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Abstract. The article provides numerical simulation of ice fracture by compression using of 

the discrete element method by the software Yade. The Bonded Particle Model with damage 

was used. The computational calibration of the material parameters was performed on the test 

model of the sample in the form of a hyperboloid, the difference in strength by tensile and 

compression was 3.26 times. A comparison of real and computational tests on compression of 

cylindrical samples with diameter and height 50 mm at a temperature of -10 °С was carried out. 

The deformation curves are similar in the general character, reactions level, and deformations. 

The method makes it possible to simulate the ice fracture. According to the estimation of the 

deformation work, the difference between the typical experimental curve and the calculated is 

about 2 %. 
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Introduction 

Knowledge of the mechanical properties of ice can provide insights into its impact on ships, 

bridge supports or offshore platforms, as well as the applications of ice a structural material to 

build infrastructure in regions with a cold climate: roads, runways, loading docks, and others. 

It is especially important to study the behavior of ice during compression, for which it has the 

greatest strength [1]. Modern studies on the mechanical properties of ice have largely focused 

on dynamic loading of ice [2–8]. To predict the behavior of ice-based structures, modeling is 

performed using various numerical methods. A review of the methods used for such modeling 

is carried out in our earlier study [9]. Methods for ice modeling can be categorized into 

phenomenological, mesh-based and meshless methods. 

Phenomenological methods provide a general description of the object considered. In this 

case, only the phenomenon is described, and detailed study of the internal mechanics of the 

object is unnecessary. Consequently, the internal mechanics of the process is not fully taken 

into account [10].  

Mesh-based methods for modeling problems of ice mechanics are assessed in [11].  

A proven mesh-based method for continuum mechanics is the finite element method (FEM). 

The complex process of nonlinear deformation and brittle fracture in a material should be 
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simulated using extended models, including nonlinear FEM models of isotropic materials 

developed by Johnson and Holmquist, Lemaitre, etc. FEM has the following drawbacks: if the 

models have different scales, the solution is unstable against variation in model parameters 

(producing a non-convergent solution), considerable additional costs for validating the models 

are required to determine the parameters (especially for the Johnson–Holmquist model). It is 

complicated to apply FEM to solving brittle fracture problems, since it is adapted to solutions 

for continuum media: this is associated with the known problems of mesh-based methods, with 

mesh distortions appearing under large strain, erosion of elements, and consequent mass and 

energy losses. 

It is concluded in [11] that meshless methods are preferable for solving problems of ice 

mechanics.  

Smoothed-particle hydrodynamics (SPM) is a meshless method replacing the medium by 

a set of particles. The parameters of the medium are distributed to this system of particles, i.e., 

"smoothed out" between them. The method allows to simulate large strains and fracture in the 

medium by separating particle aggregates [10]. It is often necessary to correct the model to 

eliminate unsteady oscillatory processes in particles; this aspect of the method can introduce 

non-physical effects into the deformation of solids [12–13].  

The discrete element method (DEM) constructs models of solids from individual 

elements connected by virtual bonds. This method is well adapted to describing rapid processes 

associated with transfer of matter. The physical state of the continuum medium in DEM consists 

of the physical states of a large number of individual elements, its macroscopic state is the result 

of their interaction. The method was developed to simulate molecular dynamics of 

particles [14], and was later adapted to studying the dynamics of rocks [15] and granular 

assemblies [16]. DEM is well suited for describing the dynamics of rapid failure processes. A 

particularly noteworthy model of bonded particles is constructed using additional virtual 

bonded beams. This approach allows modeling bulk solids. Various types of DEM software 

implement the model of bonded particles, for example, EDEM [17], LIGGGHTS [18], 

MercuryDPM [19], Yade [20], Pasimodo [21]. Yade software was used in this study. This 

system incorporates a damage model for setting the bonds between the elements. Yade is 

distributed under an open license, with open source code for building discrete numerical 

models, the solver is written in C++. Preprocessing (building the model, setting the properties 

and boundary conditions, setting the solver parameters, controlling the solver), as well as 

postprocessing (output and processing of results) are carried out via Python scripts.  

 

Experimental study of ice compression 

The experimental study of ice compression was carried out for cylindrical specimens. Five 

specimens were tested to obtain the data. Figure 1(a) shows a specimen placed in a testing 

machine. Ice specimens were made from distilled water, which was poured into cylindrical 

metal molds measuring ø50×50 mm. The specimens were frozen at a temperature of -18 C. 

The edges of the cylinder were aligned to be parallel after freezing.  

The tests were carried out at a temperature of -10 C on an electromechanical machine in 

a thermal cryochamber using a freon mixture as a cooling agent. The specimens in a free state 

were subjected to compression with steel plates 100 mm in diameter.  

The strain of the specimen ε was determined as the ratio of the displacement of the 

compression plate to the initial height of the specimen: 

ε
u

h
= ,                  (1) 

where u is the plate displacement, h  is the initial height of the specimen. 

The stress   was calculated as the ratio of the impact force to the initial cross-sectional 

area of the specimen: 
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where A is the area of the initial section of the specimen, d is the diameter of the initial section 

of the specimen, F  is the force acting on the specimen. 

The stress-strain curve ( )   was then constructed from the ratio of strains and stresses. 

The computational curve for the deformation of the specimen was constructed similarly for 

comparison. 

 

 
 

(a) (b) 

 

Fig. 1. Cylindrical ice specimen: placed in a testing machine (a), model of bound particles (b)  

 

Computational study of ice compression 

The computational study of ice compression followed the algorithm of the experiment carried 

out. Let us consider the main relations for the computational model. 

The cylindrical volume was filled with spherical discrete elements of a given diameter in 

random order (Fig. 1(b)). Unlike other software (for example, EDEM), where the first modeling 

stage is resource-intensive simulation, where a limiting volume is virtually filled with particles, 

Yade PC includes a convenient algorithm for "packing" elements with the specified parameters. 

The elements were connected by virtual bonded beams connecting the centers of adjacent 

spheres. Figure 1(b) shows discrete elements (displayed for half of the specimen model for 

better illustration) and virtual bonds of the elements for the entire specimen volume. 

The model of the specimen was located between two absolutely rigid surfaces: the lower 

one was fixed, the upper one was moving down.  

The motion of a single particle i with mass im , inertia 
iI , position in space ix , with the 

angular velocity i  under the action of external forces 
ijF and external moments 

ijM  is 

calculated from the corresponding Newton and Euler equations: 

0

n

i i ij

j

m x F
=

= ,                 (3) 

0

ω ω
n

i i i i i ij

j

I I M
=

+   = .                (4) 



78   D.V. Grinevich, V.M. Buznik, G.A. Nyzhnyi 

The bond between the particles is a virtual beam that restricts the tangential t and normal 

n displacement of the particles relative to each other (Fig. 2(a)). The forces and moments of the 

bond reaction are calculated by the following formulas: 

δ - δ ;

δ - δ ;

δ -ω δ ;

δ -ω δ ,
2

n n n

t t t

n n t

t t n

F v S A t

F v S A t

M S J t

J
M S t

=

=

=

=

                 (5) 

where Fn, Ft are the projections of the resulting force Fb in the directions n and t; Mn is the normal 

moment; Mt is the shear moment; 2π brА=  is the cross-sectional area; rb is the radius of rigid 

coupling; 41
2
π bJ r=  is cross-sectional moment of inertia; δt is the time step; Sn and St are the 

stiffnesses in the normal and transverse directions; vn, vt are the velocities in the directions n and 

t; ωn, ωt are the angular velocities around the corresponding axes n and t. 

The bonds are linear in the simplest formulation of the problem, the bonds break when 

the yield stresses are exceeded (for example, this is how the model of bonded particles is 

implemented in EDEM). YAade uses a more complex bond model, developed to simulate 

fracture mechanics in concrete. The model accumulates damage depending on the strain 

magnitude during loading. The amount of damage to the material is characterized by the 

variable D  equal to 0 for undamaged material and 1 for completely destroyed material. This 

technique allows to simulate different types of complex fracture under compressive and tensile 

stresses. 

 

  
(a) (b) 

Fig. 2. Beam bond of particles: scheme of two bonded elements (a), damage function of 

bonded beams (b)  

 

The ratio of normal stress σn
 and strain 

n  taking into account damage is written as: 

( )σ 1 (ε ) εn n n nD H k= −    ,               (6) 

where nk is the normal elastic modulus of the bond,  0, 1D is the damage variable of the 

material, (ε )nH is the Heaviside function excluding the effect of damage during compression 

(upon crack closure). 

The damage variable of the material is determined in terms of the evolutionary function 

(Fig. 2(b)): 

0
ε ε

( ) 1 exp
ε

f

f

D g





 −
= = − −  

 

,              (7) 
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where maxε = , ( )
2 22

1ε ε ξ εn t= +   is the equivalent stress accounting for damage, 1ξ  is the 

weight coefficient of the contribution from shear stresses ε t , 0ε  is the ultimate elastic strain, 

ε f
is a parameter defined as the intersection of the strain axis and the tangent to the softening 

curve (characterizes the slope of the softening curve).  

Shear stresses are determined by the formula: 

τ εt t tk=  ,                  (8) 

where tk is the shear elastic modulus of the bond (calculated with respect to nk  in terms of 

Poisson's ratio of the bond), ε t  is the shear strain. 

After virtual bonds are broken, discrete elements interact as independent solids. A full 

description of the model is given in [20]. Yade constructs the model in a limited volume for 

commercial reasons, without taking into account the strain rates and ductility; however, it is 

sufficient for the purposes of our study. 

 

Determining the parameters of the mathematical model of the material 

The strain and compressive fracture of the specimen are calculated by determining the 

mathematical model parameters of the material (including the functions of bond damage).  

The applied model is determined by the following characteristics: the density of discrete 

elements ρ , the elastic modulus of element bonds nk , Poisson 's ratio of element bonds μ , the 

cohesion 0c , the angle of internal friction  , the ultimate elastic strain 0ε , the relative ductility 

0ε ε f
. 

Let us find these parameters.The density of the elements is selected depending on the 

packing porosity. The density of ice is 900 kg/m3, the density of the elements varies depending 

on their size to ensure the required mass of the specimen. The dependence of the required 

particle density on the element size for the given model can be represented as a linear function: 

ρ( )   r a r b=  + ,                 (9) 

where the coefficients of the equation have the values: a = 276 742 kg/m2, b = 1733.6 kg/m3.  

The element size affects the overall dimension of the problem: a small size significantly 

increases the number of elements and the computational time. 

The macroscopic modulus E of the specimen material is related to bond stiffness nk , the 

overall slope of the stress-strain curve depends on many factors: the distribution of bonds, their 

orientation, the magnitude of damage accumulated in them. Therefore, the modulus was 

ultimately adjusted based on comparing the resulting stress-strain curve with the experimental 

one. The elastic modulus of the bonds for elements with a radius of 1.5 mm was 1.8 GPa. 

The cohesion value 0c corresponds to critical shear stresses in the absence of normal 

stresses in the bonds. It was calculated by the formula depending on the angle of internal friction 

φ and the maximum normal strain [22]: 

0 0ε φnc k tg=  .               (10) 

Macroscopic Poisson's ratio for ice amounts to μ0ice = 0.344 [23–24]. Poisson's ratio for 

bonds was   tailored from a series of computations and is equal to 0.65. 

The angle of internal friction for ice is about 6  according to [24–28], which is 

consistent with our own shearing tests. The ultimate elastic strain was estimated based on the 

bending failure tests in the tensile region of the specimen [29]. It was found that the mean value 

is about ε0 = 0.001 m/m. 
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The relative ductility 
0ε ε f

 cannot be less than 1 in the model; a slightly higher value 

(1.1) was taken to ensure brittle fracture during the tensile tests of ice. An increase in this 

characteristic leads to a more viscous fracture, especially during the tensile tests.  

 

Test computations of hyperboloid fracture under uniaxial loading  

Before computations of a specific experiment for compressive fracture of an ice specimen, we 

conduct test computations allowing to assess a certain model of the material. 

The nature of fracture in the model was assessed under uniaxial loading of the 

hyperboloidal specimen, with stress concentration in its central zone. The problem statement 

was taken from [16], where it was used to calibrate a model of concrete.  

The thinned neck is the region where the body is weakened and the stresses are 

concentrated, allowing to localize the fracture site. The length of the specimen is taken equal to 

100 mm, its maximum diameter is half the length, and the radius of the central section of the 

hyperboloid is 4/5 of the radius of the extreme section.  

Computations for tension and compression of the specimen were performed separately. 

Table 1 presents the computational results for fracture of the hyperboloid: the upper row shows 

a stress-strain curve for both compression and tension (two independent computations).  

The bottom row shows visualization of the model at the time of fracture.  

Two-dimensional projections are given with the sizes, the coordinates are plotted in 

meters. The magnitude of accumulated damage is shown on a color scale going from dark to 

light colors: purple corresponds to undamaged material D = 0 (all bonds between elements are 

intact), yellow to fractured, D = 1 (all bonds between elements are destroyed), intermediate 

values are shown in green.  

The corresponding 3D visualizations of the models at the time of fracture are also given. 

The displacements of discrete elements in these visualizations are shown with an x100 

magnification for compression and with an x1000 magnification for tension. The magnitude of 

accumulated damage is shown in different colors: light green corresponds to undamaged 

material, D = 0, bright pink to fractured D = 1.  

Compressive strength is 3.26 times greater than tensile strength. Tensile fracture is brittle, 

localized in a small central region. Cracking occurs in the central region during compression, 

the stress-strain curve has a flat slope, with a gradual decrease in strength after passing the peak, 

corresponding to the fragmentation of the fractured material. The model illustrates the physical 

nature of fracture in ice (Table 1).  
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Table 1. Test computations of hyperboloid fracture 

Stress-strain curve 

 
Compression Tension 

 

Scale x100 

 

 

 

 

 

 

Scale x1000 

 
 

Results and discussion  

After the test computations were performed and the model parameters were calibrated, 

compressive fracture was simulated for the cylindrical specimen. Experimental data are given 

in detail in [1].  

Figure 3 shows the resulting stress-strain curves: typical experimental curve (1) and 

resulting computational curve (2). Local small peaks on the curve correspond to cracking of the 

material. 

The stress-strain curves show a similar behavior. The model physically describes the 

loading and fracture of the ice specimen. The level of load and strain is in agreement with the 

experimental results. The difference between the experimental and computational strain values 

for compression of the ice specimen was about 2%.  
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Fig. 3. Stress-strain curves: typical experimental curve (1) and computational curve (2) 

 

Table 2 contains photographs of a typical experiment and a visualization of the 

computations performed for the specimen. 

First, small local cracks appear, corresponding to jumps and fluctuations on the stress-

strain curve (Fig. 3 up to the strain of ~1.5%). Next, vertical cracks passing through the entire 

specimen form (Table 2, row 1), they grow and increase in number (Table 2, row 2). After that, 

some fragments start to break off and separate from each other (Table 2, row 3). The load 

received by the specimen decreases, and it fractures completely. 

Figure 4 shows a visualization of the specimen with a vertical crack. For clarity, the 

horizontal displacements of the elements are shown at ×100 magnificaction, allowing to 

visualize the cracking in the specimen. The crack is rotated by a small angle from the vertical. 

Spalling of smaller fragments starts in one region of the specimen.  
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Table 2. Comparison of experimental and computational results for compression of ice 

specimen 

# Experiment Simulation 

1 

 
 

2 

  

3 

  

4 

 
 

 

 



84   D.V. Grinevich, V.M. Buznik, G.A. Nyzhnyi 

 
Fig. 4. Visualization of crack in the specimen model at ×100 magnification  

 

Let us summarize the computed internal factors for various loading stages. The times 

corresponding to the strain equal to   = 0.52, 1.57 and 3.66 % were taken for assessment, 

which corresponds to the computational steps N = 2’000, 6’000 and 14’000. The first value 

corresponds to the initial loading stage, with virtually no damage in the specimen, the second 

value was taken after the peak of maximum strength was passed, with the main longitudinal 

cracks formed in the specimen, and the third value lies in the region of residual strength 

approximately at the level of the first stress value. The scales in the figures are exponential with 

the same magnification for all loading stages of the corresponding parameter. 

Figure 5 shows the displacement vectors of the elements during loading of the specimen. 

The displacements are insignificant at first, the movement of the elements in one direction 

corresponds to elastic deformation of the specimen, but with small local effects. At the 

following stages, the material is squeezed out in different directions, with separation cracks 

forming. 

 

   
a) b) c) 

 

Fig. 5. Displacements of elements in the model (m):  
 =0.52 % (a),  =1.57 % (b),  = 3.66 % (c) 

 

Figure 6 shows the lines of normal stresses in the element bonds (measured in N). Bonds 

with low values are shown as semi-transparent for clarity, depending on the level of stress. 

Because the specimen is randomly and unevenly filled with elements, stress concentration 

regions are observed, which are distributed in the specimen in a sequence similar to grains in a 

real material. The specimen in Fig. 6(a) is a unified system with separate concentrators at the 

boundaries due to the edge effect. As the load increases, the stresses in all bonds increase as 

well, distributing to the peripheral sections of the grid (Fig. 6(b)). The regions separated by 

cracks are not visible in the case of normal stresses. Evidently, stress relaxation occurs in the 

region of residual strength (Fig. 6(c)). The light intermediate regions between the dark ones 

correspond to the boundaries of the open cracks dividing the specimen.  
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                 (a) (b) (c) 

Fig. 6. Normal forces in the bonds between the elements (N):  
 = 0.52 % (a),  = 1.57 % (b),  = 3.66 % (c) 

 

 

  

a) b) c) 

Fig. 7. Tangential forces in the bonds between the elements (N):  = 0.52 % (a),  

 = 1.57 % (b),  = 3.66 % (c)  

 

Figure 7 shows the tangential forces in the bonds between the elements. They are much 

smaller than normal forces.  

The zero and near-zero values of tangential forces are colored in red. Regions with broken 

bonds between elements can be traced from these values, while contact forces are transmitted 

between elements that are already independent. The fractured specimen breaks into separate 

fragments representing groups of connected elements.  

 

Conclusion 

We carried out an experimental study of compression in ice specimens, obtaining the stress-

strain and strength characteristics of the specimens necessary for comparative analysis of the 

simulation.  

We performed numerical simulation for compressive fracture of ice using the discrete 

element method. Yade software was used, implementing a model of bonded particles taking 

into account damage. Using a complex fracture model allows to achieve repetitive brittle 

fracture as in the experiment with fracture of the specimens.  

The simulation carried out for fracture of a hyperboloid-shaped specimen under uniaxial 

loading allowed to estimate the parameters of the material model. Different behaviors were 

observed depending on the load: a smooth drop in the load during compression and cracking of 

the material and abrupt fracture during tension. The tensile and compressive strengths obtained 
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differed by 3.26 times. Calibration of the model was carried out. The parameters of the element 

bonds were determined based on experimental data. 

We can conclude from the experimental data that the model provides a correct physical 

description for loading and fracture of the ice specimen. The stress-strain curves show a similar 

behavior. The level of load and strain is in agreement with the experimental results. The 

difference between the experimental and computational strains for compression of the ice 

specimen was about 2 %. The model can be used to predict the behavior of ice under 

compressive loading.  

The model can be further extended to accounting for temperature factors and loading 

rates. Analysis of behavior of reinforced ice is also a crucial issue. Various types of 

reinforcement allow to increase the strength and modify the fracture behavior of ice (making it 

more ductile). However, this problem is far more complicated than simulation of pure ice; 

solving it could provide further insights into the applications of composite ice materials for 

infrastructure development in regions with a cold climate. 
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