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ABSTRACT  
The paper contributes to the development of micromechanical approaches for determining the effective 
diffusivity of micro-heterogeneous materials, taking into account segregation, which is the accumulation 
of impurities at the phase interface. Two analytical approaches are investigated and compared with 
numerical simulation. In the first analytical approach, segregation is expressed in terms of a segregation 
parameter that prescribes the jump in concentration at the phase interface. In the second approach, an 
inhomogeneity with an ultra-thin mass isolating coating is introduced, and segregation is expressed in 
terms of equivalent surface resistivity. The developed numerical method considers inhomogeneities with 
an outer weakly permeable shell of thickness that tends to zero. Comparison among various models made 
it possible to estimate their limitations and perspectives. 
KEYWORDS  
effective properties • imperfect contacts • segregation • diffusion • homogenization problem 
Acknowledgements. The reported study was funded by Russian Science Foundation, Grant No. 23-79-01133 
(https://rscf.ru/project/23-79-01133/). 
Citation: Frolova KP, Bessonov NM, Vilchevskaya EN. Determination of the contribution of an imperfectly 
bonded inhomogeneity to macroscopic diffusivity. Materials Physics and Mechanics. 2024;52(5): 1–17.  
http://dx.doi.org/10.18149/MPM.5252024_1  
 
 

Introduction 
Determination of the effective diffusivity of micro-heterogeneous materials is one of 
advanced problems in mechanics. Indeed, the internal structure of a material affects its 
permeability and, as a result, the total amount of a diffusing substance. The accumulation 
of harmful impurities, in turn, can lead to the degradation of the mechanical properties 
of materials [1–5]. Therefore, a comprehensive analysis of the influence of microstructure 
on macroscopic diffusivity is of great importance. One of the problems of fundamental 
interest in this area is the issue of accounting for segregation that is accumulation of 
impurities along the phase interface [6,7]. Typically, the effective properties of various 
natures are determined within classical micromechanical approaches, which assume that 
fields at the phase interface are continuous. However, the presence of segregation 
disrupts the continuity of the concentration field at the internal boundaries of 
heterogeneous materials [8]. In this case, the phase interface becomes “imperfect” and 
surface effects must be taken into account [9,10]. 

Only a small number of works are dedicated to accounting for the presence of 
imperfect contacts at the phase interface within micromechanical models. In [9,11–16], 
diffusivity problem was investigated and segregation was accounted for in terms of a 
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segregation parameter, which is the ratio of concentrations on the outer and inner sides 
of the inhomogeneity boundary. Thus, in this approach, a jump in concentration across 
the phase interface is prescribed. In [12,13], the segregation parameter was introduced 
in the modified effective media homogenization method. In [14,16], it was incorporated 
into effective field methods expressed in terms of property contribution tensors that 
reflect the contribution of individual inhomogeneities to the property of interest. Another 
approach to account for imperfect interfaces involves considering inhomogeneities with 
an interface possessing extreme properties. Usually such an approach is used within 
conductivity problem [9,17–25]. Within the approach some models express jump in the 
field in terms of surface conductivity [17–22], whereas another models consider an ultra-
thin outer shell and realize limit transitions [9,23–25]. Note that in the context of the 
diffusivity process accompanied by segregation, the coating should function as an 
insulator. Consequently, segregation can be expressed within this approach in terms of 
equivalent surface diffusion resistivity. The question of the most appropriate approach to 
account for segregation remains open. 

The problem of analytical determination of effective diffusivity consists of two 
parts: solution of one-particle problem and application of this solution within some 
homogenization scheme to account for the presence of multiple inhomogeneities [26]. 
The problem of a single inhomogeneity placed in an infinite matrix is known as the 
(second) Eshelby problem [27], which originally refers to elasticity under assumption on 
perfect phase interfaces. Solution of the Eshelby problem for conductivity in the case of 
perfect contacts was derived by Fricke [28].  

In general, the presence of imperfect phase interfaces must be taken into account 
at both steps. In [29,30], we compared the analytical solution of the first part of the 
problem obtained using two aforementioned approaches for accounting for imperfect 
contacts: the approach in which segregation is expressed in terms of a segregation 
parameter and the approach in which segregation is expressed in terms of equivalent 
surface resistivity. In particular, it was shown that, for certain parameters of the internal 
structure, the results obtained within the two approaches exhibit significant qualitative 
differences that can be quite consequential. A detailed investigation of these differences 
was beyond the scope of papers [29,30]. In the present research, we further develop the 
numerical method to account for imperfect contacts and compare the analytical solutions 
with the numerical results. Such a comparison could facilitate an analysis of the 
qualitative differences between the two analytical approaches and help in answering the 
question of which approach is most accurate. Additionally, numerical simulation may help 
in overcoming difficulties related to the complexity of solving the problem for 
inhomogeneities with a non-spherical shape and, more generally, with non-ellipsoidal 
shapes. Unlike spherical inhomogeneities, ellipsoidal and even spheroidal 
inhomogeneities have imperfect interfaces of non-constant curvature, which complicates 
the introduction of an outer shell of constant thickness within the corresponding 
analytical approach, making it less physically justifiable. Furthermore, an analytical 
solution for a single inhomogeneity embedded in an infinite matrix exists only for 
ellipsoidal inhomogeneities. However, considering irregular shapes is often necessary for 
accurately modeling real materials. 
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Single inhomogeneity problem 
Effective properties of micro-heterogeneous materials can be expressed in terms of 
various microstructural parameters. In the present research, we follow [26] and consider 
property contribution tensors, the sum of which serves as a relevant microstructural 
parameter reflecting the contributions of individual inhomogeneities to the macroscopic 
property of interest. This takes into account physical and geometrical characteristics of 
inhomogeneities, such as properties, shape, and orientation in the matrix. The property 
contribution tensor is to be derived from the solution of the single inhomogeneity 
problem, while the effective properties of the material can be determined using a 
homogenization scheme written in terms of the corresponding microstructural 
parameters. We will focus on the first part of the problem of determining effective 
properties by introducing the diffusivity contribution tensor of a single ellipsoidal 
inhomogeneity with an imperfect boundary. 

Let us consider the representative volume element (RVE) V, which is a typical point 
of continuum at the macro level, consisting of an isotropic ellipsoidal inhomogeneity with 
volume V1<<V  and diffusivity D1=D1I, along with an isotropic matrix with diffusivity D0=D0I. 
We seek the solution of a stationary diffusion problem in the absence of inner sources 
and under the assumption on linear constitutive relations in each phase of the 
heterogeneous material:  
∇ ∙ 𝐉(𝐫) = 0, 𝐉(𝐫) = − 𝐃(𝐫) ∙ ∇𝑐(𝐫), (1) 
where r is the position vector, J is the diffusion flux, c is the concentration, 𝐃(𝐫)=D0I if r 
belongs to the matrix and 𝐃(𝐫) = 𝐷1𝐈 if r is in the inhomogeneity. 

The macroscopic properties must be independent on the type of the boundary 
conditions (BCs) prescribed on the boundary Σ of the RVE. Therefore, any BCs can be used. 
It is convenient to work with uniform BCs within analytical approaches. In the case of 
prescribed concentration, these are defined as follows:  
𝑐(𝐫)|Σ = 𝐆0 ∙ 𝐫, (2) 
where 𝐆0 is a constant vector. 𝐆0 also represents a uniform field that would exist 
everywhere in the RVE in the absence of inhomogeneity. In this case, first, effective 
properties are automatically compatible with their definition in energy terms [26], and 
second, the averaged concentration gradient coincides with 𝐆0 (〈∇c(𝐫)〉𝑉 = 𝐆0). In the 
same manner, one could consider uniform BCs for the normal component of the flux.  

We assume that the material satisfies linear constitutive relations, so the flux and 
concentration gradient at the continuum point are related by classical Fick's law through 
the effective diffusivity tensor Deff: 
〈𝐉〉𝑉 = −𝐃

eff ∙ 〈∇c〉𝑉, (3) 
here 〈… 〉𝑉 = ∫ …𝑑𝑉

 

𝑉
 denotes averaging over the RVE, and the averaged field values 

correspond to values at a continuum point at the macro-level. 
In the linear case, the volume average of the diffusion flux can be represented as 

follows [14]: 
〈𝐉〉𝑉 = −𝐃0 ∙ 𝐆0 + ∆𝐉, (4) 
where ∆𝐉 is an additional flux caused by the presence of the inhomogeneity that can be 
expressed in terms of the diffusivity contribution tensor H such that 
∆𝐉 = −

𝑉1

𝑉
𝐇 ∙ 𝐆0. (5) 
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Hence, 
𝐃eff = 𝐃0 +

𝑉1

𝑉
𝐇, (6) 

here the effective diffusivity tensor can generally be orthotropic. In the case of isotropy 
of the phases’ material, the overall anisotropy is induced solely by the shape of the 
inhomogeneity. Specifically, for ellipsoidal shapes, the tensor is orthotropic; for 
spheroidal shapes, it exhibits transverse isotropy; and it becomes isotropic in the case of 
a sphere.   

Diffusivity contribution tensors of inhomogeneities with imperfect contacts caused 
by segregation, modeled in different ways, differ from one another. We will now discuss 
a few mathematical models of imperfect contact and introduce corresponding property 
contribution tensors.   

 
Diffusivity contribution tensors 
Within the framework of the present paper, we consider two analytical approaches for 
modeling segregation. The first approach involves prescribing a jump in the 
concentration field, while the second approach considers an inhomogeneity with an ultra-
thin isolating coating. For further details, we refer to our previous works [16,29,30] as 
well as the works of Levin and Markov [24,25]. Below, we briefly outline the main ideas 
and provide the key formulas associated with each approach. 

In both analytical approaches, the diffusivity contribution tensor can be expressed 
in terms of the concentration tensor of concentration gradient Λ, which linearly relates 
the field inside the inhomogeneity to the applied one (∇c(𝐫) = 𝚲(𝐫) ∙ 𝐆0 when 𝐫 belongs 
to inhomogeneity). The presence of imperfect contacts must be considered at two stages 
within the homogenization problem: during the averaging of fields as presented in Eq. (3), 
and when calculating the concentration tensor. Both the averaging procedure and the 
determination of the concentration tensor are influenced by the geometry of the internal 
boundaries and the boundary conditions applied to them. Consequently, the property 
contribution tensors obtained within the two approaches are expressed in terms of 
different variables that account for the effects of imperfect contacts. 

In the first analytical approach to accounting for imperfect contacts, the influence 
of these contacts is modeled using a segregation parameter sc, defined as the ratio of the 
concentration values on the outer and inner sides of the interface Γ between the matrix 
(+) and the inhomogeneity (-). The geometry of the inhomogeneity in the (e1, e3) plane is 
shown in Fig. 1. So, the following boundary conditions hold: 
𝐷0

𝜕𝑐(𝐫)

𝜕𝑛Γ
|
𝑟→𝜕Γ+

= 𝐷1
𝜕𝑐(𝐫)

𝜕𝑛Γ
|
𝑟→Γ−

, 𝑐(𝐫)|𝑟→Γ+ = 𝑠𝑐𝑐(𝐫)|𝑟→Γ−, (7) 

where nΓ is the outer normal vector to Γ. Note that the jump in concentration can be 
calculated as [𝑐] = (𝑠𝑐 − 1)𝑐(𝐫)|𝑟→Γ−. 

The averaged fields are as follows: 
〈∇𝑐〉𝑉 = (1 −

𝑉1

𝑉
) 〈∇𝑐〉𝑉0 + 𝑠𝑐

𝑉1

𝑉
〈∇𝑐〉𝑉1 , 〈𝐉〉𝑉 = (1 −

𝑉1

𝑉
) 〈𝐉〉𝑉0 +

𝑉1

𝑉
〈𝐉〉𝑉1 ,  (8) 

here 〈… 〉𝑉0 = ∫ …d𝑉0 
 

𝑉0
 represents the averaging over the volume V0 of the matrix, while 

〈… 〉𝑉1 = ∫ …d𝑉1 
 

𝑉1
 denotes the averaging over the volume of the inhomogeneity. 
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Diffusivity contribution tensor can be found then by the following equation: 
𝐇 = (𝐷1 − 𝑠𝑐𝐷0)𝚲𝑐,                                                                                                                (9) 
where constant concentration tensor 𝚲𝑐 (〈∇c〉𝑉1 = 𝚲𝑐 ∙ 𝐆0) of an ellipsoidal 
inhomogeneity is as follows: 
𝚲𝑐 = ∑

𝟏

𝑠𝑐(1+𝐴𝑗(
𝐷1
𝑠𝑐𝐷0

−1))

3
𝑗=1  𝐞𝑗𝐞𝑗,                                                                                              (10) 

here  
𝐴𝑗 = 𝑎1𝑎2𝑎3 ∫ (𝑝 + 𝑎𝑗

2)
−1

(2√(𝑝 + 𝑎1
2)(𝑝 + 𝑎2

2)(𝑝 + 𝑎3
2))⁄

∞

0
𝑑𝑝,                                            (11) 

where a1, a2, a3 are the lengths of the semi-axes of the ellipsoidal inhomogeneity. 
 

 
Fig. 1. Geometry of inhomogeneity considered in two analytical approaches 

 
In the second analytical approach to accounting for imperfect contacts, a two-

component layered ellipsoid is introduced (as shown in Fig. 1 in the (e1, e3) plane). The 
diffusivity of the inner ellipsoid coincides with that of the original inhomogeneity, while 
diffusivity of the outer layer, denoted as Ds, differs (material of the layer is assumed to be 
isotropic). The lengths of the semi-axes of the inner and outer ellipsoids, represented as 
a1, a2, a3 and b1, b2, b3, respectively, are related through a constant component ξ associated 
with confocal ellipsoids as: 
𝑏𝑖
2 = 𝑎𝑖

2 + 𝜉.                                                                                                                           (12) 
The bounds Γa  of the inner ellipsoid and Γb  of the outer ellipsoid are assumed to be 

perfect, so fields are continuous: 

𝐷0
𝜕𝑐(𝐫)

𝜕𝑛Γ𝑏
|
𝑟→𝜕Γ𝑏+

= 𝐷s
𝜕𝑐(𝐫)

𝜕𝑛Γ𝑏
|
𝑟→Γ𝑏−

, 𝑐(𝐫)|𝑟→Γ𝑏+ = 𝑐(𝐫)|𝑟→Γ𝑏− 

𝐷s
𝜕𝑐(𝐫)

𝜕𝑛Γ𝑎
|
𝑟→𝜕Γ𝑎+

= 𝐷1
𝜕𝑐(𝐫)

𝜕𝑛Γ𝑏
|
𝑟→Γ𝑎−

, 𝑐(𝐫)|𝑟→Γ𝑎+ = 𝑐(𝐫)|𝑟→Γ𝑎− 
.                                              (13)   

The thickness of the outer shell of the two-component layered ellipsoid is assumed 
to tend to zero that is modeled by letting ξ → 0. This extremely thin coating is considered 
to be an isolator, resulting in Ds → 0. Consequently, it becomes convenient to express the 
imperfect contact in terms of the equivalent surface diffusion resistivity 𝛽:  

𝛽 =
𝑉𝑠

𝐷𝑠𝑆
=

4𝜋(𝑎1
2𝑎2

2+𝑎1
2𝑎3

2+𝑎2
2𝑎3

2)

6𝑎1𝑎2𝑎3𝑆
lim

𝜉→0,𝐷𝑠→0  

𝜉

𝐷𝑠
,                                              (14) 

where Vs  is the volume of the outer shell, S is the surface area of the inner ellipsoid (see 
Fig. 1). In the specific case of a spherical inhomogeneity, where a1 = a2 = a3 = a, Eq. (14) 
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simplifies to 𝛽 = lim
𝛿→0,𝐷𝑠→0  

𝛿 𝐷𝑠⁄ , where δ is a constant thickness of the outer shell that 

tends to zero. 
The averaged fields are as follows: 

〈∇𝑐〉𝑉 = (1 −
𝑉1+𝑉𝑠

𝑉
) 〈∇𝑐〉𝑉0 +

𝑉1

𝑉
〈∇𝑐〉𝑉𝑎 +

𝑉𝑠

𝑉
〈∇𝑐〉𝑉𝑠  

〈𝐉〉𝑉 = (1 −
𝑉1+𝑉𝑠

𝑉
) 〈𝐉〉𝑉0 +

𝑉1

𝑉
〈𝐉〉𝑉𝑎 +

𝑉𝑠

𝑉
〈𝐉〉𝑉𝑠

,                                                         (15) 

here 〈… 〉𝑉𝑎 = ∫ …d𝑉𝑎 
 

𝑉𝑠
 and 〈… 〉𝑉𝑠 = ∫ …d𝑉𝑠 

 

𝑉𝑠
 denotes the averaging over the volume of 

the inner ellipsoid and over the outer shell respectively. 
Diffusivity contribution tensor can be found as:  

𝐇 = (𝐷1 − 𝐷0)𝚲𝑎 −
𝑉𝑠

𝑉𝑎
𝐷0𝚲𝑠,                                                                                               (16) 

where constant concentration tensors 𝚲𝑎 (〈∇c〉𝑉𝑎 = 𝚲𝑎 ∙ 𝐆0) and 𝚲𝑠 (〈∇c〉𝑉𝑠 = 𝚲𝑠 ∙ 𝐆0) are 
as follows: 
𝚲𝑎 = 𝐷0 ∑

𝟏

𝐴𝑗𝐷1+(1−𝐴𝑗)𝐷0+(1−𝐴𝑗)𝐷0𝐷1𝛽(𝐴𝑗−
𝐹𝑗

𝐻
)

3
𝑗=1  𝐞𝑗𝐞𝑗

𝚲𝑠 = ∑ 𝐴𝑗
𝐷1

𝐷s

3
𝑗=1  𝚲𝑎𝑗𝑗𝐞𝑗𝐞𝑗

,                                                              (17)                                

here 𝐻 =
𝑎1
2𝑎2

2+𝑎1
2𝑎3

2+𝑎2
2𝑎3

2

2𝑎1
2𝑎2

2𝑎3
2 , 𝐹1 =

(∑ 𝑎𝑘
−23

𝑘=1 )𝐴1−
𝑎1𝑎2𝑎3

2
∫

3(𝑝+𝑎2
2)(𝑝+𝑎3

2)+(𝑝+𝑎1
2)(𝑝+𝑎2

2)+(𝑝+𝑎1
2)(𝑝+𝑎3

2)

√(𝑝+𝑎1
2)
5
(𝑝+𝑎2

2)
3
(𝑝+𝑎3

2)
3

∞
0 𝑑𝑝

2
, 

expressions for F2 and F3 can be obtained by the last equation with appropriate 
permutation of indices. 

In our paper [30], we compared the two analytical approaches discussed above. It 
was shown that they yield the same result only in the case of spherical inhomogeneity, 
specifically when 𝑎1 = 𝑎2 = 𝑎3 = 𝑎. In this scenario, the segregation parameter sc and 
the equivalent surface resistivity 𝛽 are related by the equation: 𝑠𝑐 = 1 + 𝐷1𝛽 𝑎⁄ .        

Let us now discuss the numerical approach for accounting for segregation. In this 
approach, we consider an inhomogeneity with a mass-isolating coating representing a 
shell. The procedure for numerically solving Eq. (1) for concentration is described in 
Appendix A. The diffusivity contribution tensor is determined through the effective 
diffusivity based on Eq. (6). The effective diffusivity tensor, in turn, is calculated from the 
solution of the following system of equations: 

{

〈𝐉〉1 = −𝐃
𝑒𝑓𝑓 ∙ 〈∇𝐜〉1,

〈𝐉〉2 = −𝐃𝑒𝑓𝑓 ∙ 〈∇𝐜〉2
〈𝐉〉3 = −𝐃

𝑒𝑓𝑓 ∙ 〈∇𝐜〉3,

,                                                                                                       (18) 

here the indices 1, 2, 3 correspond to three calculations where the linear boundary 
condition (2) is alternately applied along three mutually orthogonal directions e1, e2, e3 

(here e1, e2, e3 are unit vectors aligned with semi-axes of the ellipsoidal inhomogeneity. 
Note that the equalities 〈∇𝑐〉𝑗 = 𝐆0 are satisfied automatically for j =1, 2, 3 respectively.  

To find the effective diffusivity, we multiply Eq. (18) by e1, e2, e3 respectively and 
then sum them. This leads to the following equality: 

𝐃𝑒𝑓𝑓 = −((∑ 𝐞𝑗〈∇𝑐〉𝑗
𝟑
𝒋=𝟏 )

−𝟏
∙ ∑ 〈𝐉〉𝑗𝐞𝑗

𝟑
𝒋=𝟏 )

𝐓

 .                                                                                            (19)                                                                                         
Within the numerical approach we consider different shapes for the outer shell:  

1. The outer shell is represented by two ellipsoids (Numerical method 1). 
2. The outer shell is characterized by a constant thickness (Numerical method 2).  
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Let us further discuss these methods.  
In the case of Numerical method 1, when the semi-axes of the inner and outer 

ellipsoids are related by Eq. (12), the numerical solution can be directly compared with 
the corresponding analytical solution. However, consideration of such a shape of the 
outer shell is meaningful only within analytical approach based on the solution of a single 
inhomogeneity problem for confocal ellipsoids. Additionally, within the numerical 
approach, we examine a second case where the semi-axes of the two ellipsoids are 
related as 𝑏𝑖 = 𝑎𝑖 + 𝛿, with 𝛿 being a constant. To facilitate the comparison of the two 
numerical solutions, we relate the parameter ξ introduced in the first case to the 
parameter 𝛿 introduced in the second case in the following way: 
𝜉 = 𝛿(2𝑎𝑚𝑎𝑥 + 𝛿),                                                                                                     (20)                                                                                         
where 𝑎𝑚𝑎𝑥 corresponds to the largest semi-axis. In the case of confocal ellipsoids, 𝛿 
represents the minimum value of the thickness of the outer shell. 

In the case of Numerical method 2, the inner figure is an ellipsoid, while the outer 
one is not. This model is particularly significant for materials containing inhomogeneities 
with real coatings of finite thickness. At the same time, even in scenarios involving an 
ultra-thin coating used to model segregation, the model offers advantages, as in this case 
the thickness δ approaches zero, rather than ξ, making it a more physically relevant 
representation. To compare the two numerical methods, we relate δ and ξ  using Eq. (20). 
The technical complexity associated with forming a layer of constant thickness arises 
from the need to calculate the distance between the surface of the ellipsoid and any point 
outside it to determine whether that point belongs to the layer [31,32]. The proposed 
method for solving this problem is described in Appendix B.  

To simulate a micro-heterogeneous material in Numerical methods 1 and 2, we 
create three types of cubic cells based on the material they represent: inhomogeneity, 
layer, or matrix. When the thickness of the isolating layer approaches zero, matrix cells 
and inhomogeneity cells can become neighbors, resulting in no isolating cells between 
them. This situation gives rise to the issue of "penetration" which violates isolation. To 
avoid the "penetration" problem, we must consider a layer of finite thickness that, in fact, 
does not accurately model segregation on a real ultra-thin phase interface. To accurately 
simulate the case of an ultra-thin coating of interest, we propose to extrapolate the 
dependencies of the components of the diffusivity contribution tensor on ξ (or δ) and 
estimate the values at ξ = 0 (or δ = 0).  

In conclusion, we would like to emphasize that the consideration of an isolating 
coating—both in analytical models and numerical methods—allows the modeling of 
impurity accumulation solely outside the inhomogeneities. On the other hand, prescribing 
a jump in concentration enables the modeling of impurity accumulation in both the 
exterior and interior of the inhomogeneities. Segregation typically occurs along grain 
boundaries and within pores. In the first case, it is essential to model the grains as 
inhomogeneities and the grain boundaries as the matrix when employing the isolating 
coating approach (as opposed to modeling grains as the matrix and grain boundaries as 
inhomogeneities). Notably, this approach cannot be applied to model segregation in the 
case of pores at all. 
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Results and Discussion 
We calculate the diffusivity contribution tensor of a less mass-conductive inhomogeneity 
with an imperfect boundary, which is embedded in a more mass-conductive matrix. This 
approach allows us to model segregation in polycrystalline materials within the 
framework of all the investigated models (where grains are modeled as inhomogeneities, 
and grain boundaries are modeled as the matrix, with segregation occurring along the 
grain boundaries). Inhomogeneity is assumed to have the shape of a prolate spheroid 
(where 𝑎1 = 𝑎2 = 𝑎 and 𝛾 = 𝑎3 𝑎⁄ > 1) or a sphere (where 𝑎1 = 𝑎2 = 𝑎3 = 𝑎 and 𝛾 = 1). 

To compare the results obtained within the framework of two investigated 
analytical approaches for accounting for imperfect contacts, we relate the segregation 
parameter sc, which is responsible for the jump in concentration, to the equivalent surface 
resistivity β, which accounts for the surface effect in the following manner: 

𝑠𝑐 = 1 + 𝑅,    𝑅 =
𝐷1𝛽

𝑎
=

𝐷1(1+2γ
2)

3𝑎2γ(1+
γ2

√γ2−1

arcsin
√γ2−1

γ
)

lim
𝜉→0,𝐷𝑠→0  

𝜉

𝐷𝑠
,                                (21) 

since in this case the application of both analytical approaches leads to the same result [29].   
An ultra-thin isolating coating emerges when 𝜉 → 0 and 𝐷𝑠 → 0. The ratio 

lim
𝜉→0,𝐷𝑠→0  

𝜉 𝐷𝑠⁄   and the parameter R introduced in accordance with Eq. (21) are constant 

values. As discussed in the previous section, direct consideration of 𝜉 → 0 in numerical 
method presents technical challenges. To compare the numerical solution with the 
analytical ones, we evaluate the numerical solution at several small values of 𝜉 while 
keeping 𝜉 𝐷𝑠⁄  constant, and then we extrapolate the results.  

We start with calculating the components of diffusivity contribution tensor of a 
spherical inhomogeneity (when 𝛾 = 1). In this case, not only do both analytical 
approaches yield the same result, but all numerical methods do as well, since the 
thickness of the coating remains constant along the inhomogeneity border. Specifically, 
we consider a material with a ratio of the diffusion coefficient of the inhomogeneity to 
that of the background matrix given by 𝛼 = 𝐷1 𝐷0⁄ =  0.1. 

Figure 2 shows the dependence of the components of the diffusivity contribution 
tensor of a spherical inhomogeneity with imperfect contact on 𝛿, which remains constant 
along the phase interface, at a constant ratio 𝜉 𝐷𝑠⁄ . Note that in this case, an ultra-thin 
coating emerges when 𝛿 → 0. It is seen that for small values of the thickness of the outer 
shell, the dependencies can be well approximated by linear functions. The results are 
extrapolated to facilitate the limit transition. The numerical and analytical results are 
found to be in close agreement, with an error of less than 1 %. Additionally, in the absence 
of the coating, the components of the property contribution tensor calculated both 
analytically and numerically yield 𝐻11 = 𝐻22 = 𝐻33 ≈ 1.3. Thus, in all models – both 
analytical and numerical – increasing R enhances the “negative” contribution of low 
mass-conducting inhomogeneities, meaning that the presence of such inhomogeneities 
will decrease macroscopic mass permeability.  
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Fig. 2. Extrapolation of the numerical dependencies of the components of the diffusivity 

contribution tensor with respect to the thickness of the outer shell 
 

We now turn our attention to spheroidal inhomogeneities. As previously mentioned, 
the two analytical approaches yield different results for any relationship between the 
segregation parameter sc and equivalent surface resistivity β. Consequently, a quantitative 
comparison of the results is not particularly valuable. However, the qualitative differences 
are significant. 

 

 
Fig. 3. Dependencies of the dimensionless components of the diffusivity contribution tensor 𝐻11 𝐷0⁄  (a) 

and 𝐻33 𝐷0⁄  (b) with respect to the parameter R 
 
According to [26], the increase in the dimensionless parameter R, introduced by 

Eq. (21) and indicative of an imperfect contact, impacts the results obtained through the 
two analytical approaches in different ways. When R is unknown, the application of one 
approach allows for a border range of values for Hii and, consequently, for effective 
properties. This can be critical when comparing theoretical results with experimental 
data. Note that both approaches – Analytical approach 1, which accounts for an imperfect 
contact via a jump prescription, and Analytical approach 2, which considers imperfect 
contact through an isolating coating – can yield a wider range of the results than the 

(a)                                                                     (b) 
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other, depending on the internal structure parameters. For instance, as shown in Fig. 3, 
at γ = 3 and α = 0.1, the increase in R affects H33 calculated using Analytical approach 2 
significantly more than it does in Analytical approach 1. However, the influence on H11 is 
comparatively less. Notably, the difference in H33 calculated by the two approaches is 
greater than in H11.  

There is another significant qualitative difference between the two analytical 
approaches. In Analytical approach 1, the magnitudes of all components of the diffusivity 
contribution tensor increase with an increasing R, which is physically justified. This is 
because the degradation of mass permeability in the inhomogeneity should enhance its 
contribution to the effective properties of a material comprised of less mass-conducting 
inhomogeneities and a more mass-conducting matrix. In contrast, in Analytical 
approach 2, for certain values of the inner structure parameters, an opposing trend occurs.  
In Fig. 4(a) it is shown that for a given γ,  the magnitude of the component H11 decreases 
with increasing R when 𝛼 < 𝛼𝑐𝑟𝑖𝑡 (where 𝛼𝑐𝑟𝑖𝑡 represents some “critical” value). An 
increase in γ  leads to a decrease in 𝛼𝑐𝑟𝑖𝑡. The dependence of 𝛼𝑐𝑟𝑖𝑡 on the aspect ratio is 
shown in Fig. 4(b). It is seen that the problem does not arise when 𝛼 > 0.043 for any 
value of γ. Additionally, as 𝛼 decreases, the range of “critical” values of γ becomes wider 
(see the region under the line in Fig. 4(b)). 

 

 
Fig. 4. (a) Dependencies of the dimensionless components of the diffusivity contribution tensor 
𝐻11 𝐷0⁄  with respect to the ratio of the diffusivities of the inhomogeneity and the matrix;  

(b) dependence of the “critical” value the diffusivity ratio with respect to the aspect ratio 
 
Figures 5 and 6 compare the analytical and numerical solutions for the components 

of the diffusivity contribution tensor. The numerical solution obtained using Numerical 
method 1 when semi-axes of the inner and outer ellipsoids are related by Eq. (12) is 
shown. The results are extrapolated to implement the limit transition. Figure 5 presents 
the results for a material with parameters 𝛾 = 2, 𝛼 =  0.1. In this case, the dependencies 
𝐻11 on R obtained within the framework of the two analytical approaches exhibit similar 
behavior, with their magnitudes increasing as R increases. It is seen that an increase in R 
results in a greater contribution of inhomogeneity with an imperfect interface estimated 
within numerical approach. The results calculated using Analytical model 1 are closer to 
the numerical results than those obtained from Analytical model 2. This may be due to 

(a)                                                                     (b) 
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the fact that the dependency of the components of the property contribution tensors on 
R is less pronounced in the case of Analytical model 1 and in the numerical solution. It 
appears that Analytical model 2 can be used for small values of R, which holds true for 
small values in the limit  lim

𝜉→0,𝐷𝑠→0  
𝜉 𝐷𝑠⁄ .   

 

 
Fig. 5. Extrapolation of the dependencies of the dimensionless components of the diffusivity 

contribution tensor 𝐻11 𝐷0⁄  (a) and 𝐻33 𝐷0⁄  (b) with respect to the parameter ξ at γ = 2, α = 0.1 
 

 
Fig. 6. Extrapolation of the dependencies of the dimensionless components of the diffusivity 

contribution tensor 𝐻11 𝐷0⁄  (a) and 𝐻33 𝐷0⁄  (b) with respect to the parameter ξ at γ = 2, α = 0.01 
 
  

(a)                                                                      (b) 

(a)                                                                      (b) 
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(a) 

 
(b) 

Fig. 7. Comparison of numerical methods at 𝛾 = 2 (a) and 𝛾 = 3 (b) at 𝜉 𝐷𝑠 = 1⁄  
 

Figure 7 compares the results obtained from different numerical methods: 
Numerical method 1, which introduces the coating using a constant parameter 𝜉, and 
Numerical method 2, which introduces the coating through a constant thickness δ along 
the inhomogeneity boundary. Both approaches yield similar results, allowing either 
model to be used for simulating an ultra-thin coating. However, the analysis of a layer 
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with constant thickness results in outcomes that are less dependent on the absolute 
thickness.  

Notably, for a slightly elongated spheroid with γ = 2, the results obtained within the 
framework of Numerical method 1.2 using a constant thickness δ along the 
inhomogeneity axes, coincide with those from Numerical method 2 applying the same 
constant thickness δ across the entire inhomogeneity boundary, with the difference being 
less than 1 %. The distinction between these two cases becomes apparent at larger values 
of γ, as shown in Fig. 8. It is seen that increasing the aspect ratio of spheroidal 
inhomogeneity leads to a greater difference between Numerical method 1.2 and 
Numerical method 2 (the value of |𝐻𝑖𝑖NM1.2 − 𝐻𝑖𝑖NM2| 𝐻𝑖𝑖NM2⁄  is shown, where 𝐻𝑖𝑖NM1.2 and 
𝐻𝑖𝑖
NM2 are components of 𝐻𝑖𝑖 calculated within the framework of Numerical method 1.2 

and Numerical method 2 respectively).  
 

 
Fig. 8. Dependencies of the slot-relative difference between the components of the diffusivity 

contribution tensor calculated using Numerical method 1.2 and Numerical method 2 with respect to the 
aspect ratio of spheroidal inhomogeneity 

 
In summary, the analytical approach that incorporates segregation via prescription 

of a jump in concentration shows advantages over the alternative method that models 
segregation through inhomogeneity with a mass isolating coating. The first analytical 
approach effectively describes segregation both inside and outside inhomogeneities, 
avoids unphysical outcomes across various internal structure parameters, and yields 
results that align more closely with numerical findings. Additionally, we have confirmed 
that our developed numerical methods are capable of accurately simulating segregation 
occurring outside of inhomogeneities. 

 
Conclusions 
Various analytical approaches and numerical methods that account for segregation when 
determining the effective diffusivity of micro-heterogeneous materials were compared in 
the paper based on evaluating the diffusivity contribution tensors of individual 
inhomogeneities. Two analytical approaches and one numerical approach were utilized. 
In the first analytical approach, segregation was modeled by introducing a concentration 
jump characterized by a constant segregation parameter. In the second analytical 
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approach and the numerical approach, segregation was addressed by considering 
inhomogeneities with a mass-isolating ultra-thin coating. Moreover, in the framework of 
the numerical approach, different methods of simulating the coating were applied: the 
layer formed by two ellipsoids and the layer of constant thickness were both considered 

The comparison of analytical and numerical solutions demonstrated that the first 
analytical approach offers more advantages than the second one. This is because it 
enables the description of segregation in materials with diverse internal structures and 
provides results that closely match numerical findings, despite its simplicity. Additionally, 
the developed numerical methods can be further employed to calculate the effective 
properties of materials with inhomogeneities featuring real mass-isolating coatings of 
finite thickness and inhomogeneities with irregular shapes. 
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Appendix A. Numerical procedure 
To solve Eq. (1) for concentration, we employed an implicit numerical procedure based 
on the Alternating Direction Implicit (ADI) algorithm [33].  

We can express Eq. (1) for concentration in symbolic form as follows: 
𝐿(c) = 0,                      (A.1) 
where L is a differential operator defined in Cartesian coordinates (𝑥, 𝑦, 𝑧) as 
𝐿 =

∂

∂𝑥
(𝐷(𝐫)

∂

∂x
) +

∂

∂y
(𝐷(𝐫)

∂

∂y
) +

∂

∂z
(𝐷(𝐫)

∂

∂z
) ≡ 𝐿1 + 𝐿2 + 𝐿3. 

To find the solution of Eq. (A.1), we treat it as the stationary solution of the unsteady 
equation using an implicit scheme: 
𝜉𝑛+1

𝜏
= 𝐿(𝑐𝑛+1),            (A.2) 

where 𝜉𝑛+1 = 𝑐𝑛+1 − 𝑐𝑛, 𝜏 is a “pseudo-time” step, n is the iteration number. 
Equation (A.2) can be rewritten in the following manner: 

𝜉𝑛+1

𝜏
= 𝐿(𝑐𝑛) + 𝐿(𝜉𝑛+1).             (A.3) 
Equation (A.3), in turn, is convenient to rewrite as: 

(𝐼 − 𝜏𝐿)𝜉𝑛+1 = 𝜏𝐿(𝑐𝑛),             (A.4) 
where I is the identity operator. 

Equation (A.4) can be factored in the following way: 
(𝐼 − 𝜏𝐿1)(𝐼 − 𝜏𝐿2)(𝐼 − 𝜏𝐿3)𝜉

𝑛+1 = 𝜏𝐿(𝑐𝑛) + 𝑂(𝜉𝑛+1).          (A.5) 
Then the main steps of algorithm are as follows: 

{
 
 

 
 
Step 1: 𝜉𝑛 = 𝜏𝐿(𝑐𝑛)

Step 2: (𝐼 − 𝜏𝐿1)𝜉
𝑛+1/3 = 𝜉𝑛

Step 3: (𝐼 − 𝜏𝐿2)𝜉
𝑛+2/3 = 𝜉𝑛+1/3

Step 4: (𝐼 − 𝜏𝐿3)𝜉
𝑛+1 = 𝜉𝑛+2/3

Step 5: 𝑐𝑛+1 = 𝑐𝑛 + 𝜉𝑛+1

  .              (A.6) 

 
Appendix B. Calculating the distance between point and ellipsoid surface 
The distance between a point and the surface of an ellipsoid can be expresses as the 
length of the normal vector dropped from the given point onto the ellipsoidal surface. 
The surface of the ellipsoid in Cartesian coordinates (𝑥, 𝑦, 𝑧) is defined be the equation: 

(
𝑥

𝑎1
)
2

+ (
𝑦

𝑎2
)
2

+ (
𝑧

𝑎3
)
2

= 1 ,         (B.1) 

where 𝑎1, 𝑎2, 𝑎3 are the semi-axes of the ellipsoid.  
We first discuss the problem of determining the position of some point along the 

normal vector to ellipsoid’s surface. Let this point be located at a given distance δ to a 
point on the ellipsoid’s surface represented by the position vector 𝐫 = 𝑥𝐞1 + 𝑦𝐞2 + 𝑧𝐞3. 
The unit external normal vector n to the ellipsoid’s surface at the point 𝐫 can be defined 
as: 

𝐧 =

𝑥

𝑎1
2

√(
𝑥

𝑎1
2)

2

+(
𝑦

𝑎2
2)

2

+(
𝑧

𝑎3
2)

2
𝐞1 +

𝑦

𝑏1
2

√(
𝑥

𝑎1
2)

2

+(
𝑦

𝑎2
2)

2
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𝑧
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2

√(
𝑥

𝑎1
2)

2

+(
𝑦

𝑎2
2)

2

+(
𝑧

𝑎3
2)

2
𝐞3.  (B.2) 
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Let 𝐫0 = 𝑥0𝐞1 + 𝑦0𝐞2 + 𝑧0𝐞3 be the sought-for position-vector. Its coordinates can 
be determined from the following equations: 

𝑥0 = 𝑥 +

𝑥

𝑎1
2
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𝑥

𝑎1
2)

2

+(
𝑦
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2)

2
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2)

2
𝛿
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𝑎2
2)

2

+(
𝑧

𝑎3
2)

2
𝛿

𝑧0 = 𝑧 +

𝑧

𝑐1
2

√(
𝑥

𝑎1
2)

2

+(
𝑦

𝑎2
2)

2

+(
𝑧

𝑎3
2)

2
𝛿

.        (B.3) 

Returning to the problem of calculating the distance between a specified point and 
the surface of the ellipsoid, both the distance δ and the coordinates x, y, z  are initially 
unknown. To find these values, we must solve an inverse problem described by the 
following system of equations: 

𝑥0 −

(

 
 
1 +

h

𝑎1
2√(

𝑥

𝑎1
2)

2

+(
𝑦

𝑎2
2)

2

+(
𝑧

𝑎3
2)

2

)

 
 
𝑥 = 0

𝑦0 −

(

 
 
1 +

y

𝑏1
2√(

𝑥

𝑎1
2)

2

+(
𝑦

𝑎2
2)

2

+(
𝑧

𝑎3
2)

2
ℎ

)

 
 
𝑦 = 0

𝑧0 −

(

 
 
1 +

z

𝑐1
2√(

𝑥

𝑎1
2)

2

+(
𝑦

𝑎2
2)

2

+(
𝑧

𝑎3
2)

2
ℎ

)

 
 
𝑧 = 0

(
𝑥

𝑎1
)
2

+ (
𝑦

𝑎2
)
2

+ (
𝑧

𝑎3
)
2

− 1 = 0

.       (B.4) 

Solution of the system of Eqs. (B.4) was found in the present research numerically.  
 


