Epitaxial stabilization of α-Ga₂O₃ layers grown on r-plane sapphire

V.I. Nikolaev ^{1,3} 🖾 (b), A.Y. Polyakov ² (b), S.I. Stepanov ^{1,3}, A.I. Pechnikov ^{1,3} (b),

L.I. Guzilova ³, M.P. Scheglov ³, A.V. Chikiryaka ³

¹ Perfect Crystals LLC, Saint Petersburg, Russia

² National University of Science and Technology MISiS, Moscow, Russia

³ Ioffe Institute, Saint Petersburg, Russia

[™] nikolaev.v@mail.ioffe.ru

Abstract. In this work, we study the thermal stabilization of metastable α -Ga₂O₃ in growth experiments. Gallium oxide films are grown on c- and r-plane sapphire substrates by halide vapor phase epitaxy (HVPE) at the temperature range of 450-690 °C. The surface morphology is investigated by scanning electron microscopy. The structural quality and phase composition of the grown films is studied by X-ray diffraction. It is found that the use of *r*-plane sapphire substrates prevents the formation of the orthorhombic κ -Ga₂O₃ and monoclinic β -Ga₂O₃ and thus extends the growth process window for the deposition of the rhombohedral α -phase of gallium oxide.

Keywords: gallium oxide, HVPE, epitaxial layers, *c*-plane and *r*-plane sapphire substrates

Acknowledgements. The research was supported by Russian Science Foundation, Grant No. 19-19-00409.

Citation: Nikolaev VI, Polyakov AY, Stepanov SI, Pechnikov AI, Guzilova LI, Scheglov MP, Chikiryaka AV. Epitaxial stabilization of α -Ga₂O₃ layers grown on r-plane sapphire. *Materials Physics and Mechanics*. 2023;51(1): 1-9. DOI: 10.18149/MPM.5112023_1.

Introduction

Gallium oxide is a prospective ultra-wideband gap semiconductor having a bandgap of about 5 eV. It has gained considerable interest recently for applications in high-power electronics, chemical sensors, and ultraviolet detectors [1]. Ga₂O₃ exists in many polymorphic forms denoted as monoclinic β , corundum α , defective spinel γ , orthorhombic (hexagonal) $\kappa(\varepsilon)$, and bixbyite δ polymorphs. In some early studies, the ε -phase was erroneously ascribed to a hexagonal P63mc space group. However, more recent studies revealed that the ε -phase actually consists of nanoscale domains of the orthorhombic structure rotated 120° relatively to each other [2]. The β -Ga₂O₃ polymorph is the most stable form and can be obtained by melt crystallization. However, the low symmetry of the monoclinic structure presents evident drawbacks for device applications.

Besides the monoclinic polymorph, other crystal forms of Ga_2O_3 such as the orthorhombic κ -phase and the rhombohedral corundum α -phase have attracted considerable interest due to their unique physical properties. The κ -phase has large spontaneous polarization which can be used to generate high-density two-dimensional electron gas. Among other polymorphs, α -Ga₂O₃ has the widest bandgap of 5.3 eV and is isostructural to sapphire substrates. Epitaxial stabilization can be used as an effective tool for the growth of metastable polymorphs of Ga₂O₃. Metastable polymorphs can be grown by epitaxial methods on foreign

© V.I. Nikolaev, A.Y. Polyakov, S.I. Stepanov, A.I. Pechnikov, L.I. Guzilova, M.P. Scheglov, A.V. Chikiryaka, 2023. Publisher: Peter the Great St. Petersburg Polytechnic University

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/li-censes/by-nc/4.0/)

substrates. In most papers, *c*-plane sapphire was used as a substrate for the Ga_2O_3 growth, and only a few reports used *a*, *r*, and *m*-plane sapphire as the substrate.

The stability of α -Ga₂O₃ epitaxial films on sapphire substrates is governed by a large number of factors. On one hand, α -Ga₂O₃ is the best lattice-matched polymorph and has the same corundum structure as sapphire. The lattice mismatches between α -Ga₂O₃ and α -Al₂O₃ (sapphire) are only 4.81% and 3.54% in the a- and c-axis directions. For that reason, α -phase can be energetically more preferable to other polymorphs when grown epitaxially on sapphire substrates. On the other hand, the thermal stability of α -Ga₂O₃ is less than that of κ -Ga₂O₃ and β -Ga₂O₃. In the temperature range of 600-650 °C, all three phases can coexist and compete with each other.

In the previous studies, pressure, temperature, substrate type and orientation, gallium and oxygen precursors, additional hydrogen chloride flow, and doping with tin, silicon, and boron have been identified as the main factors which determine the preferential nucleation of one or another phase.

It has been observed by many authors that the growth of phase pure α -Ga₂O₃ on sapphire substrates is limited by the film thicknesses. High-resolution transmission electron microscopy studies revealed that independent of the growth method a few-monolayer thick α -Ga₂O₃ can be stabilized by strain during the growth of Ga₂O₃ on *c*-plane sapphire [3]. For thicker layers, the α -phase transforms to β -phase due to a large in-plane lattice mismatch between α -Ga₂O₃ and the sapphire substrate.

The thermal stability of α -(Al_xGa_{1-x})₂O₃ is expected to be higher than that of pure α -Ga₂O₃ because α -phase is the stable polymorph of Al₂O₃. Surprisingly, even a small Al doping is sufficient to increase the growth temperature and resistance to thermal annealing. According to Lee *et al.*, slight doping with Al (1-2.5%) allows the growth at higher temperatures (e.g. 50–150 °C higher) without the marked appearance of the β -phase and enhances thermal stability for successive thermal treatments [4].

Several research groups reported that the Sn doping growth could facilitate the preferential growth of the κ -phase [5-7]. This phenomenon was observed with MBE, PLD, and mist-CVD. Kang *et al.* investigated the Sn-induced phase stabilization of κ -Ga₂O₃ and the thermal stability of the films grown by mist chemical vapor deposition [7]. They found that Sn doping promotes the κ -phase even under low temperature (Tg = 450 °C) growth conditions that strongly favor the α -phase. The post-growth annealing tests at 800–1000 °C showed that the thermal stability of the κ -phase also depends on the Sn concentration. The higher the Sn concentration, the more stable the phase. The one with the highest Sn content showed no phase transition from κ to β after annealing at 800 °C, 900 °C, and 1000 °C for 30 min each. The exact mechanism of the Sn-induced phase stabilization of κ -Ga₂O₃ remains elusive.

The addition of boron stabilizes the MOVPE growth of the α -phase on *c*-, *a*-, and *r*-plane sapphire substrates [8]. A preferred growth of the α -phase without boron addition could only be observed on *r*-plane Al₂O₃. While most of the growths of α -Ga₂O₃ thin films have been investigated on *c*-plane sapphire substrates, there are a few publications of α -Ga₂O₃ on sapphire substrates of other orientations.

Cheng *et al.* systematically investigated the differences of α -Ga₂O₃ films grown on *a*-, *c*-, and *r*-plane sapphire substrates using the mist-CVD method [9]. They reported that the quality of *c*-plane α -Ga₂O₃ films is better than both *a*-plane and *r*-plane epilayers, corresponding to the results of XRD 2 θ scans and optical absorption. They claimed to have a higher growth rate on the *c*-plane (11.44 nm/min) than on the *a*- and *r*-plane sapphire (5.74 and 5.26 nm/min).

Oshima *et al.* reported the growth of ten-period binary α -Al₂O₃/Ga₂O₃ superlattices on *r*-plane sapphire substrates by plasma-assisted molecular beam epitaxy [10]. The superlattice with α -Ga₂O₃ thickness up to >1 nm had coherent interfaces without misfit dislocation despite

the large lattice mismatches.

Hu *et al.* studied the growth of Ga₂O₃ thin films on various oriented (*c*-, *a*-, *m*-, *r*-plane) sapphire substrates by plasma-enhanced chemical vapor deposition (PECVD) is investigated using high-purity metallic Ga and oxygen (O₂) as precursor materials and argon (Ar) as carrier gas. The film grown on the c-plane sapphire substrates exhibits the β -phase with a preferred growth plane of ($\overline{2}01$), while these grown on the *m*- and *r*-planes are amorphous.

The achievable film thickness of phase pure α -Ga₂O₃ is limited by the formation of cplane facets on the α -Ga₂O₃ surface.

Phase stabilization of α -Ga₂O₃ on *r*-plane sapphire was studied by Kracht *et al.* who observed no indication for β -Ga₂O₃ in α -Ga₂O₃ layers on r-plane sapphire with a thickness up to 117 nm thickness [11]. This layer thickness is much higher than the values reported for MBE growth on the *a* and *c* planes, respectively. If growth time is further extended the nucleation of β -Ga₂O₃ on *c*-plane facets that are increasingly exposed during the growth of α -Ga₂O₃ is observed.

Here, we investigate the effect of substrate temperature on the growth in the α -Ga₂O₃ on *c*- and *r*-plane sapphire substrates.

Experiment

Ga₂O₃ films were grown by HVPE on (0001) *c*-plane and (1012) *r*-plane single-side polished sapphire substrate of 400 μ m thickness. Oxygen gas (O₂) and gallium chloride (GaCl) were used as precursors with argon (Ar) used as a carrier gas. The GaCl vapor was synthesized *in situ* through the chemical reaction between metallic gallium and gaseous hydrogen chloride upstream in the reactor. The growth of the Ga₂O₃ films was performed at temperatures varying from 450 °C to 690 °C and a fixed O/Ga mole flow ratio of 4.2. The growth rate varied from 1.7 to 6.9 μ m/hr. The overall thickness of the films was 1-5 μ m. A more detailed description of the epitaxial growth procedures can be found in our earlier papers [12-14].

The phase composition and crystal structure of the produced Ga_2O_3 films were investigated by X-ray diffraction (XRD). The surface morphology and the cross-section of the films were studied by scanning electron microscopy (SEM).

Results and discussion

The comparison of the surface morphology for different samples was performed by SEM imaging (Fig. 1,2). Compared to specimens grown on r-plane sapphire, Ga_2O_3 films grown on c-plane substrates exhibit flatter surface morphology. This tendency becomes even more pronounced at higher growth temperatures. For example, it can be seen that Ga_2O_3 grown on *c*-plane sapphire at 670 °C forms a continuous film. Most of the film is composed of oriented crystal blocks of 120° symmetry, a few crystallites with hexagonal symmetry can be also observed. In contrast, the specimen grown on *r*-plane sapphire is clearly polycrystalline composed of agglomerated prismatic crystallites of various orientations. The observed crystal habit is typical for the monoclinic polymorph.

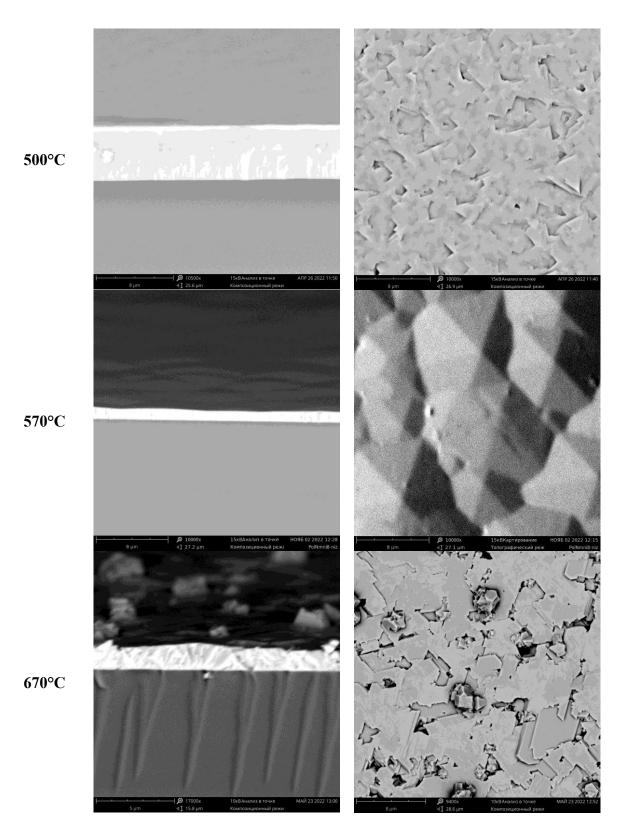
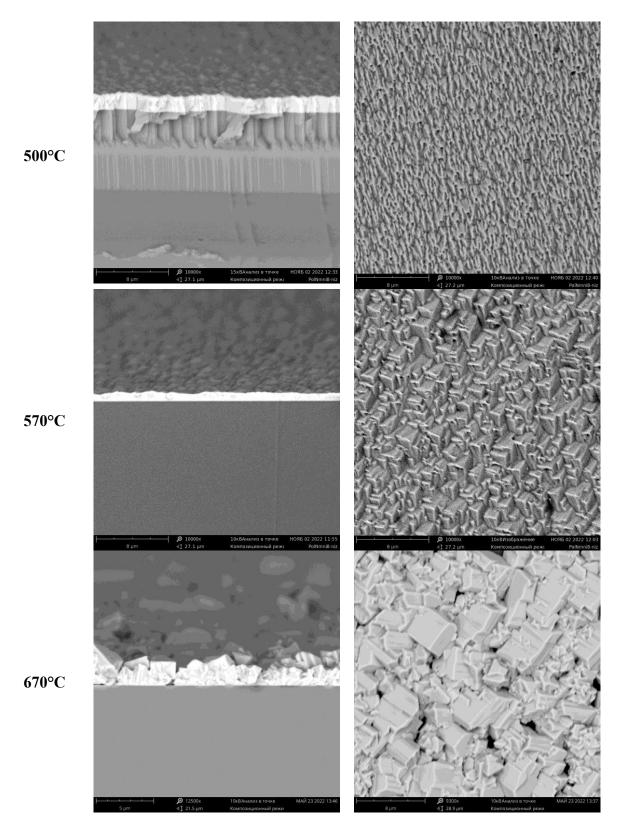
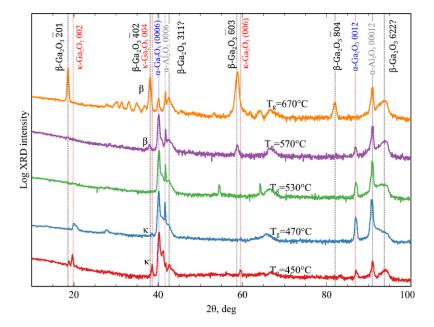
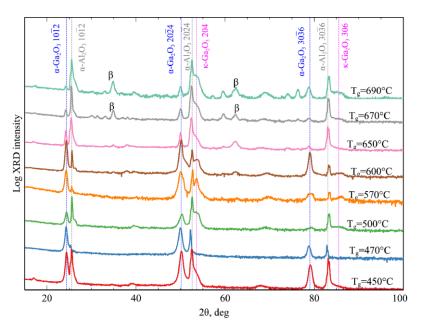




Fig. 1. Cross-sectional and plan view SEM images for Ga₂O₃ layers on c-plane sapphire at different temperatures

Fig. 2. Cross-sectional and plan view SEM images for Ga₂O₃ layers on r-plane sapphire at different temperatures

The XRD ω -2 θ scans of Ga₂O₃ films grown on *c*-plane sapphire at different temperatures are shown in Fig. 3. All XRD spectra show reflexes from the sapphire substrate that can be indexed as 0006 at $2\theta \approx 41.65^{\circ}$ and 00012 at $2\theta \approx 90.85^{\circ}$. The other two well-pronounced diffraction peaks can be assigned to the 0006 and 00012 reflections of α -Ga₂O₃. The specimens grown at temperatures below 530 °C showed diffraction peaks which can be assigned to 004 and 006 reflections of κ -Ga₂O₃. The specimens grown at higher temperatures exhibit β -Ga₂O₃ peaks that can be indexed as 402 at $2\theta \approx 38^\circ$, 603 at $2\theta \approx 59^\circ$ and 804 at $2\theta \approx 82^\circ$. Interestingly, the intensity of diffraction peak related to κ -Ga₂O₃ decrease with increasing temperature, on the contrary, the intensity of β -Ga₂O₃ diffraction peaks increases as the growth temperature increases. The XRD pattern from the specimen grown at 670 °C also shows a variety of minor peaks which can be attributed to β -Ga₂O₃ phase. The growth temperature is a key factor in controlling the balance between α , β , and κ phases. Under the given growth conditions, the HVPE deposition of α -Ga₂O₃ on c-plane sapphire substrates is possible only within a very narrow temperature window at about 530 °C. It can be speculated that low growth temperature conditions result in κ -Ga₂O₃ because this phase has a smaller lattice mismatch with c-plane sapphire. On the other hand, at a higher temperature, the diffusion length is longer, and atoms reach the step edges. Therefore, the formation of the α -Ga₂O₃ phase which has the same structure as the sapphire substrate becomes energetically more favorable.


Fig. 3. Symmetrical ω -2 θ XRD scans of Ga₂O₃ epilayers grown on *c*-plane sapphire substrates at different growth temperatures

The upper-temperature limit is in line with previous publications, as metastable α -Ga₂O₃ has the propensity to revert to the stable β -phase upon heating. The transition temperature to the β -phase is from 600 °C to 650 °C and depends on the film thickness. As reported by Lee et al., α -Ga₂O₃ films thicker than 1 µm on c-plane sapphire substrates remained α -phase upon annealing up to 550 °C but gradually changed to β -phase at a temperature higher than 600 °C [15]. The phase stability of α -Ga₂O₃ on c-plane sapphire can be enhanced by decreasing the film thickness. According to Jinno *et al.*, an α -Ga₂O₃ film around 20 nm thick maintained the corundum structure at an annealing temperature of 750 °C [16].

On the other hand, the lower temperature limit defined by the formation of the κ -phase is apparently of a less fundamental nature and is related to the particular features of the employed

growth technique. For example, mist-CVD shows the opposite trend where the low-temperature growth (<550 °C) favors the formation of α -Ga₂O₃, while higher temperatures result in the deposition of κ -Ga₂O₃ films. A similar trend has been reported for the HVPE technique, where deposition at a relatively high temperature (T_g = 650 °C) resulted in κ -Ga₂O₃ [17]. On the other hand, Son *et al.* Reported that the growth at 470–650 °C resulted in preferentially α -phase epilayers, while the deposition at 450 °C produced a mixture of α - and κ -Ga₂O₃ polymorphs [18]. In the case of the MOCVD technique, the balance between α and κ polymorphs is governed not solely by temperature, but by multiple factors. Typically, MOCVD growth at low temperatures (550 °C) results in polycrystalline Ga₂O₃ because precursors do not have sufficient energy to form crystalline Ga₂O₃ film.

Figure 4 presents XRD ω -2 θ scans of Ga₂O₃ films grown on *r*-plane sapphire at different temperatures. The specimens grown in the temperature range 450 °C – 650 °C showed only 1012, 2024, and 3036 reflexes of the *r*-plane α -Al₂O₃ and α -Ga₂O₃. Therefore, the film is composed mainly of the (1012)-oriented α -Ga₂O₃ phase, with little or no detectable admixture of other polymorphic phases.

Fig. 4. Symmetrical ω -2 θ XRD scans of Ga₂O₃ epilayers grown on *r*-plane sapphire substrates at different growth temperatures

It should be noted that the growth of α -Ga₂O₃ layers on the *r*-plane of sapphire is characterized by a much wider temperature process window. First, in contrast to the Ga₂O₃ films on the *c*-plane sapphire, specimens on the *r*-plane do not exhibit the inclusion of the κ -phase. Secondly, the upper temperature limit which is marked by the onset of the β -phase formation is increased from 570 °C to 670 °C.

Conclusion

In summary, the HVPE growth of Ga₂O₃ on *c* and *r*-plane sapphire substrates has been studied. We show that the use of *r*-plane sapphire substrates facilitates the growth of phase-pure α -Ga₂O₃ films. At low temperatures, Ga₂O₃ films grown on *r*-plane sapphire do not exhibit an inclusion of the κ -phase. At high temperatures, up to about 700 °C the use of r-plane sapphire substrates prevents the thermal decomposition of the α -Ga₂O₃ and its transformation into β -Ga₂O₃.

References

1. Biswas M, Nishinaka H. Thermodynamically metastable α-, ε - (or κ -), and γ -Ga₂O₃: From material growth to device applications. *APL Mater*. 2022;10(6): 060701.

2. Cora I, Mezzadri F, Boschi F, Bosi M, Čaplovičová M, Calestani G, Dódony I, Pécza B, Fornari R. The real structure of ε -Ga₂O₃ and its relation to κ -phase. *CrystEngComm*. 2017;19(11): 1509-1516.

3. Schewski R, Wagner G, Baldini M, Gogova D, Galazka Z, Schulz T, Remmele T, Markurt T, von Wenckstern H, Grundmann M, Bierwagen O, Vogt P, Albrecht M. Epitaxial stabilization of pseudomorphic α -Ga₂O₃ on sapphire (0001). *Appl. Phys. Express.* 2015;8(1): 011101.

4. Lee SD, Ito Y, Kaneko K, Fujita S. Enhanced thermal stability of alpha gallium oxide films supported by aluminum doping. *Jpn. J. Appl. Phys.* 2015;54(3): 030301.

5. Kneiß M, Hassa A, Splith D, Sturm C, von Wenckstern H, Schultz T, Koch N, Lorenz V, Grundmann M. Tin-assisted heteroepitaxial PLD-growth of κ -Ga₂O₃ thin films with high crystalline quality. *APL Mater*. 2019;7(2): 022516.

6. Kracht M, Karg A, Schörmann J, Weinhold M, Zink D, Michel F, Rohnke M, Schowalter M, Gerken B, Rosenauer A, Klar PJ, Janek J, Eickhoff M. Tin-Assisted Synthesis of ϵ -Ga₂O₃ by Molecular Beam Epitaxy. *Phys. Rev. Appl.* 2017;8(5): 054002.

7. Kang HY, Kang H, Lee E, Lee GR, Chung RBK. Sn-Induced Phase Stabilization and Enhanced Thermal Stability of κ -Ga2O3Grown by Mist Chemical Vapor Deposition. *ACS Omega*. 2021;6(46): 31292–31298.

8. Gottschalch V, Merker S, Blaurock S, Kneiß M, Teschner U, Grundmann M, Krautscheid H. Heteroepitaxial growth of α -, β -, γ - and κ -Ga₂O₃ phases by metalorganic vapor phase epitaxy. *J. Cryst. Growth.* 2019;510: 76–84.

9. Cheng Y, Xu Y, Li Z, Zhang J, Chen D, Feng Q, Xu S, Zhou H, Zhang J, Hao Y, Zhang C. Heteroepitaxial growth of α - Ga₂O₃ thin films on a-, c- and r-plane sapphire substrates by low-cost mist-CVD method. *J. Alloys Compd.* 2020;831: 154776.

10. Oshima T, Kato Y, Imura M, Nakayama Y, Takeguchi M. α-Al₂O₃/Ga₂O₃ superlattices coherently grown on r -plane sapphire. *Appl. Phys. Express.* 2018;11(6): 065501.

11. Kracht M, Karg A, Feneberg M, Bläsing J, Schörmann J, Goldhahn, R, Eickhoff M. Anisotropic Optical Properties of Metastable (0112) α -Ga₂O₃ Grown by Plasma-Assisted Molecular Beam Epitaxy. *Phys. Rev. Appl.* 2018;10(2): 024047.

12. Nikolaev VI, Stepanov SI, Pechnikov AI, Shapenkov SV, Scheglov MP, Chikiryaka AV, Vyvenko OF. HVPE Growth and Characterization of ε -Ga₂O₃ Films on Various Substrates. *ECS J. Solid State Sci. Technol.* 2020;9(4): 045014.

13. Pechnikov AI, Stepanov SI, Chikiryaka AV, Scheglov MP, Odnobludov MA, Nikolaev VI, Thick α -Ga₂O₃ Layers on Sapphire Substrates Grown by Halide Epitaxy. *Semiconductors*. 2019;53(6): 780–783.

14. Stepanov SI, Nikolaev VI, Almaev AV, Pechnikov AI, Scheglov MP, Chikiryaka AV, Kushnarev BO, Polyakov AY. HVPE growth of corundum-structured α -Ga₂O₃ on sapphire substrates with α -Cr₂O₃ buffer layer. *Materials Physics and Mechanics*. 2021;47(4): 577-581.

15. Lee S, Akaiwa K, Fujita S. Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates. *Phys. Status Solidi C.* 2013;10(11): 1592–1595.

16. Jinno R, Kaneko K, Fujita S. Thermal stability of α -Ga₂O₃ films grown on c-plane sapphire substrates via mist-CVD. *AIP Adv.* 2020;10(11): 115013.

17. Bosi M, Mazzolini P, Seravalli L, Fornari R. Ga2O3 polymorphs: tailoring the epitaxial growth conditions. *J. Mater. Chem. C.* 2020;8(32): 10975–10992.

18. Son H, Jeon DW. Optimization of the growth temperature of α -Ga₂O₃ epilayers grown by halide vapor phase epitaxy. *J. Alloys Compd.* 2019;773: 631–635.

THE AUTHORS

V.I. Nikolaev 匝

e-mail: nikolaev.v@mail.ioffe.ru

S.I. Stepanov e-mail: s.i.stepanov@gmail.com

Guzilova L.I. (b) e-mail: guzilova@mail.ioffe.ru

A.V. Chikiryaka e-mail: chikiryaka@mail.ru **A.Y. Polyakov b** e-mail: aypolyakov@gmail.com

A.I. Pechnikov **b** e-mail: alpechn@yahoo.com

M.P. Scheglov ^(b) e-mail: m.scheglov@mail.ioffe.ru