can be attributed to titanium (III). It is found that the titanium carbide-silicide phase with layered structure has antiferromagnetic properties. The well-known method of magnetochemical control over the state of paramagnetic atoms in oxygen lattices is applied, for the first time, to titanium carbide-silicide phase. The obtained data can be used as the basis of a new method to control either the formation of layered titanium carbide-silicide phase or the gaseous silicon monoxide content in various physical and chemical processes.