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ABSTRACT  
The quality of a friction stir weld is significantly influenced by the choice of appropriate weld parameters, 
with rotational speed being one of the key factors. This study aims to examine these elements' influence 
on physical characteristics of velocity, viscosity, and torque. The performance measures being evaluated 
include the assessment of maximum weld interface velocity, minimum weld interface viscosity and tool-
workpiece interface torque. This study utilises a computational fluid dynamics model to examine the 
influence of various rotational speeds on the aforementioned performance indicators. The workpiece 
selected for this study is an Aluminium Alloy 6061, while the tool employed is a truncated conical pin tool 
featuring a conical shoulder in a lap joint configuration. The study reveals that with an increase in rotational 
speed from 500 to 2900 RPM, maximum weld interface velocity exhibits an increase with decreasing slope. 
As the rotational speed increases, the minimum weld interface viscosity decreases with decreasing slope. 
It is also found that tool-workpiece interface torque decreases with approximately constant slope with 
increasing rotational speed (500 to 2900 RPM), meaning a linear decreasing trend. The findings of this 
investigation are validated through a comparative analysis with previously published data. With this 
information and the resulting conclusions, friction stir welders can deepen their understanding of how 
rotational speed affects welding quality. 
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Introduction 
The friction stir welding (FSW) technique was initially developed in 1991 and 
subsequently patented by the prestigious organization known as The Welding Institute 
(TWI) [1]. The purpose of this invention was to achieve robust and durable structures by 
welding materials with limited welding capabilities, specifically aluminium alloys. This 
issue is of great importance to various industries, particularly the aerospace sector, as 
conventional methods are inadequate for welding aluminium alloys or joining 
incompatible materials like aluminium and magnesium alloys. 

During FSW, a rotating tool is gradually inserted into the workpiece until the 
shoulder comes into contact with the workpiece, as shown in Fig. 1. This position is 
upheld until the necessary temperature is attained due to the generation of heat through 
friction and plastic deformation. In order to accomplish the necessary weld, the tool is 
displaced along the weld line. The term advancing side (AS) is used to describe the side 
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of a rotating tool that has identical direction as the tangential velocity and traverse speed 
(TRS). The retreating side (RS) refers to the side of a rotating tool that has a vectorial 
sense opposite to the tangential velocity and TRS [2]. The workpiece section located 
ahead of tool is known as leading side, and the section located behind tool is known as 
trailing side. 

Since its inception, a substantial body of research has been dedicated to 
investigating the impacts of various elements in the FSW process [3–8]. Certain factors 
are machine-specific, while others, such as spinning velocity and pin geometry, are 
inherent to the tool [9–15]. Each of these variables influences the transfer of heat and 
the movement of material, which subsequently has an effect on the microstructure and 
quality of the weld [16,17]. This study aims to assess the impact of rotational speed (ROS) 
on various performance measures for aluminium alloy 6061 (AA6061) lap welds using a 
truncated conical pin with conical shoulder (TCPCS) tool. The variables of interest include 
maximum weld interface temperature (Max. WIT), maximum weld interface velocity (Max. 
WIV), minimum weld interface viscosity (Min. WIVis), and tool-workpiece interface torque 
(TWIT). This study employs the finite volume technique (FVM) of computational fluid 
dynamics (CFD) as an efficient and time-effective approach [11]. 
 

 
Fig. 1. Schematic representation of the FSW process 

 
Multiple researchers have conducted investigations on FSW. Nandan et al. [12–14]. 

utilised the three dimensional visco-plastic model for butt joints in stainless steel-SS304, 
AA6061, and mild steel-1018, respectively. The instrument's combined rotational and 
linear movement revealed a notable imbalance in the temperature distribution 
surrounding it. In [15], it was conducted a study where they developed a three-
dimensional thermo-mechanical model to examine the temperature and material flow in 
the butt weld of AA6061-T6. Augmenting the ROS while reducing the welding speed 
results in an intensified stirring motion, hence improving the weld's quality. To avoid 
defects, the ROS should increase proportionally with the welding speed [15]. J. Zhang et 
al. [11]. developed a computational fluid dynamics model in FLUENT® to analyse the 
temperature distribution and material flow characteristics of an AA6061-T6 lap joint 
under the influence of a conical tool. The model does not consider the effect of tool tilt. 
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The findings suggest that the shoulder surface area is primarily responsible for the 
majority of heat generation, accounting for 88 % of the total. On the other hand, the 
regions of the pin's side surface and pin's bottom surface barely account for 10.48 and 
1.52 %, respectively. The occurrence of intense material movement is primarily limited to 
the area near the tool, where material located on tool’s front is driven towards RS and 
then gathers at tool’s back [11]. Jain, Pal, and Singh [16] created a model to forecast the 
forces, spindle torque, temperature, and plastic strain that occur during the butt-welding 
process of two AA2024-T4 metals. The rise in heat generation rate, as indicated by the 
temperature distribution, leads to a decrease in forces and spindle torque as the ROS 
increases. In addition, the conical shape of the pin resulted in a higher material velocity 
compared to its cylindrical version while requiring less effort during the plunging process 
Shi and Wu [17] created a transient model to accurately assess the dynamic changes in 
heat-generation, temperature-distribution, and material-flow during the butt FSW 
process of AA2024. They also examined how these factors are influenced by process 
parameters, including TRS and tool ROS. It has been observed that the tool torque rises 
when the TRS increases, providing that the ROS remains constant. An inverse relationship 
was seen when the rotating speed increased, assuming that the temperature and pressure 
remained constant. Hasan [18] conducted a study where he used FSW to simulate the butt 
joint of AZ31 magnesium alloy. Results showed that the maximum temperature drops as 
the TRS increases while the ROS remains constant. Roubaiy et al. [19] examined how 
different welding parameters affect the mechanical properties of a butt joint made by 
FSW using aluminium 5083-H116. As the ROS increases (assuming the TRS remains 
constant), the tensile strength and joint efficiency rise while the absorbed energy drops. 
Conversely, a contrasting effect on TRS was noticed, but the ROS remained 
unchanged [19]. Nirmal and Jagadesh [20] conducted a study on the percentage 
elongation, yield strength, and ultimate tensile strength of a dual-phase titanium alloy 
using FSW on butt joints. The study revealed that when the ROS increases (assuming the 
TRS remains constant), the yield stress, ultimate tensile stress, and tensile strength also 
increase, while the percentage elongation drops. An inverse relationship was seen as the 
TRS increased, assuming the ROS remained constant [20]. Andrade et al. [21] examined 
the torque and temperature FSW of aluminium alloys belonging to series AA2xxx, 
AA5xxx, AA7xxx, and AA8xxx. It has been observed that when the ROS increases 
(assuming the torque sensitivity remains constant), the torque drops but the peak 
temperature increases. In contrast, there was a reported increase in TRS, assuming that 
the rotating speed remained constant. Furthermore, it was noted that an increase in 
workpiece thickness correspondingly leads to an increase in torque. An augmentation in 
shoulder diameter leads to a corresponding augmentation in peak torque and 
temperature [21]. H. J. Zhang et al. [22] performed FSW on AA6061 with rotation speeds 
varying from 1,000 to 6,000 RPM. The study reveals that as the ROS increases (while 
keeping the TRS constant), the peak temperature also increases. Yadav et al. [23] 
conducted a study on the tool tilt effect for AA6061 using a tapered cylindrical pin to 
analyse its impact on heat and material flow. It was discovered that the temperature 
drops as the tilt angle increases [23]. 

The literature review indicates that no previous study has examined the impact of 
different ROS on velocity, viscosity, and torque for AA6061. Specifically, this study focuses 
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on the use of a TCPCS tool for a lap joint. The current study investigates the impact of 
different ROSs (ranging from 500 to 2900 RPM) on several performance parameters, 
including maximum weld interface velocity, minimum weld interface viscosity, and tool-
workpiece interface torque. Solidworks® 2017 is utilised for the purpose of geometric 
modeling, whereas the CFD programme FLUENT® is employed specifically for FVM 
modeling [24]. The effect of changing ROS is evaluated by analysing these performance 
indicators. The novelty of this work will be elucidated in the next section:  

This study examines the impact of tilt angle and slip in lap weld. The impact of the 
shoulder's side surface on heat generation is also taken into account. An analysis is 
conducted on the performance metrics of the lap weld's weld surface. Prior studies have 
examined the maximum temperature attained within a workpiece. The range of ROS is 
dictated by the recrystallization and solidus temperatures of the workpiece formed at the 
weld surface. This comprehensive study examines the impact of all significant input 
elements on the geometry of FSWs and the tool used, as well as their influence on many 
performance metrics. 
 
Numerical modeling 
As a result of the intricate nature of the practical arrangement, a cost and time-efficient 
technique of numerical modelling is utilised [13,25]. This particular portion provides a 
numerical model for friction stir lap weld of AA6061 using a TCPCS tool. It includes the 
necessary assumptions, boundary-conditions, material-parameters and model validation. 
 
Description of model 

Utilising numerical modeling allows for the efficient and effortless visualisation of 
temperature distribution, material movement, as well as stress and strain analysis [11]. It 
offers valuable understanding into the operation of the process. The impact of different 
ROS on velocity, viscosity, and torque was analysed using the commercial CFD FLUENT® 
software. Figure 2 illustrates the simulation model. AA6061 plates are utilised. The 
dimensions of each plate are 200 × 100 ×5 mm3. When joined in a lap arrangement, the 
measurements are 200 × 100 × 10 mm3 [11]. The parameters for the FSW technique are 
provided in Table 1. The selection of these characteristics is based on a thorough 
evaluation of the pertinent literature [17,18]. 
 
Table 1. Process parameters employed 

Process parameter Value 
Diameter of shoulder, mm 25 

Conical angle of shoulder, ° 2 
Tilt angle, ° 0.25 

Pin length, mm 5 
Root diameter of pin, mm 8 
Tip diameter of pin, mm 6 

Traverse speed, m/s 0.05  
Plunge depth, mm 0.375 
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Fig. 2. Model’s schematic sketch Fig. 3. Mesh used 

 
The Realisable k-epsilon viscous model is employed to simulate the flow of material 

in a transient state. Mesh with tetrahedron-cells is utilised, with fine mesh at the interface 
between the tool and the workpiece, as depicted in Fig. 3. The present work adheres to 
the following assumptions. 

The process is a quasi-steady process, meaning that the rate of heat generation 
remains constant. Plasticized material is classified as non-Newtonian, incompressible, 
and visco-plastic. The material is presumed to exhibit the characteristics of a non-
Newtonian fluid, where its viscosity is influenced by both temperature and strain rate. 
There is a condition of partial slip between the tool and the workpiece. The upper, 
bottom, and side surfaces of the workpiece have a free slip condition. The outlet 
boundary assumes a value of zero pressure. 
 

 
Fig. 4. Model’s parts and boundary conditions 

 
Boundary conditions and material properties. In order to make precise predictions 

about welding, it is crucial to employ realistic boundary conditions [18]. Figure 4 displays 
the parts and boundaries imposed on the model. 

The inlet boundary condition of flow is defined as follows: 
𝑢 = 𝑢𝑤𝑒𝑙𝑑, 𝑣 = 0, 𝑤 = 0,                                                                                                  (1) 
where welding velocity is represented by 𝑢𝑤𝑒𝑙𝑑, whereas the velocity intensities in the X, 
Y, and Z directions are represented by 𝑢, 𝑣, and 𝑤, respectively.  
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The tool periphery velocity, which is the combined effect of the tool's angular 
velocity and the welding speed, is provided below: 
𝑢𝑖 = 𝜔𝑟𝑠𝑖𝑛𝜃 − 𝑢𝑤𝑒𝑙𝑑, 𝑣𝑖 = 𝜔𝑟𝑐𝑜𝑠𝜃, 𝑤𝑖 = 0.                                                                          (2) 

The value of r is such that 𝑟1 <  𝑟 <  𝑟3. The variables 𝑢𝑖 , 𝑣𝑖 and 𝑤𝑖  denote vectors 
of velocity in the X, Y, and Z directions. The index notation "i" means a specific location 
on tool's surface where the tool's combined ROS and the TRS are determined.  𝑟1 

represents the radius of tool shoulder;  𝑟3 represents the radius of pin bottom; 𝜃 is the 
angle between the horizontal direction vector from the tool axis to any point on the 
cylindrical surface. In the weld direction, θ is equal to zero. 

Tool periphery velocity when tool tilt angle ( 𝜉) and contact state variable (𝛿) are 
considered are represented [13]: 
𝑢𝑖 = (1 − 𝛿)((𝜔𝑟𝑠𝑖𝑛𝜃) cos 𝜉 − 𝑢𝑤𝑒𝑙𝑑),                                                                                   (3) 
𝑣𝑖 = (1 − 𝛿)𝜔𝑟𝑐𝑜𝑠𝜃,                                                                                                                (4) 
𝑤𝑖 = (1 − 𝛿)(𝜔𝑟𝑠𝑖𝑛𝜃) sin 𝜉,                                                                                                    (5) 
𝛿 = 0.9(0.31𝑒𝜔𝑟/1.87 − 0.026).                                                                                               (6) 

The viscosity (ƞ) is determined using below equations [26–28]: 
ƞ =  

𝜎

3�̅�
,                                                                                                                                       (7) 

σ (flow stress) =
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Q
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),                                                                               (9) 

ε̅ (strain rate) = (
2

3
εijεij)

1

2,                                                                                                    (10) 
where T represents temperature (K), 𝐴, 𝛽, and 𝑛 are constants that describe the material 
properties, Q is an activation energy that does not depend on temperature, R is the gas 
constant. These equations are implemented through the use of user defined functions 
(UDF). Table 2 provides the material-constants and properties of AA6061 [29]. 
 
Table 2. Material-constants and properties for aluminium alloy 6061 

Parameter Value 
Material-constants: 
A, s-1 
n 
Q, J‧mol-1 
Β, MPa 

 
2.41×108  
3.55 
1.45×105  
0.045  

Material density ρ, kg‧m-3 2700  
Gas constant R, J‧K-1‧mol-1 8.314  

 
The heat created during the FSW process is distributed over many regions. The tool's 

contacting surface with the workpiece is partitioned into three sections: bottom shoulder 
surface (SS), pin side surface (PSS), and pin bottom surface (PBS) (Fig. 4). The SS is 
subdivided into two sections: shoulder with conical surface (SCS) and shoulder with flat 
surface (SFS). All these sections exhibit partial sticking-sliding contact. The heat produced 
by different sources is provided below: 
𝑄𝑡𝑜𝑡𝑎𝑙 = 𝛿𝑄𝑠𝑡𝑖𝑐𝑘𝑖𝑛𝑔 − (1 − 𝛿)𝑄𝑠𝑙𝑖𝑑𝑖𝑛𝑔.                                                                                  (11) 
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The symbol δ represents the contact state variable. When the slip coefficient (δ) is 
equal to zero, heat is only generated through friction. When the value of δ is equal to 1 
(indicating a stick), all heat is produced only through the deformation of the plastic 
material [30].  

The assumed maximum yielding shear stress is: 
𝜏𝑏 =

𝜎𝑠

√3
,                                                                                                                                    (12) 

where 𝜎𝑠 represents the material’s yield stress at its melting point temperature [31]. 
The δ at SCS has been assigned a value of 0.35 [11]. The heat-flux (W/m2) at this 

section is: 

𝑞𝑆𝐶𝑆
=

[𝛿𝐶𝑆𝑆𝜏𝑏+(1−𝛿𝐶𝑆𝑆)𝜇𝑃]2𝜔[(𝑟1
3−𝑟2

3)(1+tan∝′)]

3(𝑟1
2−𝑟2

2)
.                                                                        (13) 

At PSS, δ is equal to 0.5 [11]. The heat-flux (W/m2) at this section is: 

𝑞𝑃𝑆𝑆
=

2𝛿𝑃𝑆𝑆𝜔𝜏𝑏(𝑟2
3−𝑟3

3)𝑐𝑜𝑠𝛼

3(𝑟2
2−𝑟3

2)
+

2(1−𝛿𝑃𝑆𝑆)𝜇𝑃𝜔(𝑟2
3−𝑟3

3)

3(𝑟2
2−𝑟3

2)
                                                                 (14) 

At PBS, δ has a value of 0.35 [11]. The heat-flux (W/m2) at this section is: 
𝑞𝑃𝐵𝑆

=
2𝜔𝑟3(𝛿𝑃𝐵𝑆𝜏𝑏+(1−𝛿𝑃𝐵𝑆)𝜇𝑃)

3
,                                                                                              (15) 

where 𝜇 (0.4) is coefficient of friction [11], P is plunge pressure (Pa), 𝜔 is ROS (rad/s) and ∝′ 
is cone angle of shoulder (∝′ = 0 for SFS)). A plunging pressure of 12 MPa is taken here [11]. 

The specific-heat (𝐶p) equation for AA6061 is shown below [13]: 
𝐶𝑝 = 929 − 0.627𝑇 + 1.481 × 10−3𝑇2 − 4.33 × 10−8𝑇3.                                                  (16) 

The thermal-conductivity (𝑘) equation for AA6061 is shown below [13]: 
𝑘 = 25.22 + 0.3978𝑇 + 7.358 × 10−6𝑇2 − 2.518 × 10−7𝑇3.                                            (17) 

The boundary condition for heat exchange between the top surface of the workpiece 
and the environment is convective as well as radiative heat transfer [13]. The heat 
exchange between the bottom and side surfaces of the workpiece is conductive (due to 
contacts of jigs and fixtures) and convective heat transfer, respectively. All these heat 
exchanges are converted to convective form as shown below [13]: 
𝑘

𝜕𝑇

𝜕𝑧
= ℎ𝑡(𝑇 − 𝑇0),                                                                                                                  (18) 

𝑘
𝜕𝑇

𝜕𝑧
= ℎ𝑏(𝑇 − 𝑇0),                                                                                                                  (19) 

𝑘
𝜕𝑇

𝜕𝑧
= ℎ𝑠(𝑇 − 𝑇0).                                                                                                                  (20) 

where ℎ𝑡 , ℎ𝑏 and ℎ𝑠 are coefficients of heat dissipation at workpiece’s top, bottom and 
side surface, respectively. 𝑇0 is the environmental temperature (300 K). 

In this study, ℎ𝑏 = 150 W/m2K, and ht = hs = 80W/m2K. The external emissivity of 
workpiece top surface is 0.09 [32]. 
 
Model validation 

Validation of current model is done with the work by J. Zhang et al. [11]. They created a 
3D CFD model in FLUENT® to understand the temperature-field and material-flow 
behaviour of an AA6061-T6 lap joint subjected to a conical tool (neglecting tool tilt 
effect). In the present study, the above work is replicated, and upon validating the current 
methodology and procedure, additional fixed input parameters (tilt angle and plunge 
depth) are introduced. The temperature distribution and material flow velocity data 
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closely correspond to those reported data. Figure 5 compares the present and validated 
studies' temperature distributions. Thus, numerical-modeling methods are satisfactory.  
 

 
(a)  

 
(b) 

 
Fig. 5. Comparison of weld temperature for present study and reference study [11]: (a) temperature at 

workpiece's top surface on trailing side, (b) temperature at workpiece's top surface on leading side 
 

Results and Discussion 
This part of the article presents ROS’s influence on maximum velocity, minimum viscosity 
and torque as performance measures. The range of ROS is selected from 500 to 2900 RPM 
range as below 500 RPM ROS, temperature at weld surface (surface joining two weld 
plates in lap joint) reaches below its recrystallization temperature (0.5 melting point 
temperature) for alloys, i.e., 462.5 K and above 2900 RPM ROS, temperature of workpiece 
increases above its solidus temperature (855 K for AA6061). 
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Effect of rotational speed  

To study the effect of ROS on maximum weld interface velocity, minimum weld interface 
viscosity and tool-workpiece interface torque, all other input parameters such as TRS, tilt 
angle and plunge depth are kept at their average value of 0.05 m/s, 0.25° and 0.375 mm, 
respectively. Table 3 summarizes considered performance measures as varying ROS is 
varied from 500 to 2900 RPM. 

 
Table 3. Effect of rotational speed on maximum weld interface velocity, minimum weld interface viscosity 
and tool-workpiece interface torque as performance measures 

Rotational 
speed, RPM 

Max. weld interface 
velocity, m/s 

Min. weld interface 
viscosity, Kg/(ms) 

Tool-workpiece interface 
torque, Nm 

500 0.1438 696164 45.6 
900 0.2234 174093 40.22 

1300 0.2962 75616 35.41 
1700 0.3615 46734 32.06 
2100 0.4185 36169 29.68 
2500 0.4662 29048 27.04 
2900 0.5038 23901 26.04 

 

 
Fig. 6. Effect of tool rotational speed on maximum weld interface velocity (material flow) during FSW 

 
Figure 6 shows the effect of ROS on maximum weld interface velocity. The value of 

maximum weld interface velocity increases but with a decreasing slope on increasing 
ROS from 500 to 2900 RPM. The reason for this behaviour is explained as follows. From 
Eqs. (3)–(5), it is known that resultant velocity is dependent on tool peripheral velocity in 
the axial directions (x, y and z). This resultant velocity governs maximum velocity 
performance measure. From Eqs. (3)–(5), it is found that peripheral tool velocity in axial 
directions is dependent on ROS (𝜔) and contact state variable (𝛿), provided all other 
parameters (traverse speed, tilt angle, etc.) remains constant. The value of contact state 
variable varies between 0 and 1. This contact state variable is further dependent on ROS, 
as shown by Eq. (6). Tool peripheral velocity in the axial direction is directly proportional 
to ROS, and contact state variable is exponentially directly dependent on ROS (meaning 
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contact state variable is inversely dependent on maximum velocity performance measure, 
Eq. (6)). 

The effect of ROS on minimum weld interface viscosity is shown in Fig. 7. It indicates 
that as ROS increases, minimum weld interface viscosity decreases with decreasing slope. 
This is due to the fact that at low ROS and at constant traverse speed, tilt angle and 
plunge depth, the heat flux generation is minimum. This results in a low strain rate and 
lower temperature, which in turn results in higher viscosity at a low ROS (Eqs. (7)–(10)). 
As the ROS increases, the temperature and strain rate increase, resulting in lower 
viscosity. The critical viscosity above which no significant plastic flow takes place is 
typically around 5‧106 Pa/s for AA6061 [13]. 

 

 
Fig. 7. Effect of tool rotational speed on maximum weld interface velocity 

 
Figure 8 shows the effect of ROS on tool-workpiece interface torque. It indicates 

that torque decreases with approximately constant slope with increasing the ROS (200 to 
2000 RPM), meaning a linear decreasing trend. This is due to the fact that as viscosity 
decreases with increasing ROS at constant traverse speed, torque at the tool-workpiece 
interface decreases due to softening of the material. 

 

 
Fig. 8. Effect of tool rotational speed on tool-workpiece interface torque 
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Conclusions 
This investigation studies the effect of varying ROS on maximum weld interface velocity, 
minimum weld interface viscosity and tool-workpiece interface torque as performance 
measures. The following conclusions are drawn from the study: 
1. with an increase in ROS from 500 to 2900 RPM, maximum weld interface velocity 
increases but with a decreasing slope; 
2. with increase in ROS, minimum weld interface viscosity decreases with decreasing 
slope. A significant drop in minimum viscosity occurs between 500 and 1300 RPM; 
3. tool-workpiece interface torque decreases with the approximately constant slope with 
increasing ROS (500 to 2900RPM), meaning a linear decreasing trend. 
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