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ABSTRACT  
The body force method is used to perform stress analysis around two circular holes with equal and different sizes 
in an infinite plate subjected to uni-axial loading. The elasticity solution for a point force in an infinite plate is 
used as the fundamental solution. Traction free boundary conditions are satisfied at the midpoint of segments. 
Stress concentration factors obtained by body force method are compared with the results available in the 
literature. It is noted that accurate results are obtained with a small number of segments of the discontinuity.  
The body force method is simple, yet robust method useful in performing stress analysis of bodies with 
discontinuities. 
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Introduction 

In many structural applications, multiple holes are used to achieve required functionality. 

In applications where multiple holes exist, interaction of holes and its effect on stress 

concentration factor becomes important consideration to a design engineer. In this 

regard, interaction of two circular holes (Fig. 1) has attracted attention of many 

researchers. Ling [1] employed bipolar coordinates, taking advantage of double symmetry 

solved the problem of two equal circular holes with all around tension, longitudinal 

tension and transverse tension cases. Davies [2] obtained approximate solutions to the 

problem of two unequal circular holes employing complex variable technique. The 

method employed is restricted because of collocation on one of the boundaries. Haddon 

[3] obtained closed form solution in series form, using complex variable technique for the 

case of two unequal circular holes. Stress concentration factor (SCF) was computed for 

the case of angle α (angle between line connecting centers of the holes and the far field 

uniform tension) equal to 0°, 90° and 45°. Salerno [4] employed complex variable 

technique, Schwartz Alternating Method with successive approximations to obtain stress 

distribution around two unequal circular holes under equal biaxial stresses. Miyata [5] 

investigated stresses around two circular holes in an infinite plate subjected to biaxial 

tension using complex variable method with method of successive approximations. 

Miyata presented numerical results for uniaxial longitudinal tension and transverse 
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tension. In a finite plate, Erickson [6] used 2D photoelasticity and obtained the optimum 

size and locations of multiple ancillary holes near central hole. Iwaki [7] used bipolar 

coordinates and obtained explicit solution for stresses around two unequal circular holes 

subjected to far-field uniform tension, uniform internal pressure and uniform shearing 

stresses along a hole. Horii [8] used method of pseudotractions and obtained SCF around 

(a) two circular holes (b) three circular holes in a row (c) infinite row of equal circular 

holes in an infinite plate under uniaxial longitudinal tension and transverse tension. This 

method was also used to obtain stress intensity factor (SIF) in the case of (a) two cracks 

and (b) infinite rows collinear/parallel cracks. Duan [9] used integral equation technique 

to study (a) hole to edge dislocation interaction (b) hole to hole interaction (c) hole to 

free boundary interaction. Chiang [10] obtained SCF around two unequal circular holes 

using a numerical method which resembles the method of fundamental solutions for 

longitudinal tension and transverse tension cases. To study the interaction between 

existing major holes (three holes) and the "defense" hole system (addition of two, four 

smaller holes) in a plate under uniaxial tension, Meguid [11] conducted analytical, finite 

element analysis and photoelastic tests. For the problem of two circular holes in plane 

stress and uniform internal pressure inside the holes, Hoang [12] derived explicit 

expression for the stress distribution near holes. Ukadgaonker [13] investigated SCF 

around two unequal circular holes in an infinite plate under longitudinal tension and 

transverse tension cases using Schwarz Alternating Method. Kuo [14] studied degenerate 

scale problem of the infinite plane containing two equal circular holes. Zeng [15] 

obtained optimal shape of two closely spaced holes under biaxial loading using 

differential-evolution algorithm to compute coefficients of mapping function. Mohan [16] 

performed stress analysis of rectangular plates with two symmetrical circular holes under 

uniaxial tension for two material types (PLA, PLA/15%carbon) and compared results from 

experiments and finite element method. Gandilyan [17] solved the problem of two equal 

holes in a plane subjected to biaxial tension using bipolar coordinates and series 

expansion taking into account the effects of surface elasticity. Patel [18] obtained 

expression for tangential stress concentration factor around an elliptical hole in a large 

rectangular plate subjected to linearly varying in-plane loading on two opposite edges. 

Yang [19] designed 5 crack models and studied the propensity of forming the hook 

pattern. Simulations were carried out for the two borehole case employing the 5 models 

using the T-stress at the crack tip and the incremental crack growth method is adopted 

to simulate the crack propagation paths. Ma [20] proposed solution to elastoplastic 

problem of an infinite medium containing two equal circular holes. The preconditions 

followed are the two plastic regions formed are disconnected with each other, and each 

plastic region can completely surround each hole. The influences of the separation 

distance between the two holes and the loads on the plastic regions were analyzed. 

Maksymovych [21] studied stress concentration at closely placed holes in wing bearing 

area of anisotropic plate. Asymptotic formula for stresses near holes was employed, 

implementation of the approach was carried out using Boundary Integral equation 

method and method of least squares. 
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Fig. 1. Two circular holes in an infinite plate under uniaxial tension 

 

The body force method has been used in the present work to examine the 

interaction of two circular holes in isotropic infinite plate under uni-axial tension. Ratio 

of diameters (𝒃 𝒂⁄ ) is varied from 1 to 10, ratio of distance between holes a to diameter, 

(𝒅 𝒂⁄ ) is varied from 0.4 to 10 and angle (𝜶) between the line joining two centers and 

direction of uniaxial tension is varied from 0° to 90°. In the next section description of 

body force method is provided. In the "Body force method applied to two circular holes" 

section, application of body force method is discussed. In the "Numerical results and 

Discussion" section, numerical results along with plots, discussion and comparison with 

data from literature are presented followed by concluding remarks in the "Conclusions" 

section. 

 

Body force method 

Nisitani [22–24] originally proposed the body force method (BFM) which is a boundary 

integral type approach helpful in performing stress analysis. Detailed account of BFM can 

be found in [25]. In using BFM, actual discontinuity (for e.g. circular hole) present in an 

infinite plate is visualized as an imaginary condition, i.e. infinite plate with a hole is 

treated as a plate without hole. The hole is visualized as an imaginary curve divided into 

M number of segments forming its boundary. In order to achieve traction free boundary 

condition at the boundary of the imaginary curve, at the midpoints of segments on its 

periphery, body force densities (𝜌𝑥𝑖 , 𝜌𝑦𝑖) are applied. Influence coefficients are computed 

from the equations of stress field in an infinite plate due to a point force and the boundary 

conditions of traction free at the midpoint of each segment are applied and body force 

densities are obtained. At each given point in the plate, stress produced is computed by 

a linear combination of the body force densities. 

The stresses at location (𝑥, 𝑦) in an infinite plate, due to concentrated point force 

𝑿 and 𝒀 acting at (𝜉, 𝜂) are as follows. 

𝜎𝑥
𝑋 = −𝐹 𝑙 {(3 + 𝜈)𝑙2 + (1 − 𝜈)𝑚2 } 𝑋, (1) 

𝜎𝑦
𝑋 = 𝐹 𝑙 {(1 − 𝜈)𝑙2 − (1 + 3𝜈)𝑚2 } 𝑋, (2) 

𝜏𝑥𝑦
𝑋 = −𝐹 𝑚 {(3 + 𝜈)𝑙2 + (1 − 𝜈)𝑚2 } 𝑋, (3) 

and 

𝜎𝑥
𝑌 = −𝐹 𝑚 {(1 + 3𝜈)𝑙2 − (1 − 𝜈)𝑚2 } 𝑌, (4) 
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𝜎𝑦
𝑌 = −𝐹 𝑚 {(1 − 𝜈)𝑙2 + (3 + 𝜈)𝑚2 } 𝑌, (5) 

𝜏𝑥𝑦
𝑌 = −𝐹 𝑙 {(1 − 𝜈)𝑙2 + (3 + 𝜈)𝑚2 } 𝑌, (6) 

where  

𝑙 =
𝑥−𝜉

𝑦
, (7) 

𝑚 =
𝑦−𝜂

𝑦
, (8) 

𝐹 =
1

4𝜋𝑦(𝑙2+𝑚2)2. (9) 

The effect of point force 𝑿 or 𝒀 applied at (𝜉, 𝜂) are computed from stress fields and 

these form the influence coefficients. As the relations −𝑑𝜉 = 𝑎 sin 𝜃 𝑑𝜃 and  

𝑑𝜂 = 𝑏 cos 𝜃 𝑑𝜃 prevail along the ellipse (𝜉 = 𝑎 cos 𝜃 , 𝜂 = 𝑏 sin 𝜃), the coefficients can 

be expressed as: 

𝜎𝑥𝑀
𝑋𝑁 = ∫ 𝜎𝑥

𝑋(𝜉, 𝜂, 𝑥, 𝑦) 𝑏 cos 𝜃 𝑑𝜃 𝑎𝑡 𝑋 = 1
𝑁

,                                                                       (10) 

𝜎𝑦𝑀
𝑋𝑁 = ∫ 𝜎𝑦

𝑋(𝜉, 𝜂, 𝑥, 𝑦) 𝑏 cos 𝜃 𝑑𝜃 𝑎𝑡 𝑋 = 1
𝑁

,                                                                       (11) 

𝜏𝑥𝑦𝑀
𝑋𝑁 = ∫ 𝜏𝑥𝑦

𝑋 (𝜉, 𝜂, 𝑥, 𝑦) 𝑏 cos 𝜃 𝑑𝜃 𝑎𝑡 𝑋 = 1
𝑁

,                                                                     (12) 

and 

𝜎𝑥𝑀
𝑌𝑁 = ∫ 𝜎𝑥

𝑌(𝜉, 𝜂, 𝑥, 𝑦) 𝑎 sin 𝜃 𝑑𝜃 𝑎𝑡 𝑌 = 1
𝑁

,                                                                        (13) 

𝜎𝑦𝑀
𝑌𝑁 = ∫ 𝜎𝑦

𝑌(𝜉, 𝜂, 𝑥, 𝑦) 𝑎 sin 𝜃 𝑑𝜃 𝑎𝑡 𝑌 = 1
𝑁

,                                                                        (14) 

𝜏𝑥𝑦𝑀
𝑌𝑁 = ∫ 𝜏𝑥𝑦

𝑌 (𝜉, 𝜂, 𝑥, 𝑦) 𝑎 sin 𝜃 𝑑𝜃 𝑎𝑡 𝑌 = 1
𝑁

,                                                                      (15) 

where ∫  
𝑁

 represents integration of the N-th interval. 

The Influence Coefficients 𝜎𝑥𝑀
𝑋𝑁, 𝜎𝑥𝑀

𝑌𝑁, 𝜎𝑦𝑀
𝑋𝑁, 𝜎𝑦𝑀

𝑌𝑁, 𝜏𝑥𝑦𝑀
𝑋𝑁 , 𝜏𝑥𝑦𝑀

𝑌𝑁  are the stresses at the 

mid-point of the M-th interval due to a body force on the N-th interval having unit body 

force densities  (𝜌𝑥 = 1 or 𝜌𝑦 = 1). 

Applying the boundary conditions which result in stress-free midpoints for each 

interval lead to: 

∑ 𝜌𝑥𝑁(𝜎𝑥𝑀
𝑋𝑁 cos 𝜑𝑀 + 𝜏𝑥𝑦𝑀

𝑋𝑁 sin 𝜑𝑀)𝑀𝑀
𝑁=1 + ∑ 𝜌𝑦𝑁(𝜎𝑥𝑀

𝑌𝑁 cos 𝜑𝑀 + 𝜏𝑥𝑦𝑀
𝑌𝑁 sin 𝜑𝑀)𝑀𝑀

𝑁=1 = −𝜎0 cos 𝜑𝑀 ,                      (16) 

∑ 𝜌𝑥𝑁(𝜏𝑥𝑦𝑀
𝑋𝑁 cos 𝜑𝑀 + 𝜎𝑦𝑀

𝑋𝑁 sin 𝜑𝑀)𝑀𝑀
𝑁=1 + ∑ 𝜌𝑦𝑁(𝜏𝑥𝑦𝑀

𝑌𝑁 cos 𝜑𝑀 + 𝜎𝑦𝑀
𝑌𝑁 sin 𝜑𝑀)𝑀𝑀

𝑁=1 = 0,                             (17) 

where 𝜌𝑥𝑁, 𝜌𝑦𝑁 represent body force densities acting on the N-th interval along x and y 

direction respectively, 𝜎0 stress at infinity along x-direction and 𝜑𝑀 represents the angle 

between the x-axis and the ellipse’s normal at the midpoint of the M-th interval:  

𝜑𝑀 = tan−1 (
𝑎

𝑏
tan 𝜃𝑀). Equations (16) and (17) results in 2𝑀 linear equations in 2𝑀 

unknowns 𝜌𝑥𝑁, 𝜌𝑦𝑁. 

A set of linear equations result from Eqs. (16) and (17) in matrix form is 𝑨𝒙 = 𝒃, 

where 𝑨 is a square matrix (size 2𝑀 × 2𝑀) known as influence coefficient matrix (ICM) 

due to terms inside the brackets, 𝒙 is body force density column vector and column vector 

𝒃 is the right hand side of Eqs. (16) and (17) representing traction due to applied uni-axial 

far field load. 

The linear combination of the influence coefficients and body force densities at 

arbitrary point 𝑄(𝑥, 𝑦) in an infinite plate is employed to calculate the stresses at 𝑄(𝑥, 𝑦). 

𝜎𝑥 = ∑ (𝜌𝑥𝑁𝜎𝑥𝑃
𝑋𝑁 + 𝜌𝑦𝑁𝜎𝑥𝑃

𝑌𝑁)𝑀𝑀
𝑁=1 + 𝜎0,                                                                                    (18) 

𝜎𝑦 = ∑ (𝜌𝑥𝑁𝜎𝑦𝑃
𝑋𝑁 + 𝜌𝑦𝑁𝜎𝑦𝑃

𝑌𝑁)𝑀𝑀
𝑁=1 ,                                                                                            (19) 

𝜏𝑥𝑦 = ∑ (𝜌𝑥𝑁𝜏𝑥𝑦𝑃
𝑋𝑁 + 𝜌𝑦𝑁𝜏𝑥𝑦𝑃

𝑌𝑁 )𝑀𝑀
𝑁=1 .                                                                                          (20) 

Radial, hoop and shear stresses are computed using appropriate stress 

transformation. 
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Body force method applied to two circular holes 

Two circular holes are divided into 4 segments, at the midpoint of each segments, body 

force densities (𝜌𝑥𝑖 , 𝜌𝑦𝑖) are applied. This arrangement is shown in Fig. 2. Influence 

coefficient matrix (ICM) takes the following form: 

𝐴 =  [
𝐴11 𝐴12

𝐴21 𝐴22
],                                                                                                                     (21) 

where 𝐴11 is the ICM (obtained from Eqs. (16) and (17) of circular hole C1 due to body 

force densities ((𝜌𝑥1, 𝜌𝑦1) to  (𝜌𝑥4, 𝜌𝑦4)) applied on the segments of circular hole C1. 𝐴12 is 

the ICM (obtained from Eqs. (16) and (17)) of circular hole C1 due to body force densities    

((𝜌𝑥5, 𝜌𝑦5) to  (𝜌𝑥8, 𝜌𝑦8)) applied on the segments of circular hole C2. 𝐴21 is the ICM 

(obtained from Eqs. (16) and (17)) of circular hole C2 due to body force densities ((𝜌𝑥1, 𝜌𝑦1) 

to (𝜌𝑥4, 𝜌𝑦4)) applied on the segments of circular hole C1. 𝐴22 is the ICM (obtained from 

Eqs. (16) and (17)) of circular hole C2 due to body force densities ((𝜌𝑥5, 𝜌𝑦5) to (𝜌𝑥8, 𝜌𝑦8)) 

applied on the segments of circular hole C2. The body force density vector and traction 

vector on each segment due to applied uni-axial load takes the following form: 

𝒙𝑇 = [𝜌𝑥1 𝜌𝑦1    𝜌𝑥2 𝜌𝑦2    𝜌𝑥3 𝜌𝑦3    𝜌𝑥4 𝜌𝑦4    𝜌𝑥5 𝜌𝑦5    𝜌𝑥6 𝜌𝑦6    𝜌𝑥7 𝜌𝑦7    𝜌𝑥8 𝜌𝑦8]                 (22) 
𝒃𝑇 = [−𝜎0 cos 𝜑1 0 −𝜎0 cos 𝜑2 0 −𝜎0 cos 𝜑3 0 −𝜎0 cos 𝜑4 0           

            −𝜎0 cos 𝜑5 0 −𝜎0 cos 𝜑6 0 −𝜎0 cos 𝜑7 0 −𝜎0 cos 𝜑8 0]                                             (23)                                                                             

 

 
 

Fig. 2. An infinite plate under uni-axial tension with body force densities (𝜌𝑥𝑖 , 𝜌𝑦𝑖) applied at the mid-

points of 4 segments of the two circular holes 

 

Location of circular hole C1 is fixed with center at (0,0) and radius 𝑎 = 1 is held 

constant, circular hole C2 with center at (𝑥𝑐2
, 𝑦𝑐2

) and radius 𝑏 is varied. Values of radius 

𝑏 are varied from 1 to 10. Center to center distance 𝑙 is related to radii of circular holes 

using the relation 𝑙 = 𝑎 + 𝑑 + 𝑏. The values of 𝑙 are chosen such that the ratio 𝑑 𝑎⁄  varies 

from 0.4 to 10. Angle 𝛼 is varied from 0° to 90°. Both circular holes (C1, C2) are divided 

into 4 segments. 
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Numerical results and Discussion 

A geometric configuration is first chosen (values of a, b, d, 𝛼, 𝜎𝑜), Cartesian stresses are 

then computed (using Eqs. (18)–(20)) in the vicinity of the circular holes. Using stress 

transformation relationships, radial, hoop and shear stresses are computed. Hoop stress 

is extrapolated on the boundaries of the holes. Maximum value of hoop stress (occurring 

on the boundary of either of the holes) is identified and stress concentration factor (SCF) 

is computed. Figure 3 shows hoop stress variation along the boundary of holes (C1, C2) for 

configuration a = 1 mm, 𝜎𝑜 = 1 MPa and 𝛼 = 45°. Hoop stress varies in sinusoidal form 

on the hole boundary. SCF is computed for various values of b, d, 𝛼 with uni-axial far field 

stress 𝜎𝑜 = 1 MPa and plots drawn are shown in Figs. 4–9.  

 

 
 

Fig. 3. Hoop stress variation on the hole boundary (C1, C2) for angle α = 45° 

 

Figure 4 shows plots of variation of SCF with angle 𝛼. These plots are generated at 

fixed values of ratio 𝑏 𝑎⁄  and the individual curves correspond to a particular value of the 

ratio 𝑑 𝑎⁄  as shown in the legend. The value of SCF remains well below 2.65 when two 

circular holes are equal in diameter, located farthest away from each other irrespective 

of the angle 𝛼. The value of SCF remains close to 3.0 when 𝑏 ≥ 2𝑎 and angle 𝛼 does not 

exceeds 30°. Maximum value of SCF shifts from 78° to 90° with increase in ratio 𝑏 𝑎⁄  and 

shortest hole distance.  
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Fig. 4. Stress concentration factor variation with angle α for fixed b 𝑎⁄ . The ratio d 𝑎⁄  varies from 0.4 to 10 

 

 
Fig. 5. Stress concentration factor variation with angle α for fixed d 𝑎⁄ . The ratio b 𝑎⁄  varies from 1 to 10 
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Fig. 6. Stress concentration factor variation with b 𝑎⁄  for fixed angle α. Ratio d 𝑎⁄  varies from 0.4 to 10 

 

 
Fig. 7. Stress concentration factor variation with b 𝑎⁄  for fixed d 𝑎⁄ . Angle α varies from 0° to 90° 
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Fig. 8. Stress concentration factor variation with d 𝑎⁄  for fixed angle 𝛼. The ratio b 𝑎⁄  varies from 1 to 10 

 

 
Fig. 9. Stress concentration factor variation with d 𝑎⁄  for fixed b 𝑎⁄ . Angle α varies from 0° to 90° 
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Figure 5 shows plots of variation of SCF with angle 𝛼. These plots are generated at 

fixed values of ratio 𝑑 𝑎⁄  and the individual curves correspond to a particular value of the 

ratio 𝑏 𝑎⁄  as shown in the legend. With value of angle 𝛼 from 35° to 55°, SCF increases 

monotonically for shorter center distances.  

Figure 6 shows plots of variation of SCF with ratio 𝑏 𝑎⁄ . These plots are generated 

at fixed values of angle 𝛼 and the individual curves correspond to a particular value of 

the ratio 𝑑
𝑎⁄  as shown in the legend. With value of angle 𝛼 ≥ 55°, SCF increases 

monotonically for shorter center distances.  

Figure 7 shows plots of variation of SCF with ratio 𝑏 𝑎⁄ . These plots are generated 

at fixed values of ratio 𝑑 𝑎⁄  and the individual curves correspond to a particular value of 

angle 𝛼 as shown in the legend. The value of SCF remains below 3 for 𝑏 ≤ 6𝑎 irrespective 

of the angle 𝛼. 

Figure 8 shows plots of variation of SCF with ratio 𝑑 𝑎⁄ . These plots are generated 

at fixed values of angle 𝛼 and the individual curves correspond to a particular value of 

the ratio 𝑏
𝑎⁄  as shown in the legend. The lower three subplots confirm “With value of 

angle 𝛼 ≥ 55°, SCF increases monotonically for shorter center distances”.  

Figure 9 shows plots of variation of SCF with ratio 𝑑 𝑎⁄ . These plots are generated 

at fixed values of ratio 𝑏 𝑎⁄  and the individual curves correspond to a particular value of 

angle 𝛼 as shown in the legend. SCF remains close to 3 for the ratio 𝑑 𝑎⁄  closer to 10.   

From these graphs, we can note maximum value of SCF decreases with decrease in 

angle 𝛼, increase in ratio 𝑑 𝑎⁄ , decrease in ratio 𝑏 𝑎⁄ . Minimum value of SCF increases with 

increase in angle 𝛼, decrease in ratio 𝑑 𝑎⁄ , increase in ratio 𝑏 𝑎⁄ . The lowest values of SCF 

occur (2.515) at angle 𝛼 = 0°, ratio 𝑏
𝑎⁄ = 1 and 𝑑

𝑎⁄ = 0.4. The highest values of SCF 

occur (7.61) at angle 𝛼 = 89°, ratio 𝑏 𝑎⁄ = 10 and 𝑑 𝑎⁄ = 0.4. 

 
Table 1. Stress сoncentration factor with angle ∝ = 0° 

𝒃
𝒂⁄  𝒅

𝒂⁄  VGU [13] Chiang [10] BFM FEM 

1 1 2.658 2.625 

2.623 [1] 

2.650 [3] 

2.602 2.682 

1 2 2.787 2.703 

2.703 [1] 

2.715 [3] 

2.675 2.752 

1 3 2.864 2.772 2.746 2.813 

1 4 2.907 2.825 

2.825 [1] 

2.827 [3] 

2.798 2.863 

2 1 2.556 2.924 2.991 2.961 

3 1 2.404 2.982 3.019 3.021 

4 1 2.255 2.993 3.001 3.035 

 

In order to validate the results obtained from BFM, SCF values available in the 

literature and results of the finite element analysis (FEM) has been included in the 

Tables 1 and 2. Table 1 shows SCF values from [1,3,10,13] with BFM and FEM for angle 

𝛼 = 0°. Computed SCF value from BFM are closer to values from [1,3,10]. SCF values from 
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[13] are lower than other estimation for 𝑏 > 𝑎. Table 2 shows SCF values from [1,3,10,13] 

with BFM and FEM for angle 𝛼 = 90°. Computed SCF value from BFM are closer to values 

from [1,3,10]. SCF values from [13] are lower than other estimation for 𝑏 > 𝑎. 

 
Table 2. Stress Concentration factor with angle ∝ = 90° 

𝒃
𝒂⁄  𝒅

𝒂⁄  VGU [13] Chiang [10] BFM FEM 

1 1 3.97 3.264 

3.264 [1] 

3.264 [3] 

3.242 3.316 

1 2 3.481 3.066 

3.066 [1] 

3.066 [3] 

3.092 3.108 

1 3 - 3.034 3.042 3.076 

1 4 3.182 3.02 

3.020 [1] 

3.020 [3] 

3.017 3.062 

2 1 3.966 4.051 3.912 4.112 

3 1 3.611 4.854 4.620 4.899 

4 1 3.618 5.537 5.204 5.583 

 

Conclusions 

Body Force Method is used to compute SCF around two circular holes in an infinite plate 

subjected to uniaxial loading along x-direction. The values of SCF obtained by using BFM 

closely match with the values of SCF available in the literature. BFM is simple, yet robust 

method useful in performing stress analysis of bodies with discontinuities. Accurate 

results are obtained with small number of segments of the discontinuity. 

Maximum stress concentration factor is 7.61 which occurs when angle 𝜶 = 𝟖𝟗°, 

ratio of hole diameters 𝒃 𝒂⁄ = 𝟏𝟎 and ratio of distance between holes to diameter  

𝒅 𝒂⁄ = 𝟎. 𝟒. It is found that maximum value of stress concentration factor decreases with 

decrease in angle 𝛼, decrease in ratio of hole diameters 𝒃 𝒂⁄ , increase in ratio of distance 

between holes to diameter 𝒅 𝒂⁄ . 

Minimum stress concentration factor is 2.515 which occurs when angle 𝜶 = 𝟎°, ratio 

of hole diameters 𝒃 𝒂⁄ = 𝟏 and ratio of distance between holes to diameter 𝒅 𝒂⁄ = 𝟎. 𝟒. 

It is found that minimum value of stress concentration factor increases with increase in 

angle 𝛼, increase in ratio of hole diameters 𝒃 𝒂⁄ , decrease in ratio of distance between 

holes to diameter 𝒅 𝒂⁄ . The value of SCF can be maintained ≤ 3 if angle 𝛼 ≤ 30° and 

𝑏 ≥ 2𝑎.  
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