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Abstract. The work focuses on the analytical description of unsteady thermal processes in 

low-dimensional structures. The object of study is an infinite one-dimensional harmonic 

crystal with interactions up to the third coordination sphere. The paper explains 

how a variation in bond stiffness between particles of different coordination spheres affects 

the behaviour of the system. The fundamental solution to the heat propagation problem 

has been constructed and investigated. It is shown that the initial thermal perturbation 

evolves into several consecutive thermal waves propagating with finite velocities. 

The number, the velocities, and the intensity coefficients of these waves are determined by the 

bond stiffnesses. 
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1. Introduction

In most macro-scale objects, heat propagation can be described by the Fourier law, in which

the linear relationship between heat flow and temperature gradient is assumed. However,

deviations from the law can be observed at the micro/nano-level [1-2] where ballistic and

anomalous processes of energy transfer take place. Dynamics of the crystal lattice is widely

used in studies of various processes at micro- and macro-levels including thermal [3-9].

The non-diffuse thermal conductivity has been analytically [10-18] and experimentally 

[19-23] investigated during the last years. Extensive research on unsteady ballistic heat 

transfer processes was conducted by our scientific group [24-32]. An area of particular 

interest, where anomalies can be observed the most, is heat transport in harmonic crystals. 
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The behaviour of such systems can be described by statistical characteristics. For some of 

them such as kinetic temperature analytical expression can be obtained [25]. 

An important area of research is heat transport in polyatomic systems or systems 

with non-neighbouring interactions. Considerable progress has been made in the analysis 

of the harmonic diatomic crystals as well as the harmonic crystals with the second 

coordination sphere [33-35]. In this paper, a crystal with interactions up to the third 

coordination sphere is discussed. 

The crystalline model and its equation of motion are analysed to obtain expressions for 

the dispersion relation and group velocities. Based on a previously developed model of 

ballistic heat transfer, a fundamental solution is obtained and the influence of non-

neighbouring interactions is investigated. 

2. Statement of the Problem

A one-dimensional harmonic crystal is a chain of material points linearized along deformation

by forces. The system studied consists of equal masses 𝑚 that interact with their neighbours

up to the third coordination sphere (Fig. 1). Equation of motion

𝑚�̈�𝑛 = 𝑐1(𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1) + 𝑐2(𝑢𝑛+2 − 2𝑢𝑛 + 𝑢𝑛−2) + 𝑐3(𝑢𝑛+3 − 2𝑢𝑛 + 𝑢𝑛−3) (1)

describes the system’s behaviour where 𝑢𝑛 is the displacement of the 𝑛-th particle; 𝑐1, 𝑐2, and

𝑐3 are the stiffnesses of couplings between the nearest, second nearest, and third nearest

neighbours respectively.

𝑛 − 3 𝑛 − 2 𝑛 − 1 𝑛 𝑛 + 1 𝑛 + 2 𝑛 + 3 

Fig. 1. One-dimensional harmonic crystal considering the third coordination sphere 

In [34] the case 𝑐3 = 0 was studied. The modified stiffness

𝑐12 = 𝑐1 + 4𝑐2 (2)

was introduced to emphasize the second-order difference for the particles of the second 

coordination sphere. To ensure that the model presented in this paper is aligned with previous 

research, the same procedure was followed. Eq. (1) takes the form: 

𝑚�̈�𝑛 = 𝑐12(𝑢𝑛+2 − 2𝑢𝑛 + 𝑢𝑛−2)/4 − 𝑐1(𝑢𝑛+2 − 4u𝑛+1 + 6𝑢𝑛 − 4u𝑛−1 + 𝑢𝑛−2)/4 +
𝑐3(𝑢𝑛+3 − 2𝑢𝑛 + 𝑢𝑛−3). (3)

To solve equation (3) initial conditions for displacements and velocities should be 

specified. In case of instantaneous temperature perturbation, velocities are set to non-zero 

independent random values: 

𝑢𝑛|𝑡=0 = 0, �̇�𝑛|𝑡=0 = 𝑣𝑛. (4)

Expressions (3) and (4) form the stochastic Cauchy problem which can be solved 

analytically for some crystalline systems. 

The concept of kinetic temperature is an essential tool when describing thermal 

processes at the nanoscale. It depicts the energy transfer taking place through the interactions 

between the particles and is defined as 

𝑘𝐵Ti ≝ 𝑚〈�̇�2
𝑖〉, (5)

where Ti – kinetic temperature, 𝑘𝐵 – Boltzmann constant, 〈… 〉 – covariance. As shown in

[25], the evolution of the temperature field can be described as a superposition of fast 

and slow processes. The fast processes describe high-frequency oscillations caused 

by the redistribution of energy among potential and kinetic energy components. The slow 

processes correspond to the redistribution of energy between particles. This study focuses on 

the slow processes only. 

Given an initial temperature field 𝑇0(𝑥), the temperature at a given time and point is
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𝑇(𝑥, 𝑡) =
1

8𝜋
∫ (𝑇0(𝑥 + 𝑐𝑔𝑟(𝑎𝑘)𝑡) + 𝑇0(𝑥 − 𝑐𝑔𝑟(𝑎𝑘)𝑡))

𝜋

−𝜋
𝑑(𝑎𝑘), (6) 

where 𝑘 is the wavenumber, 𝑐𝑔𝑟(𝑎𝑘) is the group velocity, and 𝑎 is the lattice constant 

corresponding to the distance between the nearest particles in the equilibrium state. 

 

3. Dispersion Relation 

The dispersion relation describes the waves that can propagate in the system. It is obtained via 

substitution of the wave function 

𝑢𝑛 = 𝐴𝑒𝑖(𝑎𝑘𝑛+𝛺𝑡) (7) 

into the equation of motion (3): 

Ω2 = 4 (𝑠𝑖𝑛2 (
𝑎𝑘

2
) (𝜔1

2 𝑠𝑖𝑛2 (
𝑎𝑘

2
) + 𝜔12

2 𝑐𝑜𝑠2 (
𝑎𝑘

2
)) + 𝜔3

2 𝑠𝑖𝑛2 (
3𝑎𝑘

2
)), (8) 

where Ω is the wave frequency, 𝜔1, 𝜔12 and 𝜔3 are constants introduced as follows: 

𝜔1 ≝ √𝑐1/𝑚, 𝜔12 ≝ √𝑐12/𝑚 = √(𝑐1 + 4𝑐2)/𝑚, 𝜔3 ≝ √𝑐3/𝑚. (9) 

For real values of the wave frequency, constants 𝜔1
2, 𝜔12

2  and 𝜔3
2 should be positive, 

therefore the system will be stable only for stiffnesses: 

𝑐1 > 0, 𝑐1 > −4𝑐2, 𝑐3 > 0. (10) 

Frequencies 𝜔1, 𝜔12, 𝜔3 can be depicted as Cartesian coordinates in the three-

dimensional space of possible configurations and converted to the spherical coordinates: 

ω1 ≝ 𝜔√2 cos 𝛾 cos (𝛽 +
π

4
) , ω12 ≝ 𝜔√2 cos 𝛾 sin (𝛽 +

π

4
) , 𝜔3 ≝ 𝜔√2 𝑠𝑖𝑛 𝛾, (11) 

where 𝛽 ∈ (−𝜋/4; 𝜋/4), 𝛾 ∈ (0; 𝜋/2) and 𝜔 is positive. Parameter 𝛽 describes the transition 

from interactions between the nearest neighbours to the second coordination sphere, while the 

third coordination sphere is introduced by parameter 𝛾. 

This parametrization allows for a decrease in the dimensionality of the problem. The 

dispersion relation is rewritten as follows: 

Ω = ±(Ω0/√2)√cos2 𝛾 (1 − cos 𝑎𝑘)[1 + cos 𝑎𝑘 sin 2𝛽] + 2 sin2 𝛾 (1 − cos(3𝑎𝑘)), (12) 

where Ω0 = 2𝜔 is the maximal frequency in the case of a one-dimensional monoatomic 

harmonic chain with nearest interactions only. 

With an increase of the parameter 𝛾 the number of extrema as well as the frequency 

range increase (Fig 2(a)). For the crystal where the third coordination sphere is dominant, 

three extrema are observed and the maximal frequency is √2 times as high as Ω0. 

 

 
(a) (b) 

Fig. 2. Dispersion relation for different values of (a) parameter 𝛾 with fixed 𝛽 =
𝜋

8
;  

(b) parameter 𝛽 with fixed 𝛾 =
𝜋

8
 

 

Heat transfer in infinite one-dimensional crystal considering the third coordination sphere 367



 

For large negative values of parameter 𝛽, the influence of the third sphere is levelled out 

by negative stiffness 𝑐2 (Fig. 2(b)). Additionally, the range of possible frequency values is 

inversely dependent on the parameter 𝛽. 

 

4. Group Velocity 

The heat waves propagate in the crystal with group velocities, which can be obtained as a 

derivative of Eq. (12) with respect to the wavenumber 𝑘: 

cgr = (Ω0𝑐𝑔
0/2𝛺)[cos2 𝛾 sin(𝑎𝑘) [1 + (2 cos(𝑎𝑘) − 1) sin(2𝛽)] + 6 sin2 𝛾 sin(3𝑎𝑘)], (13) 

where 𝑐𝑔
0 = 𝑎𝜔 is maximal group velocity in a one-dimensional monoatomic harmonic 

crystal with nearest interactions only. 

The shape and the value range of group velocity curves depend on parameters 𝛽 and 𝛾 

(Fig. 3). For the case of non-zero parameter 𝛾, group velocity has three extrema, which is also 

true for cases when interactions with the second coordination sphere can be neglected (𝛽 = 0, 

Fig. 3(b)). One extremum is always observed for 𝑎𝑘 = 0, while the second and the third 

extrema are located in the vicinity of 𝑎𝑘 = 2𝜋/3. 

 

 
(a) (b) 

Fig. 3. Group velocity for different values of (a) parameter 𝛾 with fixed 𝛽 =
𝜋

8
; (b) parameter 

𝛽 with fixed 𝛾 =
𝜋

8
 

 

5. Fundamental Solution 

The initial perturbation corresponding to the single-point heat source takes the form of the 

delta function 𝑇0(𝑥) = 𝑇0𝛿(𝑥), where 𝑇0 is an amplitude. An approximate fundamental 

solution to the heat transfer problem can hence be written as [35]: 

𝑇 = 𝑇0 ∑ 1/(4𝜋𝑡|𝑐𝑔𝑟
′ (𝑎𝑘𝑗)|)𝑗 , (14) 

where 𝑘𝑗 are roots of the equation 

|𝑐𝑔𝑟(𝑎𝑘𝑗)| = |x|/𝑡. (15) 

As time evolves, the initial perturbation is spread across the crystal. The position of the 

heat front can be derived from the singular point of Eq. (14). For the model under study, the 

number of fronts is a function of the parameters 𝛽 and 𝛾 and can take integer values from one 

to three. The velocities of the heat waves have been introduced as 𝑐𝑔𝑟
𝑒𝑥𝑡𝑟 ,1

, 𝑐𝑔𝑟
𝑒𝑥𝑡𝑟,2

 and 𝑐𝑔𝑟
𝑒𝑥𝑡𝑟,3

 

respectively, and are obtained by solving equation: 

|𝑐𝑔𝑟
′ (𝑎𝑘𝑗)| = 0. (16) 

To quantify the intensity of the front, an approximation of Eq. (14) near a singular point 

is constructed as shown in [35]: 
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𝑇(𝑥, 𝑡) = 𝑇0/ (4𝜋𝑡√2|(𝜁∗ − 𝜁)𝑐𝑔𝑟
′′ (𝑎𝑘∗)|), (17) 

where 𝜁∗ is group velocity at the singular point, 𝜁 is group velocity in its vicinity. Eq. (17) has 

a singularity when 𝜁 = 𝜁∗. The intensity coefficient for a single wave is then introduced as 

follows: 

𝐴 = 1/ (4𝜋𝑡√2|𝑐𝑔𝑟
′′ (𝑎𝑘∗)|). (18) 

For the case of three waves, normalised intensity coefficients are obtained using the 

following formula: 

𝑎𝑖
2 = 𝐴𝑖

2/(𝐴1
2 + 𝐴2

2 + 𝐴3
2), 𝑖 = 1,2,3, (19) 

where 𝐴𝑖 are calculated as shown in Eq. (18). These coefficients allow for comparison of the 

amount of energy stored by different waves. 

Some of the configurations of the system studied are considered in this paper (Table 1). 

For each set of the parameters 𝛽 and 𝛾 the corresponding stiffnesses, wave velocities, and 

intensity coefficients have been calculated. 

 

Table 1. Stiffnesses, wave velocities, and wave intensity coefficients 

𝛽 𝛾 𝑐1 𝑐2 𝑐3 𝑐𝑔𝑟1
/𝑐𝑔

0 𝑐𝑔𝑟2
/𝑐𝑔

0 
𝑐𝑔𝑟3

/𝑐𝑔
0 

𝑎1 𝑎2 𝑎3 

−𝜋/8 

𝜋/32 1.69 −0.35 0.02 0.68 1.15 − 0.65 0.76 − 

𝜋/8 1.46 −0.30 0.29 1.70 1.06 0.32 0.30 0.69 0.66 

3𝜋/16 1.18 −0.24 0.62 2.40 1.36 0.42 0.26 0.52 0.82 

3𝜋/16 

𝜋/16 0.07 0.44 0.08 1.60 0.62 − 0.35 0.94 − 

3𝜋/16 0.05 0.32 0.62 2.60 1.26 1.00 0.24 0.72 0.66 

𝜋/2 0.00 0.00 2.00 4.24 − − 1.00 − − 

 

Wave velocities have been analysed as functions of the parameter 𝛾 (Figs. 4 and 5).  

The values 𝛽 = −
𝜋

8
 (Fig. 4) and 𝛽 =

3𝜋

16
 (Fig. 5) have been considered. The colour of  

the curves represents the wave intensity coefficient. The numerical solution of Eq. (6) is 

depicted in footnotes. 

For 𝛾 equal or close to zero, two waves (1 and 2) are observed. This corresponds to the 

crystal considering the second coordination sphere studied in [34,35]. When the parameter 𝛾 

reaches a certain value in the vicinity of 𝜋/16 a third wave appears. For 𝛾 = 𝜋/2 three waves 

propagate with equal velocity and only one heat front is observed. 

As 𝛾 increases, so do the velocities of the waves. Observations establish the inverse 

dependency between the intensity coefficient and the velocity: the fastest wave 1 stores the 

lowest amount of energy. 

In the first case considered (Fig. 4) wave 3 propagates in the opposite direction unless 

the bond with the third coordination sphere begins to prevail. The observed behaviour is a 

result of the negative stiffness 𝑐2. Therefore, the velocity of the third wave is a non-

monotonous function with a global minimum around 𝛾 = 5𝜋/32. 

In the second case (Fig. 5), all the waves propagate in the same direction for all values 

of 𝛾. As in the first case, the velocity of the second wave is also a non-monotonous function.  

In two cases, the third wave appears differently. In the first case (Fig. 4), wave 1 splits 

up into waves 1 and 3 propagating close together with finite non-zero velocity. In the second 

case (Fig. 5), the third wave appears in the vicinity of the initial perturbation. For large 𝛾, 

both cases exhibit similar behaviour. Hence, the conclusion can be made that for parameter 𝛾 

equal to or larger than 𝜋/4, the influence of the third coordination sphere starts to prevail. 
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Fig. 4. Velocity and intensity of heat waves as a function of the parameter 𝛾 with fixed 𝛽 =

−
𝜋

8
 

 
Fig. 5. Velocity and intensity of heat waves as a function of the parameter 𝛾 with fixed 𝛽 =

3𝜋

16
 

 

6. Conclusion 

Heat propagation in a model of a one-dimensional harmonic crystal considering interactions  

up to the third coordination sphere has been investigated in this study. After the 

parametrization the system has been described by a function of two dimensionless parameters  

𝛽 ∈ (−𝜋/4; 𝜋/4) and 𝛾 ∈ (0; 𝜋/2). The parameter 𝛽 characterizes the relative difference in 

bond stiffnesses of the first and the second coordination spheres. The parameter 𝛾 extends the 

interactions to the third coordination sphere. 

The temperature field has been represented as a superposition of several consecutive 

heat waves propagating with group velocities. There is at least one wave for all stable 

configurations of the system. When the second coordination sphere is considered, the 

propagation of two waves with different velocities and intensities is possible. When three 

coordination spheres are taken into account, up to three heat waves can be observed in the 

crystal. The second and the third waves occur at certain values of parameters 𝛽 and 𝛾. In most 

cases, there is one fast wave accompanied by two slow almost equal velocities waves. The 

fastest wave as a rule has the lowest intensity coefficient. The deviations can be observed for 

the border cases when one wave separates into two. 

The results can be used for the correct interpretation of experiments on nonstationary ballistic 

heat transfer in crystals and for further research on crystals with non-neighbouring 

interactions. 
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