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ABSTRACT  

This study is primarily focused on the behavior of propagation of waves through a homogeneous and isotropic 

thermoelastic half-space using the modified Green-Lindsay theory of thermoelasticity, along with the effects 

of non-local and two temperature (TT) parameters. A new set of governing equations is formulated and solved 

using the reflection technique after reducing the equations to two dimensions and a dimensionless form. The 

impact of different parameters namely non-local parameter, TT parameter, and impedance parameters along 

with different theories of thermoelasticity are shown graphically on amplitude ratios obtained from reflected 

waves i.e., longitudinal wave (LD-wave), thermal wave (T-wave), and transverse wave (SV-wave). The modified 

Green-Lindsay theory is widely used in fields such as heat transfer, and geophysics with potential practical 

applications in areas such as earthquake engineering and materials engineering. The study also includes the 

deduction of particular cases based on the obtained results. 
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Introduction 

The mathematical framework known as the two temperature (TT) theory of 

thermoelasticity describes how materials respond to thermal loads and is an extension 

of the classical theory of elasticity. This theory finds use in several engineering disciplines 

that depend on the system's performance under thermal loads. For instance, in the 

semiconductor industry, the two temperature theory can be used to model electronic 

device behavior at elevated temperatures. Many authors have discussed different types 

of problems in the context of theory of thermoelasticity notable of them are [1–5]. 

Youssef [6] proposed a novel model of generalized thermoelasticity by 

incorporating two distinct temperatures, namely thermodynamic temperature and 

conductive temperature. Later on, [7–10] explored different types of problems in the 

context of TT theory of elasticity. Lofty et al. [11] established a memory-depended 

derivative (MDD) during the excitation processes by pulsed laser for a time-dependent 

material under the magneto thermoelasticity with TT. Al-Lehaibi [12] discussed the 
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variational principle theorem without energy dissipation for an isotropic and 

homogeneous material in the context of the TT theory of thermoelasticity.  

Green and Lindsay's (G-L) theory assumes linear behavior of the material, meaning 

that the response is assumed to be proportional to the applied loads and thermal 

gradients. This assumption may not hold for materials subjected to large deformations or 

high temperatures. The theory is typically formulated under the assumption of small 

temperature gradients. In situations where temperature changes are large, nonlinear 

effects may become significant, and the theory may not be accurate. 

The modified Green-Lindsay (MG-L) theory is a revised version of the Green-Lindsay 

(G-L) theory that expands the classical linear thermoelasticity theory. This extended 

theory applies to extreme conditions, such as high temperatures, rapid heating or 

cooling, or other scenarios where the assumptions of the original theory may break 

down. This revised theory considers the impact of nonlinear thermal expansion to provide 

a more comprehensive description of the thermomechanical behavior of materials. By 

doing so, the MG-L theory offers improved predictions of the stress and strain in materials 

that are exposed to significant temperature changes and thermal gradients, which can 

result in significant mechanical stresses and deformations. 

Yu et al. [13] used the extended thermodynamics principle to propose a model of 

generalized thermoelasticity that incorporates strain rate terms into the Green-Lindsay 

model. Quintanilla [14] reported some qualitative results for the MG-L thermoelasticity 

model. Ghodrat et al. [15] developed a numerical method to solve the governing 

equations for a large deformation domain in an elastic medium exposed to thermal shock 

under the MG-L theory of thermoelasticity. In the context of MG-L, Sarkar and De [16] 

examined the propagation of thermoelastic waves and determined that both MG-L and 

G-L have a significant impact on the amplitude ratios of reflected waves. A study that 

elaborates the response of a heat source along with thermomechanical loading  

in a MG-L generalized thermoelastic half-space with non-local and two temperature 

parameters is presented by Kumar et al. [17]. 

The non-local theory of thermoelasticity models the non-local effects by 

introducing a non-local constitutive equation that considers the temperature field over a 

larger region. This theory is useful in understanding the thermomechanical behavior of 

materials at small scales, where non-local effects can play a significant role in the 

material response. A non-local elasticity theory was developed by Eringen and Edelen 

[18], using global balance laws and the second law of thermodynamics. Initially, the non-

local theory of elasticity was used to study screw dislocations and surface waves in solids 

(Lazar and Agiasofitou [19]). 

A new model was discussed by Pramanik and Siddhartha [20] by using Eringen's 

non-local thermoelasticity theory, which explored the transmission of Rayleigh surface 

waves in a uniform, isotropic medium. Luo et al. [21] studied the temporary thermoelastic 

reactions of a slab with thermal properties that rely on the temperature, using a non-local 

thermoelastic model. In the case of non-local bio-thermoelastic media with diffusion, 

Kumar et al. [22] developed a dynamic model incorporating the impact of non-local and 

dual-phase lags. 

Malischewsky [23] investigated the propagation of Rayleigh waves using impedance 

boundary conditions. In the context of thermoelastic medium, Singh [24] examined the 
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reflection of plane waves utilizing impedance boundary conditions. In a study conducted 

by Kaushal et al. [25], they investigated how diffusion and impedance parameters affect 

the propagation of plane waves in a thermoelastic medium using both the Green and 

Lindsay theory (G-L) and the Coupled theory (C-T) of thermoelasticity. Yadav [26] 

examined the influence of impedance parameters on the reflection of plane waves in a 

thermoelastic medium subjected to rotating and magnetic effects. 

The purpose of the manuscript is to explore propagation of waves in thermoelastic 

media, which has been a focal point in seismology. Notably, these investigations play a 

crucial role in mineral ore exploration, hydrocarbon detection, and the planning and 

construction of infrastructure such as dams, bridges, roads, and highways. 

The other authors explored various problems in the field of MG-L but the governing 

equations for a homogeneous and isotropic thermoelastic medium to determine the 

amplitude ratios of reflected LD-wave, T-wave, and SV-wave having impacts of non-local 

and TT under impedance boundary conditions is not explored. In the context of plane wave 

reflection, the consideration of impedance boundary conditions becomes paramount. These 

conditions are characterized by linear combinations of unspecified functions and their 

derivatives along the boundary. Such scenarios are frequently encountered in acoustics, 

electromagnetism, and seismology. This new model has the potential for application in 

fields such as geophysics, seismology, and earthquake engineering. 

 

Basic equations 

In the present investigation, we consider the MG-L model proposed by Yu et al. [13] along 

with non-local theory given by Eringen and Edelen [18] and two temperature theory of 

thermoelasticity given by Youssef [6]. So, in the absence of body forces and heat sources, 

the field equations and constitutive relations with non-local, TT under MG-L model of 

thermoelasticity in general cartesian coordinate system 𝑂𝑥1𝑥2𝑥3are given as: 

(1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [(𝜆 + 𝜇)𝛻(𝛻 ⋅ �⃗� ) + 𝜇𝛻2�⃗� ] − 𝛽1 (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
)𝛻𝑇 = 𝜌(1 − 𝜉1

2𝛻2)
𝜕2�⃗⃗� 

𝜕𝑡2 ,     (1) 

𝐾∗𝛻2𝜑 = (1 + 𝜂3𝜏0
𝜕

𝜕𝑡
) (𝛽1𝑇0�̇�𝑘,𝑘) + (1 + 𝜂4𝜏0

𝜕

𝜕𝑡
) 𝜌𝐶𝑒�̇�,        (2) 

𝑡𝑖𝑗 = (1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [𝜆𝑢𝑘,𝑘𝛿𝑖𝑗 + 𝜇(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)] − 𝛽1 (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
) 𝑇𝛿𝑖𝑗 ,       (3) 

𝑇 = (1 − 𝑎𝛻2)𝜑,              (4) 

where 𝜆,  𝜇 -Lame's constants, 𝜉1 - non-local parameter, 𝑡 - time, 𝛽1 = (3𝜆 + 2𝜇)𝛼𝑡,  

𝛼𝑡 - coefficient of linear thermal expansion, 𝜌,  𝐶𝑒 - density and specific heat, 𝐾∗ - thermal 

conductivity, 𝜑 - conductive temperature, 𝑇 - temperature, 𝑡𝑖𝑗 - components of stress 

tensor, 𝜏0,  𝜏1- the relaxation times, 𝛿𝑖𝑗- Kronecker delta, �⃗� - displacement vector, 𝑇0-

reference temperature, 𝜂1,  𝜂2,  𝜂3, 𝜂4 - constants, a-TT parameter, 𝛻2- Laplacian operator. 

The Eqs. (1)-(4) reduce to the following: 

𝜂1 = 𝜂2 = 𝜂3 = 𝜂4 = 1,      Modified Green-Lindsay, (MG-L), (2018). 

𝜂1 = 𝜂3 = 0, 𝜂2 = 𝜂4 = 1,                       Green-Lindsay, (G-L), (1972). 

𝜂1 = 𝜂2 = 0, 𝜂3 = 𝜂4 = 1,             Lord-Shulman, (L-S), (1967). 

𝜂1 = 𝜂2 = 𝜂3 = 𝜂4 = 0,      Coupled thermoelasticity, (C-T), (1980). 
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Problem statement 

A homogeneous, isotropic thermoelastic solid half space with TT and non-local is 

considered. The rectangular Cartesian coordinate system Ox1x2x3is taken such that the 

origin is located on the surface 𝑥3 = 0 and 𝑥3-axis is pointing normally to the medium as 

shown in Fig. 1. 

 

 
Fig. 1. Geometry of the problem 

 

The components of displacement are taken as follows for a two-dimensional 

problem: 

( )31 ,0, uuu =


.               (5) 

Dimensionless quantities are referred as: 

( ) ( )iiii ux
c

ux ,,
1

1
= , 𝑡3𝑖

′ =
𝑡3𝑖

𝛽1𝑇0
, (𝜑′, 𝑇′) =

1

𝑇0
(𝜑, 𝑇), (𝑡′, 𝜏0

′ , 𝜏1
′ ) = 𝜔1(𝑡, 𝜏0, 𝜏1),  

𝑎′ =
𝜔1

2

𝑐1
2 𝑎, 𝜉1′ =

𝑤1

𝑐1
𝜉1,  (𝑧1',z2′) =

𝑐1

𝛽1𝑇0
(𝑧1,z2), 𝑧3'=

𝑐1

𝐾∗
𝑧3, ι = 1, 3.     (6) 

where 𝑐1
2 =

𝜆+2𝜇

𝜌
 and 𝜔1 =

𝜌𝐶𝑒𝐶1
2

𝐾∗ . 

After removing the primes and introducing the values defined by Eq. (6) in addition 

to Eq. (5), in Eqs. (1)-(4) we get,  

(1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [𝑎1

𝜕𝑒

𝜕𝑥1
+ 𝑎2𝛻

2𝑢1] − 𝑎3 (1 + 𝜂2𝜏1
𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑥1
= (1 − 𝜉1

2𝛻2)
𝜕2𝑢1

𝜕𝑡2 ,      (7) 

(1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [𝑎1

𝜕𝑒

𝜕𝑥3
+ 𝑎2𝛻

2𝑢3] − 𝑎3 (1 + 𝜂2𝜏1
𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑥3
= (1 − 𝜉1

2𝛻2)
𝜕2𝑢3

𝜕𝑡2 ,      (8) 

𝛻2𝜑 = 𝑎4 (1 + 𝜂3𝜏0
𝜕

𝜕𝑡
)

𝜕

𝜕𝑡
(𝑢1,1 + 𝑢3,3) + (1 + 𝜂4𝜏0

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑡
,        (9) 

𝑇 = (1 − 𝑎𝛻2)𝜑,            (10) 

𝑡33 = (1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [𝑎5

𝜕𝑢3

𝜕𝑥3
+ 𝑎6

𝜕𝑢1

𝜕𝑥1
] − (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
)𝑇,       (11) 

𝑡31 = (1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) [𝑎7 (

𝜕𝑢3

𝜕𝑥1
+

𝜕𝑢1

𝜕𝑥3
)],         (12) 

where 

𝑎1 =
𝜆+𝜇

𝜌𝐶1
2 , 𝑎2 =

𝜇

𝜌𝐶1
2, 𝑎3 =

𝛽1𝜏0

𝜌𝐶1
2 , 𝑎4 =

𝛽1𝐶1²

𝐾∗𝜔1
, 𝑎5 =

𝜆+2𝜇

𝛽1𝑇0
, 𝑎6 =

𝜆

𝛽1𝑇0
, 𝑎7 =

𝜇

𝛽1𝑇0
, e=

𝜕𝑢1

𝜕𝑥1
+

𝜕𝑢3

𝜕𝑥3
. 

To decouple the above system of equations, we take 𝑢1and 𝑢3in the dimensionless 

form as: 

𝑢1 = 𝑞,1 − 𝜓,3, 𝑢3 = 𝑞,3 + 𝜓,1.                  (13) 
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Using Eqs. (7)-(10) and (13), we get the following set of equations: 

(1 + 𝜂1𝜏1
𝜕

𝜕𝑡
) (∇2𝑞) − 𝑎3 (1 + 𝜂2𝜏1

𝜕

𝜕𝑡
)𝑇 = (1 − 𝜉1

2∇2)
𝜕2𝑞

𝜕𝑡2 ,      (14) 

𝑎2(1 + 𝜂1𝜏1
𝜕

𝜕𝑡
)(∇2𝜓) − (1 − 𝜉1

2∇2)
𝜕2𝜓

𝜕𝑡2  =0,        (15) 

𝛻2𝜑 = 𝑎4 (1 + 𝜂3𝜏0
𝜕

𝜕𝑡
)

𝜕

𝜕𝑡
𝛻2q+(1 + 𝜂4𝜏0

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑡
.        (16)  

 

Dispersion equation and its solutions 

Assuming the motion to be harmonic and for solving the Eqs. (14)-(16), we assume 

solutions in the form: 

(𝑞, 𝜑, 𝜓) = (𝑞0, 𝜑0, 𝜓0)𝑒𝜄𝑘(𝑥1𝑆𝑖𝑛𝜃0−𝑥3𝐶𝑜𝑠𝜃0)+𝜄𝜔𝑡 ,        (17) 

where k denotes as wave number, ι is known as iota, 𝜃0 is angle of inclination and 

quantities such as 𝑞0, 𝜑0, 𝜓0are arbitrary constants. Using the values of 𝑞, 𝜑, 𝜓 we 

obtained following equations: 

(𝐴𝜈4 + 𝐵𝜈2 + 𝐶)(𝑞, 𝜑) = 0,           (18) 

(𝜈2 − 𝐴1)ψ = 0,            (19) 

where A=𝐸2 𝑖𝜔, B=(𝐸2𝑎𝜔3𝑖 + 𝜔2) + 𝑖𝜔𝐸2(𝜉1
2𝜔2 − 𝐸1) − (𝑎3 𝑎4𝐸3𝐸4 𝑖𝜔), 

C= (𝜉1
2𝜔2 − 𝐸1)(𝐸2𝑎𝜔3𝑖 + 𝜔2) − 𝑖𝑎𝑎3𝑎4𝐸3𝐸4𝜔

3, 𝐴1 = (1 + 𝜂1𝜏1 𝑖𝜔)𝑎2 − 𝜉1
2𝜔2, 

𝐸1 = (1 + 𝜂1𝜏1𝑖𝜔), 𝐸2 = (1 + 𝜂4𝜏0𝑖𝜔),  𝐸3 = (1 + 𝜂3𝜏0𝑖𝜔), 𝐸4 = (1 + 𝜂2𝜏1𝑖𝜔). 

 

Restriction on boundary 

Impedance boundary conditions consist of unknown functions and their derivatives 

prescribed on the boundary. These conditions find widespread use in multiple disciplines 

such as thermoelasticity, acoustics, and electromagnetism within the realm of Physics. 

When dealing with seismic wave interactions involving discontinuities, the typical 

assumption is an ideally welded contact, ensuring continuity of relevant displacement 

and stress components. Consequently, it is suitable to treat these contact planes as 

extremely thin layers, giving rise to boundary conditions similar to impedance conditions. 

Hence, following Malischewsky [23] and Schoenberg [27], the impedance boundary 

conditions at 𝑥3 = 0 are: 

(i) 𝑡33 + 𝜔𝑧1𝑢3 = 0,  (ii) 𝑡31 + 𝜔𝑧2𝑢1 = 0, (iii) 𝐾∗ 𝜕𝑇

𝜕𝑥3
+ 𝜔𝑧3𝑇 = 0,     (20) 

where 𝑧1, 𝑧2 and 𝑧3 are impedance parameters, the boundary conditions at free surface 

can be obtained by setting 𝑧1 = 𝑧2 = 𝑧3 = 0. 

To obtain amplitude ratios, we consider 𝑞, 𝜑, 𝜓 as follows: 

𝑞 = Σ(𝐴0𝜄𝑒
𝜄𝑘0(𝑥1𝑆𝑖𝑛𝜃0−𝑥3𝐶𝑜𝑠𝜃0)+𝜄𝜔𝑡  +  𝐴𝜄𝑒

𝜄𝑘𝜄(𝑥1𝑆𝑖𝑛𝜃𝜄+𝑥3𝐶𝑜𝑠𝜃𝜄)+𝜄𝜔𝑡),     (21) 

𝜑 = Σ(𝑑𝜄𝐴0𝜄𝑒
𝜄𝑘0(𝑥1𝑆𝑖𝑛𝜃0−𝑥3𝐶𝑜𝑠𝜃0)+𝜄𝜔𝑡 + 𝑑𝜄𝐴𝜄𝑒

𝜄𝑘𝜄(𝑥1𝑆𝑖𝑛𝜃𝜄+𝑥3𝐶𝑜𝑠𝜃𝜄)+𝜄𝜔𝑡),     (22) 

𝜓 = (𝐴03𝑒
𝜄𝑘0(𝑥1𝑆𝑖𝑛𝜃0−𝑥3𝐶𝑜𝑠𝜃0)+𝜄𝜔𝑡 + 𝐴3𝑒

𝜄𝑘3(𝑥1𝑆𝑖𝑛𝜃3+𝑥3𝐶𝑜𝑠𝜃3)+𝜄𝜔𝑡),     (23) 

where 𝑑𝑙 =
𝜄𝜔𝑎4𝐸3𝑘𝑙

2

𝑘𝑙
2+𝜄𝜔𝐸2(1+𝑎𝑘𝑙

2)
,  (𝑙=1,2), 𝐴0𝜄are the amplitude of incident Longitudinal wave 

(LD-wave), thermal waves (T-wave) and shear waves (SV-wave). 𝐴𝜄 are the amplitude of 

the reflected Longitudinal wave (LD-wave) and reflected Thermal waves (T-wave) and 𝐴3 

is the amplitude of the reflected Shear wave (SV-wave). 
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Snell’s Law is given as  
sin𝜃0

𝜐0
= 

sin𝜃1

𝜐1
 =

sin𝜃2

𝜐2
= 

sin𝜃3

𝜐3
,           (24) 

where  

𝑘1𝜐1 = 𝑘2𝜐2 = 𝑘3𝜐3 = 𝜔, at 𝑥3 = 0,         (25) 

𝜐0 = {

𝜈1, for incident LD −  wave
𝜈2, for incident T −  wave   
𝜈3, for incident SV −  wave

. 

Using potential defined by Eq. (13) along with Eqs. (21)-(25) in the boundary 

conditions given by Eq. (20), we obtained a system of equations defined as: 
∑𝑎𝑖𝑗𝑅𝑗 = 𝑌𝑗 , (𝑖, 𝑗 = 1, 2, 3),           (26) 

where 𝑎1𝑖 = −[𝐸1 𝑎5𝑘𝑖
2 cos2 𝜃𝑖 + 𝐸1𝑎6𝑘𝑖

2 sin2 𝜃𝑖 + 𝐸4(1 + 𝑎𝑘𝑖
2)𝑑𝑖 + 𝑖𝑘𝑖 cos 𝜃𝑖 𝑤𝑧1], 

𝑎13 = (𝑎6 − 𝑎5)𝐸1𝑘3
2 sin 𝜃3 cos 𝜃3 + 𝑖𝑘3sin𝜃3𝑤𝑧1, 

𝑎2𝑖 = −2𝐸1 𝑎7𝑘𝑖
2 sin 𝜃𝑖 cos 𝜃𝑖 + 𝑖𝑘𝑖 sin 𝜃𝑖 𝑤𝑧2, 

𝑎23 = 𝐸1 𝑎7𝑘3
2(cos2 𝜃3 − sin2 𝜃3) − 𝑖𝑘3 cos 𝜃3 𝑤𝑧2, 

𝑎3𝑖 = 𝑑𝑖(1 + 𝑎𝑘²)[𝑖𝑘𝑖𝐾
∗ cos 𝜃𝑖 + 𝑤𝑧3],i= 1, 2. 

 

Unique cases 

Modified Green-Lindsay model with two temperature. Let 𝜉1 → 0 in Eq. (26), we obtain the 

resulting expression for MG-L theory of thermoelasticity along with TT effect. The results 

tally with those obtained by Sarkar and Mondal [28]. 

Non-local modified Green-Lindsay model. As TT parameter vanishes i.e. a=0 in Eq. (26), 

we obtain the results for MG-L model involving non-local impact. 

Non-local G-L generalized thermoelastic model with two temperature. Taking 

𝜂1 = 𝜂3 = 0, 𝜂2 = 𝜂4 = 1, reduces the system of equation defined by Eq. (26) for G-L model 

having non-local and TT effect. 

Non-local L-S generalized thermoelastic model with two temperature. Putting 

𝜂1 = 𝜂2 = 0, 𝜂3 = 𝜂4 = 1, in Eq. (26) will yield the expression for L-S model involving non-

local and TT. If we vanish the TT effect then the model reduces to L-S generalized 

thermoelastic model with non-local effects and the results tally with those obtained by Singh 

and Bijarnia [29]. 

Coupled thermoelastic model with non-local and two temperature. Let  

𝜂1 = 𝜂2 = 𝜂3 = 𝜂4 = 0, i.e. in absence of relaxation time, Eq. (26) gives the corresponding 

expression for CT model along with non-local and TT. 

 

Computational interpretation 

To study the effect of various parameters, the numerical calculations are carried out for three 

different cases, the effect of (i) non-local and impedance parameters (ii) TT and impedance 

parameters (iii) different theories of thermoelasticity i.e. MG-L, G-L and L-S theories. 

Following Dhaliwal and Singh [30], we take the case of magnesium crystal, the 

physical constants used are: 𝜆 = 2.17 × 1010 Nm−2,  𝜇 = 3.278 × 1010 Nm−2, 

𝐾∗ = 1.7 × 102 Wm−1deg−1,  𝜔1 = 3.58 × 1011 s−1,  𝛽1 = 2.68 × 106Nm−2 deg−1,  

𝜌 = 1.74 × 103 Kgm−3, 𝐶𝑒 = 1.04 × 103 JKg−1deg−1, 𝑇0 = 298 k, 𝜏0 = 0.1 s, 𝜏1 = 0.2 s.  

The values of impedance parameters for all the cases are 𝑧1 = 5, 𝑧2 = 2, and  𝑧3 = 1. 
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Non-local effects and impedance parameters. In this case, we consider fixed value of 

TT parameter as 𝑎 = 0.104 with 0o ≤ θ0 ≤ 90o. Non-local parameter (𝜉1 = 0.5) along with 

TT and impedance parameters (NTI) is represented by a solid Black line. The case of non-

local parameter(𝜉1 = 0.5) along with TT and without impedance parameters (NTWI) is 

represented by a solid red. The case of absence of non-local parameter, i.e. (𝜉1 = 0.0) along 

with TT and impedance parameter (TI) is represented by a solid Blue line with center symbol 

'𝛥'. The case of absence of non-local parameter i.e.(𝜉1 = 0.0) along with TT and without 

impedance (TWI) is shown by a violet line with center symbol '⋄'. 
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Fig. 2. Variation of Amplitude ratio |R1|  

for LD-wave (Impact of non-Local and impedance 

parameters) 

 

Fig. 3. Variation of Amplitude ratio |R2|  

for LD-wave (Impact of non-Local and impedance 

parameters) 
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Fig. 4. Variation of Amplitude ratio |R3| 

for LD-wave (Impact of non-Local and impedance 

parameters) 

 

Fig. 5.Variation of Amplitude ratio |R1|  

for T-wave (Impact of non-Local and impedance 

parameters) 
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LD-wave. In Fig. 2, the changes in |𝑅1| are depicted as a function of the angle of 

incidence. It is observed that |𝑅1| decreases for all the cases considered throughout the 

entire range. Additionally, it is apparent that |𝑅1| is more pronounced for the case NTI as 

compared to TI. Also, the value of |𝑅1| for the case of NTWI is higher than that of TI, 

indicating the influence of non-local on|𝑅1|. 

Figure 3 illustrates those variations of |𝑅2| with 𝜃0, it is noticed that |𝑅2| decreases 

for all cases considered, namely NTI, NTWI, TI, and TWI, as 𝜃0 increases. Specifically, the 

value of |𝑅2| for NTI and TI are higher than that of NTWI and TWI respectively, reveals 

the impact of non-local and impedance on the |𝑅2|.  

The trend of variations of |𝑅3| with 𝜃0 is shown in Fig. 4. It is observed that the 

value of |𝑅3| increases in the first half of the interval and decreases in the remaining 

range for all considered cases. However, the magnitude of |𝑅3| is higher for NTWI 

compared to other cases in the entire range. 

T-wave. Figure 5 displays a plot of |𝑅1| with 𝜃0, it is evident that |𝑅1| exhibits a 

significant downward trend for all the considered cases in the range of 0 ≤ 𝜃 ≤ 18° 

followed by a steady decline in the remaining interval. Moreover, the magnitude of 

variations appears to be relatively higher for the NTWI case compared to the other cases 

throughout the entire range. 

Figure 6 illustrates the variations of |𝑅2| with 𝜃0, indicating that |𝑅2| exhibits a 

downward trend within a range 0 ≤ 𝜃 ≤ 27° for all examined cases. As the values of 𝜃0 

increases further, |𝑅2| shows a small decrement for all considered cases. 
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Fig. 6. Variation of Amplitude ratio |R2|  

for T-wave (Impact of non-Local and impedance 

parameters) 

 

Fig. 7. Variation of Amplitude ratio |R3|  

for T-wave (Impact of non-Local and impedance 

parameters) 

 

From Fig. 7 it is seen that value of |𝑅3| increases in the interval 0 ≤ 𝜃 ≤ 18° for all 

considered cases, whereasit exhibits an opposite trend in the remaining range, implying 

that the amplitude ratio is adversely affected by the impedance parameter. Furthermore, 

the magnitudes of |𝑅3| are relatively higher for NTWI, TWI than NTI and TI, which can be 

attributed to the absence of impedance parameter. 
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SV-wave. Figure 8 displays a plot of |𝑅1| with 𝜃0, indicating that the values of 

|𝑅1|exhibit an upward trend for all the cases considered with increase in 𝜃0. It is also seen 

that  magnitude of values for TWI and NTWI are greater as compared to TI and NTI, which 

reveals the impact of impedance parameter. 
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Fig. 8. Variation of Amplitude ratio |R1|  

for SV-wave (Impact of non-Local and impedance 

parameters) 

 

Fig. 9. Variation of Amplitude ratio |R2|  

for SV-wave (Impact of non-Local and impedance 

parameters) 

 

Figure 9 indicates a growing trend of variation of |𝑅2| in the case of NTI, NTWI, TI 

and TWI for the entire range. Figure 10 demonstrates that the variations of amplitude 

ratio |𝑅3| against 𝜃0 follows the decreasing trend for all the considered cases in the entire 

range, magnitude of decrement for NTWI is greater as compared to other cases. 

Two temperature effects and impedance parameters. In this case, we consider the 

fixed value of non-local parameter (𝜉1 = 0.5) parameter and  0o ≤ θ0 ≤ 90o. TT 

parameter (𝑎 = 0.0104) along with non-local and impedance parameters (TNI) is 

represented by a solid Black line. The TT parameter (𝑎 = 0.0104) along with non-local 

and without impedance parameters (TNWI) is represented by a solid red. The case of 

absence of TT i.e.(𝑎 = 0.0) along with non-local with impedance parameter (NI) is 

represented by a solid Blue line with center symbol '𝛥'. The case of absence of TT i.e. 

(𝑎 = 0.0) along with non-local and without impedance (NWI) is represented by a violet 

with center symbol '⋄'. 

LD-wave. From Fig. 11 which is a plot of |𝑅1| vs 𝜃0. It is clear that the value of |𝑅1| 

follows the descending trend for all the considered cases as 𝜃0 increases, magnitude of |𝑅1| 

for TNI and TNWI are greater than NI and NWI respectively, which reveals the impact of TT 

parameter. 

From Fig. 12, which presents the plot of |𝑅2| vs 𝜃0. The graph clearly shows a decline 

in |𝑅2| for TNI, TNWI, NI, and NWI. Among these, TNI exhibits the largest variation, while 

NWI has the smallest. As 𝜃0 increases, the amplitude ratios eventually converge towards zero 

value. In Fig. 13, depicts the amplitude ratio |𝑅3| vs 𝜃0, demonstrating a positive trend during 

the first half of the interval, followed by a reversal in the second half for all the cases. Notably, 

TNWI experiences the largest magnitude of variation, while NWI exhibits the smallest. 
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T-wave. Figure 14 displays the trend of variations for |𝑅1| with 𝜃0. It is observed that 

the value of |𝑅1| decreases monotonically throughout the entire range for all considered 

cases, with varying magnitudes of variation. Moreover, TNI and TNWI are smaller as 

compared to NI and NWI, which reveals the impact of TT parameter. Figure 15 illustrates 

the plot of |𝑅2| against 𝜃0. It is evident that TNI, NI, TNWI, and NWI exhibit a downward 

trend for the entire range except for 27 ≤ 𝜃0 ≤ 60, where |𝑅2| shows a steady state. 
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Fig. 10. Variation of Amplitude ratio |R3| for SV-

wave (Impact of non-Local and impedance 

parameters) 

 

Fig. 11. Variation of Amplitude ratio |R1| for LD-

wave (Impact of TT and impedance parameters) 
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Fig. 12. Variation of Amplitude ratio |R2| for LD-wave  

(Impact of TT and impedance parameters) 

Fig. 13. Variation of Amplitude ratio |R3| for LD-wave  

(Impact of TT and impedance parameters) 
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Fig. 14. Variation of Amplitude ratio |R1| for T-wave  

(Impact of TT and impedance parameters) 

Fig. 15. Variation of Amplitude ratio |R2| for T-wave  

(Impact of TT and impedance parameters) 

 

From Fig. 16, which is a plot of |𝑅3| vs 𝜃0, it is noticed that |𝑅3| exhibits an 

increasing trend in the interval 0 ≤ 𝜃 ≤ 18, and thereafter follows a descending behavior 

for the remaining range with significant difference in their magnitude. 

SV-wave. From Fig. 17, which is a plot of |𝑅1| vs 𝜃0. It is clear that the value |𝑅1| 

shows an increasing trend in the entire range for all the cases. It is also noticeable that 

magnitude of variations of |𝑅1| is larger in case of TNI as compare to TNWI, which reveals 

impact of impedance. Figure 18 illustrates the plot of |𝑅2| against 𝜃0. It indicates the 

growing trend of variation of |𝑅2| for all the considered cases with significant difference 

in magnitude. It is also noticed that the larger variation is seen for TNI as compared to 

remaining cases. Figure 19 demonstrates a plot of |𝑅3| vs 𝜃0, it is seen that impedance 

has decreasing effect on amplitude ratio |𝑅3|and magnitude of variation is observed 

larger for the case of NI. 
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Fig. 16. Variation of Amplitude ratio |R3| for T-

wave (Impact of TT and impedance parameters) 

Fig. 17. Variation of Amplitude ratio |R1| for SV-

wave (Impact of TT and impedance parameters) 
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Fig. 18. Variation of Amplitude ratio |R2| for SV-

wave (Impact of TT and impedance parameters) 

Fig. 19. Variation of Amplitude ratio |R3| for SV-

wave(Impact of TT and impedance parameters) 

 

Different theories of thermoelasticity. LD-wave. Figure 20 depicts the variations of 
|𝑅1| vs 𝜃0. It is noticed that the value of |𝑅1| shows decreasing trend. Moreover, the value 

of |𝑅1| for G-L model is higher as compared with MG-L and L-S model. Figure 21 shows 

the variation of |𝑅2| with 𝜃0. It is seen that |𝑅2| follows the similar trend as observed for 
|𝑅1|. Figure 22 illustrates that amplitude ratio |𝑅3| vs 𝜃0. It is noticed that the values of 

|𝑅3| increases in first half of the interval and in remaining half the values shows a vice-

versa trend for all the considered cases. 
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Fig. 20. Variation of Amplitude ratio |R1|  

for LD-wave(Impact of Different Theories) 

Fig. 21. Variation of Amplitude ratio |R2|  

for LD-wave (Impact of Different Theories) 
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Fig. 22. Variation of Amplitude ratio |R3|  

for LD-wave (Impact of Different Theories) 

 

Fig. 23. Variation of Amplitude ratio |R1|  

for T-wave (Impact of Different Theories) 

 

T-wave. From Fig. 23, it is observed that the value of |𝑅1| for MGL, G-L and L-S 

model follows decreasing trends while magnitude of |𝑅1| is more for the G-L as compared 

to MG-L and L-S. From Fig. 24, which is plot of |𝑅2| vs 𝜃0. It is noticed that magnitude of 

|𝑅2| for G-L is higher as compared to other two models i.e. MG-L model and L-S model. 

The variations of |𝑅3| vs 𝜃0are presented in Fig. 25. It is observed that the value of |𝑅3| 

is in upward trend for all considered cases in the range 0 ≤ 𝜃 ≤ 18°, 𝜃 ≥ 80° and is in 

downward trend in rest of the interval.  
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Fig. 24. Variation of Amplitude ratio |R2|  

for T-wave(Impact of Different Theories) 

 

Fig. 25. Variation of Amplitude ratio |R3|  

for T-wave (Impact of Different Theories) 

 

SV-Wave. Figure 26 depicts the variations of |𝑅1| with 𝜃0. It is observed that the 

value of |𝑅1| are in uptrend for all the cases. It is also noticed that the values of |𝑅1| for 

G-L model are more as compared to MG-L and L-S model. From Fig. 27, it is observed that 

the value of |𝑅2| for G-L, MG-L and L-S follows rising trend for entire range but magnitude 
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of |𝑅2| for G-L is higher than MG-L, L-S. Figure 28 depicts the variations of |𝑅3| with 𝜃0. 

It is observed that the value of |𝑅3| follows decreasing trend for all the considered 

models. Also, the value of |𝑅3| for G-L model is more as compared to MG-L and L-S model. 
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Fig. 26. Variation of Amplitude ratio |R1|  

for SV-wave (Impact of Different Theories) 

 

Fig. 27. Variation of Amplitude ratio |R2|  

for SV-wave(Impact of Different Theories) 
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Fig. 28 Variation of Amplitude ratio |R3| for SV-wave(Impact of Different Theories) 

 

Conclusion 

In this investigation, propagation of wave is studied, which is the central focus in 

seismology, generating precise results applicable to a wide range of economic activities. 

The amplitude ratios of various reflected waves are obtained by considering a 

homogenous, isotropic thermoelastic medium under MG-L model of thermoelasticity with 

the impact of non-local parameter, TT parameter and impedance parameters along with 

different theories of thermoelasticity. The following results have been obtained: 
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1. It is observed that for incident LD-wave under the influence of non-local, TT and impedance 

parameter |𝑅1| and |𝑅2| shows a descending behaviour in the entire interval, whereas |𝑅3| 

shows uptrend in first half of the interval and thereafter it decreases for all the considered cases. 

2. For incident T-wave, the value of |𝑅1| and |𝑅2| diminish with increase in 𝜃0. While |𝑅3| shows 

increasing behaviour in the initial range and with increase in 𝜃0, |𝑅3| shows downward trend. 

3. It is observed that for incident SV-waves, the value of |𝑅1| and |𝑅2| continuously increases 

with increase in 𝜃0, whereas for |𝑅3| the values decrease with constant magnitude. 

4. It is also seen that for incident LD-wave and T-wave, it is seen that for different theories 

of thermoelasticity, the values of |𝑅1| and |𝑅2| decays with increase in 𝜃0, whereas for 
|𝑅3| the values show uptrend initially and after attaining its maximum point the values 

of |𝑅3| decreases. However, in case of incident SV-wave, an opposite behaviour is 

observed for |𝑅1| and |𝑅2| as compared with incident LD-wave and T-wave respectively. 

5. The magnitude of |𝑅1|, |𝑅2|, and |𝑅3| for LD-wave, T-wave, SV-wave in case of G-L 

model are more as compared with other two models of thermoelasticity. 

Based on these findings, it is also concluded that the non-local parameter, TT 

parameters, and impedance parameters have significant effect on the amplitude ratios as 

non-local parameter enhances the amplitude ratios for LD-wave and T-wave. It is also 

observed that amplitude ratios are influenced by different theories of thermoelasticity as 

the values of amplitude ratios for MG-L are higher than L-S theory and lower than G-L 

theory of thermoelasticity for all the incident waves. The present new model is useful in 

developing more accurate representations of thermoelastic solids, making it particularly 

relevant for geophysical studies, especially in the investigation of seismic events and 

other phenomena in seismology and engineering. 
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