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Abstract. The present investigation is concerned with the reflection and transmission at 
elastic half-space and a two-temperature generalized thermoelastic half-space with fractional 
order derivative. The governing equations in the context of the theory of two-temperature 
generalized thermoelasticity using the methodology of fractional calculus are used to 
investigate the problem. The incident wave is assumed to be striking at the plane interface 
after propagating through the elastic solid half-space. It is found that the amplitude ratios of 
various reflected and refracted waves are functions of the angle of incidence and frequency of 
the incident wave. These amplitude ratios are influenced by the fractional-order thermoelastic 
properties of media. The expressions of amplitude ratios and energy ratios have been 
computed numerically for a particular model. The variations of energy ratios with the angle of 
incidence are shown graphically. The conservation of energy at the interface is verified.  
Keywords: fractional, temperature, elastic, reflection, transmission 
 
 
1. Introduction 
In recent years, several interesting models have been developed by using fractional calculus to 
study the physical processes particularly in the area of heat conduction, diffusion, 
viscoelasticity, mechanics of solids, control theory, electricity, etc. It has been realized that 
the use of fractional order derivatives and integrals leads to the formulation of certain physical 
problems which is more economical and useful than the classical approach. There exist many 
materials and physical situations like amorphous media, colloids, glassy and porous materials, 
manmade and biological materials/polymers, transient loading, etc., where the classical 
thermoelasticity is based on Fourier type heat conduction breaks down. In such cases, one 
needs to use a generalized thermoelasticity theory based on an anomalous heat conduction 
model involving time-fractional (non-integer order) derivatives. 
 The first application of fractional derivatives was given by Abel [1] who applied 
fractional calculus in the solution of an integral equation that arises in the formulation of the 
tautochrone problem. Caputo [2] gave the definition of fractional derivatives of order of 
absolutely continuous function. Caputo and Mainardi [3], Caputo and Mainardi [4], and 
Caputo [5] found good agreement with experimental results when using fractional derivatives 
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for the description of viscoelastic materials and established the connection between fractional 
derivatives and the theory of linear viscoelasticity. 
 Oldham and Spanier [6] studied the fractional calculus and proved the generalization of 
the concept of derivative and integral to a non-integer order. A theoretical basis for the 
application of fractional calculus to viscoelasticity was given by Bagley and Torvik [7]. 
Applications of fractional calculus to the theory of viscoelasticity were given by Koeller [8]. 
Kochubei [9] studied the problem of fractional order diffusion.   
 Rossikhin and Shitikova [10] presented applications of fractional calculus to various 
problems of mechanics of solids. Gorenflo and Mainardi [11] discussed the integral 
differential equations of fractional orders, fractals, and fractional calculus in continuum 
mechanics. Mainardi and Gorenflo [12] investigated the problem of Mittag-Leffler-type 
function in the fractional evolution process. Povstenko [13] proposed a quasi-static uncoupled 
theory of thermoelasticity based on the heat conduction equation with a time-fractional 
derivative of order α. Because the heat conduction equation in the case interpolates the 
parabolic equation ( ) and the wave equation ( ), this theory interpolates a classical 
thermoelasticity and a thermoelasticity without energy dissipation. He also obtained the 
stresses corresponding to the fundamental solutions of a Cauchy problem for the fractional 
heat conduction equation for one-dimensional and two-dimensional cases. 
 Povstenko [14] investigated the nonlocal generalizations of the Fourier law and heat 
conduction by using time and space fractional derivatives. Jiang and Xu [15] obtained a 
fractional heat conduction equation with a time-fractional derivative in the general orthogonal 
curvilinear coordinate and also in another orthogonal coordinate system. Povstenko [16] 
investigated the fractional radial heat conduction in an infinite medium with a cylindrical 
cavity and associated thermal stresses. 
 Ezzat [17] constructed a new model of the magneto-thermoelasticity theory in the 
context of a new consideration of heat conduction with fractional derivative. Ezzat [18] 
studied the problem of the state space approach to thermoelectric fluid with fractional order 
heat transfer. The Laplace transform and state-space techniques were used to solve a one-
dimensional application for a conducting half-space of thermoelectric elastic material. 
Povstenko [19] investigated the generalized Cattaneo-type equations with time-fractional 
derivatives and formulated the theory of thermal stresses. Biswas and Sen [20] proposed a 
scheme for optimal control and a pseudo state space representation for a particular type of 
fractional dynamical equation. 

Borejko [21] discussed the reflection and transmission coefficients for three-
dimensional plane waves in elastic media. Wu and Lundberg [22] investigated the problem of 
reflection and transmission of the energy of harmonic elastic waves in a bent bar. Sinha and 
Elsibai [23] discussed the reflection and refraction of thermoelastic waves at an interface of 
two semi-infinite media with two relaxation times. Sharma and Gogna [24] discussed the 
problem of reflection and transmission of plane harmonic waves at an interface between 
elastic solid and porous solid saturated by viscous liquid. Tomar and Arora [25] studied the 
reflection and transmission of elastic waves at an elastic/porous solid saturated by immiscible 
fluids. Kumar and Sarthi [26] discussed the reflection and transmission of thermoelastic plane 
waves at an interface of thermoelastic media without energy dissipation. 

The two-temperature theory (2TT) of thermoelasticity proposes that heat conduction in 
deformable media depends upon two distinct temperatures, the conductive temperature and 
the thermodynamic temperature (Chen and Gurtin [27]; Chen et al. [28]; Warren and Chen 
[29]).While under certain conditions these two-temperatures can be equal. In time-dependent 
problems, however, in particular, those involving wave propagation, and are generally 
different (Warren and Chen [29]). The key element that sets the 2TT apart from the classical 
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theory of thermoelasticity (CTE) is the (theory specific) material parameter . Specifically, if, 
then and the field equations of the 2TT reduce to those of CTE. 

Warren and Chen [29] investigated wave propagation in the two-temperature theory of 
thermoelasticity. Quintanilla [30] proved some theorems in thermoelasticity with two-
temperatures. Recently, Puri and Jordan [31] studied the propagation of plane waves under 
two-temperatures. 

Youssef [32] studied the induced temperature and stress field in an elastic half-space 
under the purview of the two-temperature generalized thermoelasticity theory. The half-space 
continuum is considered to be made of an isotropic homogeneous thermoelastic material, the 
bounding plane surface being subjected to ramp-type heating. Uniqueness and growth of 
solutions in two-temperature generalized thermoelastic theories were given by Magana and 
Quintanilla [33]. 

The convolutional variational principle, reciprocal and uniqueness theorems in linear 
fractional two-temperature thermoelasticity were given by El-Karamany and Ezzat [34]. They 
proposed two models where the fractional derivatives and integrals are used to modify the 
Cattaneo heat conduction law in the context of the two-temperature thermoelasticity theory. 
They also proved uniqueness and reciprocal theorems and the convolutional variational 
principle to prove a uniqueness theorem with no restrictions imposed on the elasticity or 
thermal conductivity tensors except symmetry conditions. Fractional order coupled 
thermoelasticity results follow from this model. Indeitsev, Vakulenko, Mochalova and 
Abramian [35] studied the transport and deformation wave processes in solids. A two-
temperature model of optical excitation of acoustic waves in conductors was discussed by 
Indeitsev and Osipova [36]. 
 In the present paper, the reflection and transmission phenomenon at a plane interface 
between an elastic solid medium and a fractional-order thermoelastic half-space with two-
temperature generalized thermoelasticity theory has been analyzed. In fractional order 
generalized thermoelastic solid medium with two temperatures, potential functions are 
introduced to represent two longitudinal waves and one transverse wave. The amplitude ratios 
of various reflected and refracted waves to that of incident waves are derived. The amplitude 
ratios are further used to find the expressions of energy ratios of various reflected and 
refracted waves to that of the incident wave. The graphical representation is given for these 
energy ratios for a different direction of propagation and different fractional orders. The law 
of conservation of energy at the interface is verified.  
 
2. Governing Equations 
Following Ezzat and El-Karamany [37], the basic equations of fractional order theory of 
thermoelasticity with two temperatures for an isotropic and homogeneous elastic medium in 
the absence of body forces and heat sources are: 

the constitutive equation (Stress-Strain and temperature relations) is given by 
( )ij ij kk ijσ 2μe λe γT δ= + − ,  (1) 

the heat conduction equations  
( ) ( )

α α
0

,ii E 0 1α

τ
K 1 ρC T γ e

t α! t
 ∂ ∂

φ = + + φ , ∂ ∂ 
 (2) 

where αI  is the fractional integral of the function ( )f t  of order α  defined by Miller and 
Ross [38]. 

( ) ( )
( )

( )
α 1

tα

0

t τ
I f t f τ dτ 0 α 2,

Γ α

−−
= , < ≤∫

 
   

the equations of motion  
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( )
2

2
2λ μ μ γ Τ ρ ,

t
∂

+ ∇ ⋅ + ∇ − ∇ =
∂

uu u  (3) 

the relation between heat conduction and dynamic heat is given by 
( )2T 1 a= − ∇ φ ,  (4) 

the strain displacement relations  

( )ij i , j j ,i
1e u u
2

= + , (5) 

where ( ) tγ 3λ 2μ α= + ; λ μ,  are the Lame's constants, tα  is the coefficient of thermal linear 
expansion, iu  are the components of the displacement vector u , 0T θ T= −  is small 
temperature increment, a  is the two-temperature parameter, 0T is the reference temperature of 

the body chosen such that 
0

T 1
T

<< , θ is the absolute temperature of the medium, ρ is the 

density assumed to be independent of time, ij ijσ e,  are the components of the stress and strain 
respectively, kke  is the dilatation, EC  is the specific heat at constant strain, K is the coefficient 
of thermal conductivity. 
 
3. Formulation of the problem 
We consider an isotropic elastic solid half-space (Medium I) lying over a homogeneous 
isotropic, fractional order generalized thermoelastic half-space with two temperature 
(Medium II). The origin of the Cartesian coordinate system ( )1 2 3x x x, ,  is taken at any point on 
the plane surface(interface) and 3x -axis points vertically downwards into Medium II which is 
thus represented by 3x ≥0. We choose 1x -axis in the direction of wave propagation so that all 
particles on a line parallel to 2x -axis are equally displaced. Therefore all the field quantities 
are independent of 2x . For two dimensional problem, we take  

( )1 3u ,0,u=u . (6) 
We define the following dimensionless quantities 

2 e e
i 0 i i 0 i 0 i 0 i

ij2
0 0 0 ij 2 2

0 0
e

ije e e
ij ij 0 ij ij 0 ij2

0 0 0

x C ηx u C ηu t C ηt u C ηu
σ γτ C ητ σ i j 1 2 3
ρC ρC

σT hT h σ P ρC P P ρC P
T C η ρC

∗ ∗ ∗ ∗

′ ′ ′ ′= , = , = , = ,

φ′ ′ ′= , = ,φ = , , = , , .

′ ′′ ′ ′= , = , = , = , = ,

 (7)

 
( )22 2

0 0 0β aC η a C / K= =  is the temperature discrepancy, 
where 

2 E
0

ρCλ 2μC η .
ρ K

+
= , =  (8) 

Upon introducing the quantities (7) in equations (2)-(3) with the aid of (4) and (6), after 
suppressing the primes take the form  

( ) ( )
2

2 2 2 21 1
1 0 2

e uβ 1 u 1 β β β
x x t

∂ ∂∂φ
− + ∇ − − ∇ = ,

∂ ∂ ∂  
(9)                

( ) ( )
2

2 2 2 2 31
1 0 2

ueβ 1 u 1 β β β
z z t

∂∂ ∂φ
− + ∇ − − ∇ = ,

∂ ∂ ∂   (10)                                            

( ) ( )
α α

2 20
0α

τ
1 1 β

α t tt
 ∂ ∂ ∂∇ ⋅ ∇ = + − ∇ + ∈ ,  ! ∂ ∂∂   

uf f

 
(11)                           

where 

4 Rajneesh Kumar, Puneet Bansal, Vandana Gupta



2 2
2 20 31

.12 2
E 1 31 3

γT uuγ λ 2μκ β b e
ρC μ μ x xx x

∂∂+ ∂ ∂
= , = , = ,∇ = + , = +

∂ ∂∂ ∂
. 

We introduce the potential functions 1φ and 1ψ through the relations 
1 1 1 1

1 3
1 3 3 1

ψ ψu  u .
x x x x

∂φ ∂ ∂φ ∂
= − , = +

∂ ∂ ∂ ∂  
(12)                           

Substituting equation (12) in the equations (9)-(11), we obtain 

( )
2

2 2 2
1 02β 1 β β 0

t
∂ ∇ − φ − − ∇ φ = , ∂   

(13)                           

2
2 2 1

1 2

ψψ β 0
t

∂
∇ − = ,

∂  
(14)                           

( ) ( )
α α

2 2 20
.0 1α

τ
1 1 β κ

α t tt
 ∂ ∂ ∂ ∇ = + − ∇ + ∇  ! ∂ ∂∂   

f f f
 

(15)                           

For the propagation of harmonic waves in 1 3x x−  plane, we assume 
{ }( ) { } iωt

1 1 1 3 1 1ψ x x t ψ e−φ , ,φ , , = φ , , φ ,  (16) 
where ω  is the angular frequency of vibrations of material particles.  

Substituting the value of 1 1ψφ ,  and φ  from equation (16) into the equations (13)-(15) 
after simplification, we obtain 

4 2A B C 0∇ + ∇ + φ = ,    (17) 
where 

0 0
2 2

0

A β Rβ β κR

B βω Rβ Rβ ω κR

= − − ,

= + − + ,
 

( ) ( )

2

α
α 10

.

C Rβω

τ
R iω iω

α
+

= ,

 
= − − ! 

 

The general solution of equation (16) can be written as 
1 11 12φ = φ + φ ,  (18) 

where the potentials 1iφ , i=1,2 are solutions of wave equations, given by 
2

2
1i2

i

ω 0
V

 
∇ + φ = 

 
, i=1,2. (19) 

Here 1 2V V,  are the velocities of two longitudinal waves, that is, P and T(Thermal) waves 
and are derived from the roots of quadratic equations in 2V , given by 

4 2 2 4CV Bω V Aω 0− + = ⋅  (20) 
From equation (14) with the aid of (16), we obtain 

2
2

12
3

ω ψ 0
V

 
∇ + = , 

 
 (21) 

where 3
1V
β

=  is the velocity of a transverse wave. 

Using equation (15), (19) with the aid of (16) and (18), we obtain 

{ } { }
2

1 i 1i
i 1

1 n
=

φ ,φ = , φ ,∑  (22) 

where 
( ) ( )

( ) ( ) ( )

α
α 1 20

i α
α 12 2 20

0 i

τιω ιω κω
α

n
τιω ιω 1 β V
α

+

+

 
− − ! = ,

   
∇ + + − − ∇   !   

 

 

 i=1,2. (23) 
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The basic equations of homogeneous isotropic elastic solid are written as  

( )
2 e

e e e e 2 e e
2λ μ μ ρ

t
∂

+ ∇∇ ⋅ + ∇ = ,
∂

uu u  (24) 

where e eλ μ,  are the Lame's constants, eu  is the displacement vector, eρ  is the density 
corresponding to medium I. 

For two dimensional problem ( )e e e
1 3u 0 u= , ,u , the displacement components e

1u  and e
3u

are related by potentials e
1φ  and e

1ψ  as 
e e e e

e e1 1 1 1
1 3

1 3 3 1

ψ ψu u
x x x x

∂φ ∂ ∂φ ∂
= − , = + ,

∂ ∂ ∂ ∂
 (25) 

where e
1φ  and e

1ψ  satisfy the wave equations 
2 e e

1 12

1
α

∇ φ = φ ,  (26) 

2 e e
1 12

1ψ ψ
β

∇ = ,  (27) 

where 
e e e e e

e e
e e

0 0

α β λ 2μ μα β α β
C C ρ ρ

+
= , = , = , = .  (28) 

The stress-strain relation in an isotropic elastic medium is given by 
e e e e eσ 2μ e λ e δ ,ij ij kk ij= +  (29) 

where 

( )e e e
ij i , j j ,i

1e u u
2

= + ,  
e

iie  is the dilatation. 
 
4. Reflection and Transmission 
We consider a harmonic wave (P or SV) propagating through the isotropic elastic solid half-
space and is incident at the interface 3x 0= . Corresponding to this incident wave, two 
homogeneous waves (P and SV) are reflected in isotropic elastic solid half-space and three 
inhomogeneous waves (P, T, and SV) are refracted in isotropic fractional-order thermoelastic 
solid half-space as shown in Fig. 1. 
 

 
Fig. 1. Geometry of the problem      
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In elastic solid half-space, the potential functions satisfying equations (26), (27) can be 
written as  

( ){ } ( ){ }1 0 3 0 1 1 3 1iω x sinθ x cosθ / α t iω x sinθ x cosθ / α te e e
1 0 1A e A e

   
      

+ − + −
φ = + ,  (30) 

( ){ } ( ){ }1 0 3 0 1 2 3 2iω x sinθ x cosθ / β t iω x sinθ x cosθ / β te e e
1 0 1ψ B e B e

   
      

+ − + −
= + .  (31) 

The coefficients ( )e e e
0 0 1A B , A  and e

1B  are amplitudes of the incident P (or SV), reflected 
P, and reflected SV waves respectively. 

Following Borcherdt [39], in isotropic fractional-order thermoelastic half-space with 
two temperature, the potential functions satisfying equations (19) and (21) can be written as 

{ } { } ( ) ( ){ }i i
2

A r ι P r ωt
1 i i

i 1
1 n B e e⋅ ⋅ −

=

, = , ,∑f f




 

  (32) 

( ) ( ){ }3 3A r ι P r ωt
1 3ψ B e e .⋅ ⋅ −=




 

  (33) 
The coefficients iB i 1 2 3, = , ,  are the amplitudes of refracted P,T, and SV waves 

respectively. The propagation vector iP i 1 2 3, = , ,


and attenuation factor iA i 1 2 3, = , ,


 are 
given by 

i R 1 iR 3 i I 1 iI 3ˆ ˆ ˆ ˆP ξ x dV x A ξ x dV x= + , = − − ,


i=1,2,3, (34) 
where 

2
2

i iR iI 2
i

ωdV dV ιdV p v ξ
V

 
= + = . . − , 

 
 i=1,2,3. (35) 

and R Iξ ξ ιξ= +  is the complex wave number. The subscripts R and I denote the real and 
imaginary parts of the corresponding complex number and p v. .  stands for the principal value 
of the complex quantity derived from the square root. Rξ 0≥  ensures propagation in positive  

1x -direction. The complex wave number ξ in the isotropic fractional-order thermoelastic 
medium is given by 

( )i i i i iξ P sinθ ι A sin θ γ , i 1, 2, 3′ ′= − − =


 , (36) 
where iγ , i=1, 2, 3 is the angle between the propagation and attenuation vector and iθ ′ , i=1, 2, 
3 is the angle of transmission in medium II. 
 
5. Boundary conditions 
The boundary conditions to be satisfied at the interface 3x =0 are as follows 

a) Stress conditions 
e

33 33σ σ= ,  (37) 
e

31 31σ σ= ,  (38) 
b) Displacement conditions 

e
1 1u u= ,  (39) 

e
3 3u u= ,  (40) 

c) Thermal condition 

3

T hT 0
x

∂
+ = ,

∂
 (41) 

where h  is the heat transfer coefficient. 
h 0→  corresponds to the insulated boundary and h → ∞  corresponds to the isothermal 

boundary. Making use of potentials given by equations (30)-(33), we find that the boundary 
conditions are satisfied if and only if  

0 1 2
R

0

ωsinθ ωsinθ ωsinθξ
V α β

= = = ,
 

(42) 
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where 

0

α for incident P-wave
V

β for incident SV-wave
,=  ,

 (43) 

and Iξ 0= ⋅  
It means that waves are attenuating only in 3x -direction. From equation (36), it implies 

that if iA 0≠


, then i iγ θ′= , i=1, 2, 3,that is, attenuated vectors for the four refracted waves are 
directed along the 3x -axis. 

Using equations (30)-(33) in the boundary conditions (37)-(41) with the aid of equations 
(12), (25), (42), (43), we get a system of five non-homogeneous equations  

5

ij j i
j 1

d Z g
=

= ,∑  (44) 

where jZ , j =1, 2, 3, 4, 5 are the ratios of amplitudes of reflected P-, reflected SV-, refracted 
P-, refracted T- and refracted SV-waves to that of the amplitude of the incident wave. 

2
βe e 2 e e3 αR R R R

11 0 12 15 21

2 22 2
β βe 3R R R

22 25 31 32

3 α R R
35 41 42 45 51 52

dV dV dVξ ξ ξ ξd 2μ ρ c d 2μ d 2μ d 2μ
ω ω ω ω ω ω ω
dV dVdVξ ξ ξd μ d μ d d
ω ω ω ω ω ω

dV dV ξ ξd d d d d d
ω ω ω ω

 = − , = , = , = , 
 

         = − , = − , = , = ,                   

= , = − , = , = − , = = 55d 0= ,

 

( )( )2222
0 0 j j2 2iR R

1 j 0 0 j 2 j2

jR
3 j 4 j

2
j 2

5 j j 0

1 1
2 2 22 2 βα 0R

2 2 2 2
0

1 β ξ β dV dVdVξ ξd λ ρc ρc n d 2μ
ω ω ω ωγω

dVξd d
ω ω

idV h 1 ξd n ωβ j 3 4
ω ω ω ω

dVdV sin θ sinξ1 1 1
ω ω ωα α V β

+ +  = + + , = ,   
   

= − , = − ,

    = + + , = , .       

    = − = − , = −        

1
2

0
2

0

θ
V

 
, 

 

 

and 
1

2 2
j 0

2 2
j 0

dV sin θ1p v
ω V V

 
= . . − 

 
,   j = 1, 2, 3. 

Here p v. .  is calculated with restriction jIdV 0≥  to satisfy decay condition in fractional 
order thermoelastic medium. The coefficients ig , i=1, 2, 3 on the right side of the 
equation (44) are given by 

(a) For incident P-wave ( ) ( )i
i ij 5g 1 d i j 1 g 0= − = 1,2,3,4, = , = .  (45) 

(b) For incident SV-wave ( ) ( )i 1
i ij 5g 1 d i j 2 g 0+= − = 1,2,3,4, = , = .  (46) 

Now we consider a surface element of the unit area at the interface between two media. 
The reason for this consideration is to calculate the partition of the energy of the incident 
wave among the reflected and refracted waves on both sides of the surface. Following 
Achenbach [40], the energy flux across the surface element, that is, the rate at which the 
energy is communicated per unit area of the surface is represented as 

lm m lP σ l u∗ = ,   (47) 
where lmσ  is the stress tensor, ml  are the direction cosines of the unit normal l̂  outward to the 
surface element, and lu  are the components of the particle velocity. 
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The time average of P∗  over a period, denoted by P∗ , represents the average energy 
transmission per unit surface area per unit time. Thus, on the surface with normal along  

3x -direction, the average energy intensities of the waves in the elastic solid are given by  
e e*e e e

.1 313 33P Re σ Re u Re σ Re u= ⋅ + ⋅   (48) 
Following Achenbach [40], for any two complex functions f  and g , we have 

( ) ( ) ( )1Re f Re g Re f g
2

⋅ = ⋅ ⋅
 

(49) 

The expressions for energy ratios iE , i = 1, 2, 3 for the reflected P- and reflected SV- 
are given by 

e
i

i e
0

P
E

P

∗

∗= − ,   i = 1, 2, (50) 

where 

( ) ( )
4 e 2 4 e 2

2 2e e e e0 0
1 1 1 2 1 2

ω ρ c ω ρ c1 1P A Re cosθ P B Re cosθ
2 α 2 β

∗ ∗= , = ,
 

(51) 

and 
(a) For incident P-wave 

4 e 2
e e0

0 0 0
ω ρ c1P A cosθ

2 α
∗ = − ,

 
(52) 

(b) For incident SV-wave 
4 e 2

e e0
0 0 0

ω ρ c1P B cosθ
2 β

∗ = − ,  (53) 

are the average energy intensities of the reflected P-, reflected SV-, incident P-, and incident 
SV-waves respectively. In equation (50), the negative sign is taken because the direction of 
reflected waves is opposite to that of the incident wave. 

For fractional-order thermoelastic solid with two temperature, the average intensities of 
the waves on the surface with normal along 3x -direction, are given by 

( ) ( ) ( ) ( )i ij j
ij 1 313 33P Re σ Re u Re σ Re u∗ = ⋅ + ⋅ . 

 
(54) 

The expressions for energy ratios for the reflected P-,reflected T- and reflected SV- 
waves are given by 

ij
ij e

0

P
E

P

∗

∗= ,i, j = 1, 2, 3, (55) 

where 
22

j j2i iR R R
04

ij i j222
j2 20 iR

0 0 j2

dV dVdV dVξ ξ ξ2μ λ ρc
ω ω ω ω ω ω ωωP Re B B

2 dVρC dVξ1 β ω β ω n
ω ω ωγω

∗

       + +        
        = − ,        + + +                

 

22
2i 3 iR R R R
04

i3 i 32 22
0 iR R

0 0 i2

dV dV dVξ ξ ξ ξ2μ λ ρc
ω ω ω ω ω ω ωωP Re B B

2 ρc dVξ ξ1 β β n
ω ω ωγω

∗

       − + +                = − ,         + + +                
224

j j23 3 3R R R R R
3 j 0 j 3

dV dVdV dV dVξ ξ ξ ξ ξωP Re μ λ ρc B B
2 ω ω ω ω ω ω ω ω ω ω

∗       = − − − + ,      
        .

2 24
3 3 3R R R

33 3 3
dV dV dVξ ξ ξωP Re μ 2μ B B

2 ω ω ω ω ω ω
∗        = − − −           

, i, j =1,2. 
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The diagonal entries of the energy matrix ijE  in equation (61) represents the energy 
ratios of P, T, SV waves respectively, whereas sum of the non-diagonal entries of ijE gives the 
share of interaction energy among all refracted waves in the medium and is given by  

3 3

RR ij ii
i 1 j 1

E E E
= =

 
= − . 

 
∑ ∑

 
(56)

 
The energy ratios iE , i =1, 2, diagonal entries and non-diagonal entries of the energy 

matrix ijE , that is, 11 22 33E E E, , and RRE yield the conservation of incident energy across the 
interface, through the relation 

1 2 11 22 33 RRE E E E E E 1+ + + + + = .  (57) 
 
6. Numerical results and discussion 
We now represent some numerical results following Sherief and Saleh [41], the physical data 
for which is given below: 

10 1 2 10 1 2 3
0

3 1 1 5 1
E t

3 3 3 1 1

λ 7.76 10 Kgm s , μ 3.86 10 Kgm s ,T 0.293 10 K ,

C .3831 10 JKg K ,α 1.78 10 K

h 0, ρ 8.954 10 Kgm , K 0.383 10 Wm K .

− − − −

− − − −

− − −

= × = × = ×

= × = ×

= = × = ×

 

Following Bullen [42], the numerical data of granite in an elastic medium is given by 
e 3 3 e 3 1 e 3 1ρ 2.65 10 Kgm ,α 5.27 10 ms , β 3.17 10 ms− − −= × = × = × . 

The software Matlab 7.0.4 has been used to determine the values of energy ratios 
iE , i 1,2=  and an energy matrix ijE , i, j 1,2,3=  defined in the previous section for different 

values of incident angle ( )0θ ranging from 0  to 89° for fixed frequency ω 2 π 100 Hz.= × ×

corresponding to incident P and SV waves, the variation of these energy ratios with respect to 
the angle of incidence has been plotted in Figs. 2-7 and Figs. 8-13 respectively. In all the 
figures, the slant and squares correspond to Generalized Thermoelasticity(GTE) and Two 
Temperature Generalized Thermoelasticity(TTGTE) theories for α 0.5=  whereas horizontal 
lines and dots correspond to Generalized Thermoelasticity(GTE) and Two Temperature 
Generalized Thermoelasticity(TTGTE) theories for α 1.8= .  

Incident P wave. It is clear from Fig. 2 that the values of energy ratio 1E  first decrease 
from 0 to 80° and increases rapidly in 080 θ 90° ≤ ≤ °  for both GTE and TTGTE theory and both 
fractional orders. Figure 3 shows that for GTE and both fractional orders 2E  increases in the 
range 00 θ 60≤ ≤ °  and then decreases for 060 θ 90° ≤ ≤ ° . Also for TTGTE, 2E  attains minimum 
at 0θ 50= ° . Figure 4 indicates that for α 1.8=  (GTE and TTGTE) and α 0.5=  (TTGTE), 
values of 11E  are nearly equal to zero whereas for α 0.5= (GTE), 11E  increases for 00 θ 50≤ ≤ °

and decreases for 050 θ 90° ≤ ≤ ° . Figure 5 depicts that 22E  for α 1.8=  (TTGTE) increases 
smoothly in the range 00 θ 20≤ ≤ °  and then decreases for 020 θ 90° ≤ ≤ ° . For α 0.5,1.8=  
(GTE), 22E  attains value nearly equal to 3 in the range 00 θ 60≤ ≤ °  and decreases rapidly and 
attains a minimum in the range 060 θ 90° ≤ ≤ ° . Also for α 0.5=  (TTGTE), it attains the 
minimum value. Figure 6 depicts the same behavior and variation for 33E  as 2E  with 
difference in magnitude values for both the theories (GTE and TTGTE) and both fractional 
orders. Magnitude values in case of 2E  are higher than 33E . Figure 7 shows that values of RRE
are minimum for α 0.5=  (TTGTE) than other theories. It is noticed that the sum of the values 
of energy ratios 1E , 2E , 11E , 22E , 33E  and RRE  is found to be exactly unity at each value of θ°

which proves the law of conservation of energy at the interface. 
Incident SV wave. From Figure 8, it is evident that for both fractional orders 1E

increases smoothly in the range 00 θ 40≤ ≤ °  and then rapidly decreases at 0θ 40= °  and attains 
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the minimum value elsewhere for both GTE and TTGTE theories. Figure 9 shows that 2E  first 
decreases in the range 00 θ 30≤ ≤ ° , fluctuates in 030 θ 50° ≤ ≤ °  and increases smoothly for

050 θ 90° ≤ ≤ ° . From Fig. 10 and Fig. 11, it is noticed that 11E  and 22E  depict the same 
behavior and variation for both theories and fractional orders as Fig. 4 shows for 11E , but 
magnitude values of 22E  are higher than 11E . Figure 12 indicates that 33E  decreases for 

00 θ 40≤ ≤ °  attains the minimum value at 0θ 40= ° , again increases and finally decreases to 0. 
Figure 13 indicates that for α 0.5=  (GTE) and α 0.5,1.8=  (TTGTE), RRE  attains minimum 
value nearly to 0, while for α 1.8=  (GTE), RRE  increases for 00 θ 30≤ ≤ °  then decreases 
rapidly and attains minimum value elsewhere. In all the figures a very small change occurs for 
α 0.5,1.8=  (TTGTE). Therefore the curves corresponding to α 0.5,1.8=  (TTGTE) coincide. 
 

  
Fig. 2. Variation of energy ratio E1 w.r.t. angle of incidenceθ0 for P wave 

0 20 40 60 80 100
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Fig. 3. Variation of energy ratio E2 w.r.t. angle of incidence θ0 for P wave 

 
Fig. 4. Variation of energy ratio E11 w.r.t. angle of incidence θ0 for P wave 
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Fig. 5. Variation of energy ratio E22 w.r.t. angle of incidence θ0 for P wave 

 

 
Fig. 6. Variation of energy ratio E33 w.r.t. angle of incidence θ0 for P wave 
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Fig. 7. Variation of energy ratio ERR w.r.t. angle of incidence θ0 for P wave 

 
Fig. 8. Variation of energy ratio E1 w.r.t. angle of incidence θ0 for SV wave 
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Fig. 9. Variation of energy ratio E2 w.r.t. angle of incidence θ0 for SV wave 

 

 
Fig. 10. Variation of energy ratio E11 w.r.t. angle of incidence θ0 for SV wave 
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Fig. 11. Variation of energy ratio E22 w.r.t. angle of incidence θ0 for SV wave 

 

 
Fig. 12. Variation of energy ratio E33 w.r.t. angle of incidence θ0 for SV wave 
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Fig. 13. Variation of energy ratio ERR w.r.t. angle of incidence θ0 for SV wave 

 
7. Conclusion 
In the present article, the phenomenon of reflection and transmission of obliquely incident 
elastic wave at the interface between an elastic solid half-space and two-temperature 
generalized thermoelastic solid half-space with fractional order derivative has been studied. 
The three waves in thermoelastic solid medium are identified and explained through different 
wave equations in terms of displacement potentials. The energy ratios of different reflected 
and refracted waves to that of incident wave are computed numerically and presented 
graphically with respect to the angle of incidence for fractional order 0.5α =  and 1.8α =  for 
both GTE and TTGTE theory. For fractional order 0.5α = , the values of energy ratios are 
higher than 1.8α = . From numerical results, we conclude that the effect of angle of incidence 
and fractional order and two-temperature theory on the energy ratios of the reflected and 
refracted waves are significant. The sum of all energy ratios of the reflected waves, refracted 
waves, and interference between refracted waves is verified to be always unity which ensures 
the law of conservation of incident energy at the interface. 
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