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Abstract. For the first time, an accurate analytical solution of mixed or contact problems for 

multicomponent multilayer materials has been constructed. It is assumed that the contact 

problem is formulated at the boundary of a multilayer multicomponent material in a semi-

infinite region. These can be contact problems for a multilayer medium that simultaneously 

includes thermoelectroelastic, magnetoelastic, piezoelastic, water-saturated, nanomaterials 

and other layers described by linear partial differential equations. In the contact area, there 

can be any conditions of mechanical, physical or chemical properties that lead the boundary 

problem to a system of arbitrary finite number of Wiener-Hopf integral equations with a 

meromorphic matrix in the core. The article uses a new universal modeling method that 

allowed factorizing the operator of an infinite system of linear algebraic equations. 
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Introduction 

Mixed, including contact tasks for multicomponent layered media play an important role in a wide 

variety of practice areas. They arise in the problem of assessing the strength of structures [1–3], the 

dynamic behavior of deformable bodies [4,5], wave scattering by defects [6], ultrasonic  

testing [7], the study of semiconductor properties [8,9], the wave phenomena in liquid media [10],  

seismology [11], evaluation of useful signals [12–15], in banking [16], in probability theory [17–19], 

in the theory of resonances and localization of processes [20] in the development of block element 

theory in differential and integral equations [21] and in other fields. As a rule, they are reduced to 

solving systems of Wiener-Hopf integral equations. In the case of a multicomponent layered 

medium of finite thickness, these systems of integral equations they have a matrix kernel, which has 

the following property. Fourier transforms of elements of the matrix kernel of integral equations are 

meromorphic functions. As described in article [22], methods for the exact solution of such a system 

of integral equations have not been developed. In this article, thanks to the development of the 

factorization method in the form of the sum of the operator of an infinite system, it is possible to 

accurately solve infinite systems of integral equations, and with them, the systems of integral 

equations themselves. This work should be considered as a development of the previously described 

approach [22] to the study of the properties of multicomponent materials. A special case of the 

problem under consideration for a two-component material is considered in [23]. 
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Problem statement  

The contact problem for a semi-infinite stamp on a multicomponent multilayer medium is 

investigated. It is assumed that the layers consist of various materials, the thickness of the 

multilayer medium has a finite value. In the area of contact of the stamp with the base, all 

types of permissible mechanical, physical, chemical, biological boundary conditions can be 

set with the requirement that they lead to a system of Wiener-Hopf integral equations of the 

order N . It is required that the Fourier transform of the kernel matrix of this system of 

integral equations has meromorphic functions as its elements. Here is the parameter N is an 

arbitrary bounded integer. Similarly, a semi-infinite Griffiths crack in the described layered 

medium can be considered. Mixed problems by known methods [2,4,5,22] are reduced to a 

system of integral equations of the form: 
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where the vector φ  is the desired one, and the vector ( x )f  is the specified one. 

We assume that the elements (α) 1 2mpK , m,p , ,...,N=  of the matrix-function ( )K  in 

(1) are generally meromorphic functions of the variable  . In mixed problems of mechanics 

and mathematical physics, meromorphic functions 
mpK ( )  and the determinant det ( )K  

have the following representation and asymptotic behavior [2,5]:  
1  mp mpK ( ) D ( )L ( )− =   , N

mpdet ( ) D ( ) ( ), ( ) det L ( )− =      = K .  

1 11 1

1 1 2
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− − =  +  =  =  + 

   =
 

Here , the functions 𝐿𝑚𝑝(𝛼), 𝐷(𝛼), 𝛥(𝛼) are integer functions of first order and finite 

type, that is, exponential type, in particular, polynomials. It is assumed that integer functions 

𝐷(𝛼), 𝛥(𝛼) vanish on sets of values n  and nz , accordingly, having condensation points at 

infinity in some wedge-shaped regions of the upper, plus, and lower, minus, parts of the 

complex plane, as a rule, in the vicinity of the imaginary axis. For the sake of simplicity, we 

will not complicate the properties of matrix functions that have zero general and partial 

indices, and the system of integral equations is uniquely solvable in some 𝐿𝑝,  𝑝 > 1. The 

properties of the matrix-function elements are described in more detail in [2,5] and here we 

repeat only the following. The determinant ( )   of the matrix-function is an even whole 

function of type N  [24] and has a countable set of single zeros mz  going to infinity in the 

upper half-plane. Let 's denote this set W . The denominator D( )  is an even whole function 

of type   and has a countable set of zeros m . Whole functions 
mpL ( )  have a type  . Let 's 

construct N  aggregates 
pW  containing zeros 

mpz , which are selected from the number of 

zeros mz  of the determinant ( )  . Each aggregate 
pW  will have a countable number of 

them. When forming them, it is required that each zero 
mpz  number m , from the aggregate 

pW , corresponds to the zero number mξ  of the denominator, such that when m → , the 

behavior took place -1

m mpξ z v=const→ . This requirement is met in most practically important 

tasks if the following rule applies. When constructing 
pW , as the first zeros from the upper 
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half-plane 
mpRez 0  of the specified aggregates

pW , a sequence of the first zeros mz  of the 

determinant ( )   is taken in ascending order of modules, or when counting 

counterclockwise, that is 
1 , 1,2,...,p pz z p N= = . In the future, each subsequent zero 

npz  of 

the aggregate 
pW  will be taken from among all the zeros mz  of the determinant ( )   

according to the rule ( 1) ,m p n N n= + − → for each. Obviously, the collections 

, 1,2,...,pW p N=  of infinite sets  of zeros 
mpz  constructed in this way, are independent, 

non-intersecting and their union contains the entire set of zeros mz  of the determinant ( )  , 

i.e., 
pW W=  . We construct whole functions M ,z

p p
 
 
 

 in the form of infinite products 

[2,5,24] with the help of the zeros  included in 
pW  the number N  [2,5,24], taking 
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which, after dividing by D( ) , will give meromorphic functions denoted by ( )pМ  . Their 

zeros are 
mpz . We take the components of the vector of the right part ( )xf  of the system of 

integral equations (1) in the form 1 2 0i x

pA ( )e , p , ,...,N , Im− = =  . Such component 

values make it possible to obtain arbitrary right-hand sides of a system of integral equations 

using Fourier transforms, in the form 

1
1 2

2

i x

p pf ( x ) A ( )e d , p , ,...N



− 

−

=   =
 

.                                                                           (3) 

 

Solution method  

To attract to the study a new universal modeling method [21] based on the ideas of fractals, 

we present a system of Wiener-Hopf integral equations, taking into account the properties of 

matrix-function elements, in coordinate form: 
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Then, taking into account the properties of whole functions having countable numbers 

of zeros, we have [24]: 
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Here 
mpn  are the zeros of whole functions representing the numerators of the matrix 

elements, which may not coincide with the zeros of the determinant. The system of Wiener-

Hopf integral equations (1) can, taking into account (5), be represented using a system of 

differential equations in the form: 
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Taking into account (3), we limit ourselves to the representations of the right part of the 

functions 
i x

pB e−  : 

1
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Thus, assuming that the parameter   does not coincide with any of the poles r , we 

conclude that the differential operators leave the exponential function unchanged on the right, 

only changing the coefficient in front of it. 

We apply the transformation of Galerkin [21]. to a system of the differential equations 

(6), (7). To do this, we will construct determinants containing new unknown functions 
p  and 

operators. 
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As a result of calculations and simplifications in (8), the following system of N  

independent differential equations is obtained to determine the functions 
p : 

1 2i x

p p mrL B e , L det L m,r , ,...,N −= = = .                                                            (9) 

Having opened the determinant (9), and having carried out possible transformations, we 

obtain differential equations. They do not depend on the order of calculation of the 

determinant, since all elements are differential operators with constant coefficients and are 

commuting. We obtain N  infinite systems of differential equations with constant coefficients 

described by a single differential operator arising from the determinant (9) of the entire 

system of Wiener-Hopf integral equations. Thus, we obtain an entire function, the arguments 
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of which will be, in accordance with the conditions of the problem, the products of second-

order differential operators of the form: 
2
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21
n n n

n
( i ) G , G ( i ) z

x x x



=

  
 =  = +

  
.                                                                             (10) 

It follows that the homogeneous equation (11) for each function 
p  has the form: 
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Since the equation 
1

n
n

L G


=
=   has constant coefficients, the characteristic equation for 

homogeneous solutions of a differential equation is an integer function ( )  . As a result, a 

homogeneous solution for each 
p  is represent able in the form: 

1
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p m
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The solutions of each equation 0m pG ( i )
x


=


  are taken here. The presence of right-

hand sides in a system of integral equations leads systems of differential equations to 

inhomogeneous ones. To search the general solution of each inhomogeneous differential 

equation we will look for them in the following form.  

The presence of right-hand sides in a system of integral equations leads systems of 

differential equations to inhomogeneous ones. Taking into account the fact that the general 

solutions of differential equations must also satisfy the inhomogeneous conditions of the 

system of integral equations, we will define the parameter 
pB  from this condition later. To 

search the general solution of each inhomogeneous differential equation (7) we will look for 

them in the following form: 

1
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Here 
pB , my are independent of x  and are unknown. Thus, all functions ( )p x  in (11) 

have the same decomposition, but with different coefficients 
pB .  

For mathematically rigorous finding of its expansion terms mpiz x

pmy e  for each function 

( )p x , a new, previously unknown, factorization method has been developed in the form of 

the sum of the operator of an infinite system of linear algebraic equations, which is a discrete 

analog of continuous factorization used in the Wiener-Hopf method. 

 

Solution of the Galerkin equation 

A new universal modeling method is applicable for the solution [21]. Unlike traditional finite 

systems of Galerkin differential equations, in the case of differential equation (9) generated by 

a system of integral equations (1), a differential equation of infinite order is obtained. For it, it 

is necessary to construct linearly independent, complete solutions of this equation. Linear 

independence refers to the absence of identical exponential harmonics in these solutions. 

Completeness refers to the use of solutions N  of all exponential harmonics contained in the 

characteristic equation in the aggregate 0( ) = . The coefficients of the solutions 

constructed in this way must be uniquely determined from the requirement of satisfying the 

system of integral equations (1). 

The developed method for solving such infinite systems of linear algebraic equations, 

technically quite complex, allowed us to obtain the result set out below. 
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Let the system of integral equations (1) be uniquely solvable in some Banach space [2,5] and 

the rank of the matrix nr mK (z )  is equal to 1N − . Let's introduce notation using previously 

accepted parameters: 
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The factorization of the following functions is used here 

( ) ( ) ( ), ( ) ( ) ( ), ( ) ( ) ( )p p pD D D M M M+ − + − + − =  = =         . In the course of the 

study, the lemma is proved. 

Lemma. Let det 0C . Then the complete set of linearly independent solutions of the 

inhomogeneous Galerkin equation for the right - hand  sides 
-iηx

pB ( )e  is given by the 
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To obtain a vector  1 2 N( x ) , ,...,=   φ  representing the solution of the Wiener-Hopf 

system of integral equations (1), we use the Galerkin transformation formulas (8). The constructed 

system of solutions ( )xΧ  to the Galerkin differential equation (9) is complete, exhaustive of all 

harmonics of the zeros of the characteristic equation 0( )  = , which is required when applying 

the Galerkin transformation. Therefore, to determine the vector  1 2 N, ,...,=   φ  of the solution 

of the integral equation (1), it is necessary to use the formulas (8). The complete system of 

solutions of the Galerkin equation (9), functions ( )p x , are introduced into the determinants (8) 

and, after their disclosure and performing the necessary differential operations, give an exact 

solution to the system of integral equations (1). 
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The theorem. Under the conditions of the lemma, the exact solution of the system of 

integral equations (1) for the right parts 
-iηx

pA ( )e  has the form:  
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The validity of both the lemma and the theorem can be verified by directly substituting 

the corresponding solutions into systems of differential and integral equations. 

In the event that the matrix-function K(α) continuously transitions into a functional-

commutative one, the constructed solution passes into the solution obtained by simple 

handling of a system with functionally commutative matrix functions for a particular case. 

From this formula, as a special case, the result of a two-dimensional problem of the work [24] 

is obtained. 

 

Conclusions 

For the first time, an accurate analytical solution of mixed or contact problems for 

multicomponent multilayer materials has been constructed. 

The article uses a new universal modeling method, [21] which made it possible to 

overcome the problem of factorization of the operator of an infinite system of linear algebraic 

equations. The exact solution is given in the form of formulas and accompanying parameters 

that allow the result to be applied in research. The considered contact problem is formulated 

on the boundary of a multilayer multicomponent material in a semi-infinite region. These can 

be contact problems for a multilayer medium, which simultaneously includes 

thermoelectroelastic, magnetoelastic, piezoelastic, water-saturated, nanomaterials and other 

layers described by linear partial differential equations. In the contact area, there can be any 

conditions of a mechanical, physical or chemical nature that lead the boundary problem to a 

system of arbitrary finite number of Wiener-Hopf integral equations with a meromorphic 

matrix in the core. This method is applicable to solving a mixed problem about the behavior 

of a semi-infinite crack in a multicomponent multilayer foundation. Unlike other approaches, 

the proposed method allows you to obtain the desired solution in an analytical form without 

requiring additional research. 
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