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Abstract. The article considers the process of deformation of thin-walled pipes using complex-

shaped tooling. The article solves the actual problem of elastic and plastic deformation of pipe 

blanks in the stamping process, taking into account physical nonlinearity since the power law 

of hardening is taken into account, as well as the compressibility of the material at the stage of 

elasticity. When determining the stress and strain state during the deformation of thin-walled 

pipe blanks using axisymmetric tooling, the method of variable elasticity parameters was used, 

which allows taking into account not only the change in thickness during deformation but also 

the compressibility and nonlinearity of the hardening of the material. Integral equations are 

obtained for various processes: crimping and drawing, distribution, and broaching of a pipe 

billet. The described processes differ in the way the external load is applied. For all processes, 

two sections with different directions of curvature in the meridional section can be 

distinguished. The solution for determining the stress and strain state of the pipe, in accordance 

with the method of variable elasticity parameters, is proposed to be carried out by the method 

of successive approximations according to the constructed recurrent scheme. 
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Introduction 

One of the most important tasks in the development of technological processes of deformation 

of thin-walled pipes, such as distribution and broaching, crimping, and drawing, is to determine 

the stress-strain state taking into account the nonlinear plasticity of the material. In most known 

solutions of similar processes, ideally rigid plastic material or a material with linear hardening 

is considered [1-4], which leads to significant errors. 

In this article, when determining the stress-strain state during the deformation of thin-

walled pipes using axisymmetric tooling, we will use the method of variable elasticity 
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parameters [4,5], which allows us to take into account not only the change in thickness during 

the deformation but also the compressibility and nonlinearity of the hardening of the material. 

The most profound issues of deformation of shell elements of complex shapes in the 

processes of shaping were considered in [1-9]. New technological methods of metal processing 

by pressure using broaching, and issues of roughness during broaching and drawing are 

considered in the works [10,11]. The use of stretching models for shell-type elements is 

considered in [12]. The problems of distribution and crimping, and the peculiarities of stress 

distribution during rolling are investigated in the works [13,14]. The issues of stamping blanks 

of complex shapes are considered in [15]. Numerical methods for estimating the stress-strain 

state of shell elements are considered in articles [16-19]. 

 

Methods  

To implement the method of variable elasticity parameters, it is necessary to have an analytical 

expression defining the deformation diagram. Analysis of existing methods of approximation 

of deformation diagrams proposed by N.N. Malinin [4], M.I. Lysov [6], and other researchers 

[7,8] showed that usually, this curve is well approximated either by a power dependence 𝜎𝑖 =
𝐴𝑒𝑖

𝑛, or linear-power dependence 

𝜎𝑖 = {
3𝐺𝑒𝑖  при 𝑒𝑖 ≤ 𝑒𝑖𝑇
𝐴𝑒𝑖

𝑛 при 𝑒𝑖 > 𝑒𝑖𝑇
, 

where 𝐺 = 𝐸/2(1 + 𝜇)  – modulus of elasticity of the second kind, 𝑒𝑖 −  intensity of 

logarithmic strains,  𝑒𝑖т − intensity of logarithmic strains corresponding to the yield strength, 

𝐴, 𝑛 − approximating coefficients of the power function, 𝐸 − Young's module, 𝜇 − Poisson's 

ratio. 

Let us consider the process of deformation of thin-walled pipes using complex-shaped 

tooling. Depending on the loading scheme, when increasing the diameter of the pipe using a 

punch, these operations will be called distribution and broaching, when reducing the diameter 

using a matrix – crimping (compression) and drawing [4]. In Figure 1(a) and Figure 2 with the 

application of forces, the distribution, and crimping schemes are shown from above, 

respectively, with the application of forces from below – broaching and drawing. 

In the general case, the equilibrium equations of a thin-walled axisymmetric shell (the 

shell can be both concave and convex), taking into account the specific friction force acting 

from the side of the tooling and being under pressure (pressure can be directed both inward and 

outward) in relation to the tangent and normal to the surface of the element in question, can be 

represented in the following form [3,4,8]: 
𝑑

𝑑𝜌
(𝜎𝑚𝜌𝑆) − 𝜎𝜃𝑆 ±

𝑞𝑓𝑟𝜌

sin𝛼
= 0;

±
𝜎𝑚

𝑅𝑚
±
𝜎𝜃

𝑅𝜃
=

𝑞

𝑆
  ,

}                                         (1) 

where 𝜎𝑚 is the meridional main normal stress; 𝜎𝜃 is the circumferential main normal stress; 𝑞 

is the specific pressure acting from the side of the tooling along the normal to the shell element 

in question; 𝑅𝑚  is the meridional radius of curvature of the median surface of the shell (the sign 

(+) is set if the direction of the normal curve in the meridional section coincides with the 

direction of the specific pressure, otherwise we put the sign (–));𝑅𝜃  is the circumferential radius 

of curvature of the median surface of the shell (we put the sign (+) if the direction of the normal 

of the curve in the circumferential section coincides with the direction of the specific pressure, 

otherwise we put the sign (–));𝑞𝑓𝑟 = 𝑓𝑞 is the specific friction force acting on the part of the 

tooling on the element in question shells (we put the sign (+) if the given friction force is 

directed in the direction of increasing 𝜌, otherwise we put the sign (-));𝑓 is the coefficient of 

friction; S is the thickness of the shell; 𝛼 is the angle between the tangent to the shell element 

and its axis of symmetry; 𝜌 is the radius of the circle of the median surface of the shell in a 

section perpendicular to the axis of the shell. 
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The circumferential radius of curvature of the median surface of the shell is determined 

by the formula 

𝑅𝜃 = 𝜌 cos𝛼⁄  . 

To define 𝑅𝑚 , we express the curvature of the shell in the meridional direction by 𝛼 and 

𝜌 [9]: 

𝜅𝑚 =
1

𝑅𝑚
= |
𝑑𝛼

𝑑𝑙
| = |

𝑑𝛼

𝑑𝜌
| sin 𝛼 . 

Having determined the value of the radii, we write down an equation that allows us to 

determine the specific pressure: 

𝑞 = (±𝜎𝜃
cos𝛼

𝜌
± 𝜎𝑚 |

𝑑𝛼

𝑑𝜌
| sin 𝛼) 𝑆 .                                                                                          (2) 

Let us consider the processes of distribution and broaching of a pipe billet (Fig. 1(a)). 

 

 
                  (a)                                                      (b)                                   (c) 

Fig. 1. The general case of distribution and broaching of a pipe billet 

 

In general, it is possible to distinguish two sections with different directions of curvature 

in the meridional section (Fig. 1(b,c)). 

For the first section (Fig. 1b), the system of equations (1) can be represented as: 
𝑑

𝑑𝜌
(𝜎𝑚𝜌𝑆) − 𝜎𝜃𝑆 −

𝑞𝑓𝑟𝜌

sin𝛼
= 0;

𝑞 = (𝜎𝜃
cos𝛼

𝜌
− 𝜎𝑚 |

𝑑𝛼

𝑑𝜌
| sin 𝛼) 𝑆 .

}                                                                                        (3) 

Substituting the second equation of the system (3) into the first, and performing simple 

transformations, it is possible to obtain an equilibrium equation for the first part in the process 

of distribution and broaching: 

𝑑(𝜎𝑚𝑆)

𝑑𝜌
=

𝜎𝜃(1+𝑓𝑐𝑡𝑔 𝛼)−𝜎𝑚(1+𝑓𝜌|
𝑑𝛼

𝑑𝜌
|)

𝜌
𝑆 .                                                                                         (4) 
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For the second section (Fig. 1(c)), the system of equations (3) will have the form: 
𝑑

𝑑𝜌
(𝜎𝑚𝜌𝑆) − 𝜎𝜃𝑆 −

𝑞𝑓𝑟𝜌

sin𝛼
= 0;

𝑞 = (𝜎𝜃
cos𝛼

𝜌
+ 𝜎𝑚 |

𝑑𝛼

𝑑𝜌
| sin 𝛼) 𝑆 ,

}                                                                                               (5) 

and the equation of equilibrium, respectively 

𝑑(𝜎𝑚𝑆)

𝑑𝜌
=

𝜎𝜃(1+𝑓𝑐𝑡𝑔 𝛼)−𝜎𝑚(1−𝑓𝜌|
𝑑𝛼

𝑑𝜌
|)

𝜌
𝑆 .                                                                                         (6) 

Let us consider the process of crimping and drawing a pipe billet (Fig. 2(a)). When 

applying forces to the billet from above, we have a crimping scheme, and when applied from 

below, drawing. 

As in the case of distribution and broaching, when crimping and drawing, two sections 

with different directions of curvature in the meridional section can be distinguished 

(Fig. 2(b,c)). 

 

 
                                     a)                                                          b)                          c) 

Fig. 2. The general case of crimping and drawing of a pipe billet 

 

For the first section (Fig. 2(b)), the system of equations (1) can be represented as: 
𝑑

𝑑𝜌
(𝜎𝑚𝜌𝑆) − 𝜎𝜃𝑆 +

𝑞𝑓𝑟𝜌

sin𝛼′
= 0;

𝑞 = (−𝜎𝜃
cos𝛼′

𝜌
− 𝜎𝑚 |

𝑑𝛼′

𝑑𝜌
| sin 𝛼′)𝑆 .

}                                                                                         (7) 

Substituting the second equation of the system (7) into the first, and performing simple 

transformations, it is possible to obtain the equilibrium equation for the first section in the 

process of crimping and drawing: 

𝑑(𝜎𝑚𝑆)

𝑑𝜌
=

𝜎𝜃(1+𝑓𝑐𝑡𝑔 𝛼
′)−𝜎𝑚(1−𝑓𝜌|

𝑑𝛼′

𝑑𝜌
|)

𝜌
𝑆 .                                                                              (8) 

For the second section (Fig. 2(c)), the system of equations (7) will have the form (9): 
𝑑

𝑑𝜌
(𝜎𝑚𝜌𝑆) − 𝜎𝜃𝑆 +

𝑞𝑓𝑟𝜌

sin𝛼′
= 0;

𝑞 = (−𝜎𝜃
cos𝛼′

𝜌
+ 𝜎𝑚 |

𝑑𝛼′

𝑑𝜌
| sin 𝛼′)𝑆 ,

}                                    (9) 

and the equation of equilibrium, respectively 

𝑑(𝜎𝑚𝑆)

𝑑𝜌
=

𝜎𝜃(1+𝑓𝑐𝑡𝑔 𝛼
′)−𝜎𝑚(1+𝑓𝜌|

𝑑𝛼′

𝑑𝜌
|)

𝜌
𝑆 .                                                                                     (10) 
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Analysis of equations (4), (6), (8), and (10) shows that for all cases of distribution and 

broaching, crimping, and drawing, one equilibrium equation can be written as 

𝑑(𝜎𝑚𝑆)

𝑑𝜌
=

𝜎𝜃(1+𝑓𝑐𝑡𝑔 𝛼)−𝜎𝑚(1±𝑓𝜌|
𝑑𝛼

𝑑𝜌
|)

𝜌
𝑆 ,                   (11) 

where 𝛼 is the angle between the tangent to the shell element and its axis of symmetry (for 

distribution and broaching, the angle is counted from the axis of symmetry counterclockwise, 

for crimping and drawing – clockwise); a sign (–) is placed in the bracket of the second layer if 

the shell is convex in the meridional section and a sign (+) if concave (Figs. 1, 2). 

Considering that for a convex hull always
𝑑𝛼

𝑑𝜌
< 0, and for the concave – 

𝑑𝛼

𝑑𝜌
> 0, the 

equilibrium equation for all cases of deformation of thin-walled pipes using axisymmetric 

tooling can be written as follows: 

𝑑(𝜎𝑚𝑆)

𝑑𝜌
=
𝜎𝜃(1 + 𝑓𝑐𝑡𝑔 𝛼) − 𝜎𝑚(1 + 𝑓𝜌

𝑑𝛼
𝑑𝜌
)

𝜌
𝑆 .                            

To solve this equation by the method of variable elasticity parameters, it is advisable to 

switch to integral equations [5]. 

Let us write equation (11) in the form: 

𝑑(𝜎𝑚𝑆)

𝑑𝜌
+
(1 + 𝑓𝜌

𝑑𝛼
𝑑𝜌
)

𝜌
(𝜎𝑚𝑆) =

𝜎𝜃𝑆(1 + 𝑓𝑐𝑡𝑔 𝛼)

𝜌
 . 

This equation can be considered a linear inhomogeneous equation of the first degree 

𝑌′ + 𝐴(𝜌)𝑌 = 𝐵(𝜌),                                                         (12) 

where 𝑌 = 𝜎𝑚𝑆, 𝐴(𝜌) =
(1+𝑓𝜌

𝑑𝛼

𝑑𝜌
)

𝜌
, 𝐵(𝜌) =

𝜎𝜃𝑆(1+𝑓𝑐𝑡𝑔 𝛼)

𝜌
. 

Such an equation can be solved by the Bernoulli method 

𝑌 = 𝑈(𝜌)𝑉(𝜌), 

where 𝑈(𝜌) = exp[∫−𝐴(𝜌)𝑑𝜌 ] , 𝑉(𝜌) = ∫
𝐵(𝜌)

𝑈(𝜌)
𝑑𝜌 + 𝐶. 

Thus, the general solution of equation (12) can be written as: 

𝑌 = 𝑈(𝜌) [∫
𝐵(𝜌)

𝑈(𝜌)
𝑑𝜌 + 𝐶] , 

or 

𝜎𝑚𝑆 = 𝑈(𝜌) [∫
𝜎𝜃𝑆(1+𝑓𝑐𝑡𝑔 𝛼)

𝜌∙𝑈(𝜌)

𝜌

𝜌0
𝑑𝜌 + 𝐶].                                                                        (13) 

Using equation (13) and the stress-strain coupling equations, in the form: 

𝜎𝑚 =
𝐸∗

(1 − 𝜇∗2)
(𝑒𝑚 + 𝜇

∗𝑒𝜃);

𝜎𝜃 =
𝐸∗

(1 − 𝜇∗2)
(𝑒𝜃 + 𝜇

∗𝑒𝑚),}
 

 

 

where 𝐸∗ and 𝜇∗ – variable elasticity parameters.  

In this case, taking into account the boundary conditions, it is possible to write the integral 

equation of equilibrium in deformations: 

𝑒𝑚 = −𝜇∗𝑒𝜃 +                                                                                                                 

+
(1−𝜇∗2)𝑈(𝜌)

𝐸∗𝑆
 [∫

𝐸∗𝑆(1+𝑓𝑐𝑡𝑔 𝛼)

(1−𝜇∗2)𝜌𝑈(𝜌)
(𝑒𝜃 + 𝜇

∗𝑒𝑚)
𝜌

𝜌0
𝑑𝜌 + 𝜎𝑚𝜌0𝑆𝜌0]   (14) 

where 𝜎𝑚𝜌0  and 𝑆𝜌0  – the meridional stress and thickness of the deformable pipe at one of the 

boundaries, and the function 𝑈(𝜌) defined by the equation: 
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𝑈(𝜌) = 𝑒𝑥𝑝 [−∫
(1 + 𝑓𝜌

𝑑𝛼
𝑑𝜌
)

𝜌
𝑑𝜌] =

1

𝜌
𝑒𝑥𝑝 (−𝑓𝛼).                           

Substituting the obtained expression into equation (14), we write down the integral 

equation of equilibrium in deformations for all cases of deformation of cylindrical pipes in 

axisymmetric matrices of complex shape: 

𝑒𝑚 = −𝜇∗𝑒𝜃 +
(1 − 𝜇∗2)

𝐸∗𝑆 𝜌 exp(𝑓𝛼)
∗                                                              

∗ [∫
𝐸∗𝑆(1+𝑓𝑐𝑡𝑔 𝛼)exp(𝑓𝛼)

(1−𝜇∗2)
(𝑒𝜃 + 𝜇

∗𝑒𝑚)
𝜌

𝜌0
𝑑𝜌 + 𝜎𝑚𝜌0𝑆𝜌0 ]                                (15) 

Let us consider the order of solving the problem of determining the stress-strain state 

during the deformation of cylindrical pipes in matrices of complex shape. To solve the integral 

equation (15), it is necessary to know the function of the angle change α depending on 𝜌: 𝛼 =
𝛼(𝜌). 

In the case of the deformation of cylindrical pipes using axisymmetric tooling, 

circumferential deformations can be considered known and depend only on the coordinate of 

the point in question: 

𝑒𝜃 = ln (
𝜌

𝑅0
),                                                               (16) 

where 𝑅0 – is the initial radius of the median surface of the pipe. 

The boundary conditions are determined at the pipe edge opposite to the force application. 

The solution for determining the stress-strain state of the pipe, in accordance with the 

method of variable elasticity parameters, is carried out by the method of successive 

approximations according to the recurrent scheme using equation (14) for the given boundary 

conditions: 

𝑒𝑚
(𝑘+1)

= −𝜇∗(𝑘) ln (
𝜌

𝑅0
) +

(1 − 𝜇∗(𝑘)2)

𝐸∗(𝑘)𝑆(𝑘) 𝜌
∗ 

∗ [∫
𝐸∗(𝑘)𝑆(𝑘)(1 + 𝑓𝑐𝑡𝑔 𝛼(𝜌))exp(𝑓𝛼(𝜌))

(1 − 𝜇∗(𝑘)2)
(ln (

𝜌

𝑅0
) + 𝜇∗(𝑘)𝑒𝑚

(𝑘)
)

𝜌

𝜌0

𝑑𝜌 + 𝜎𝑚𝜌0𝑆𝜌0], 

where the values with index (k) and (k+1) denote, respectively, their values in the k-th and 

(k+1)-th approximations. 

Numerical integration during crimping and distribution is carried out from R to 𝑅0, and 

during drawing and broaching from 𝑅0 to R. If the matrix or punch is of variable curvature, 

integration is carried out in two sections. 

As the calculations have shown, the results of the calculations do not depend on the choice 

of the values of the initial approximation, therefore, in the initial approximation we take: 

𝑒𝑚
(0)
= 0;  𝑆(0) = 𝑆0;  𝐸

∗(0) = 3𝐺;  𝜇∗(0) = 𝜇, 
where 𝑆0 – initial pipe thickness. 

Then the deformations are calculated by the thickness of the pipe: 

𝑒𝑧
(𝑘+1)

=
𝜇∗(𝑘)

(𝜇∗(𝑘) − 1)
(ln (

𝜌

𝑅0
) + 𝑒𝑚

(𝑘+1)
). 

This strain is necessary to determine the intensity of strains 

After determining the strain state, the stress state of the pipe is determined using the 

equations of the relationship between stresses and deformations: 
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𝜎𝑚
(𝑘+1) =

𝐸∗(𝑘)

(1 − 𝜇∗(𝑘)2)
(𝑒𝑚

(𝑘+1) + 𝜇∗(𝑘)𝑒𝜃
(𝑘+1));

𝜎𝜃
(𝑘+1) =

𝐸∗(𝑘)

(1 − 𝜇∗(𝑘)2)
(𝑒𝜃

(𝑘+1) + 𝜇∗(𝑘)𝑒𝑚
(𝑘+1)).

}
 
 

 
 

 

Next, the intensity of stresses and the intensity of deformations are determined and the 

value is specified 𝐸seс, using the equation of approximation of the deformation diagram by a 

power function: 

𝐸seс
(𝑘+1) =

𝐴 (𝑒𝑖
(𝑘+1))

𝑛

𝑒𝑖
(𝑘+1)

. 

Then the value of the variable elasticity parameters is specified [4]: 

𝐸∗(𝑘+1) =
𝐸seс

(𝑘+1)

1 +
1 − 2𝜇
3𝐸

𝐸seс
(𝑘+1)

; 

𝜇∗(𝑘+1) =

1
2
−
1 − 2𝜇
3𝐸

𝐸seс
(𝑘+1)

1 +
1 − 2𝜇
3𝐸

𝐸seс
(𝑘+1)

. 

To control the convergence of the process, the values of stress intensities are compared: 

|𝜎𝑖
(𝑘+1) − 𝜎𝑖

(𝑘)| ≤ ∆𝜎𝑖 . 
The calculation is continued until the specified accuracy is reached. 

 

Research results 

To verify the reliability of the obtained integral equations, a calculation and comparison were 

carried out with the well-known analytical solution for crimping a pipe billet in a curved matrix 

with a constant radius in the meridional direction (Fig. 3), described in [3, p. 387]. 

 

 
Fig. 3. Scheme of crimping a pipe billet in a curved matrix with a constant radius in the 

meridional direction 

 

The analytical calculation was carried out for absolutely plastic material and the Tresca-

Saint-Venant plasticity condition was used. 

Using the designations we have adopted and the deformation scheme (Fig. 2), we obtain 

the following relations: 

𝑎 = 𝑅0 − 𝑅𝑚 ;  𝜌 = 𝑅𝑚 cos 𝛼 + 𝑎 ; 𝑑𝜌 = −𝑅𝑚 sin 𝛼 𝑑𝛼.                         (17) 
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Taking into account the accepted ratios, the analytical solution determining the 

dependence of stresses on the angle α can be represented as: 

𝜎𝑚 = −𝜎T𝛽((1 + 𝑓𝛼) cos 𝛼 − (1 + 𝑓𝛼0) cos𝛼0 + 2𝑓(sin 𝛼0 − sin 𝛼)) ∗
𝑅𝑚 𝑒𝑥𝑝 (−𝑓𝛼)

(𝑅𝑚 cos 𝛼 + 𝑎)
 ; 

𝜎𝜃 = −𝜎T𝛽, 
where 𝜎𝑚  – meridional stresses, 𝜎𝜃  – circumferential stresses, 𝛽  – coefficient taking into 

account the influence of the average main stress (1 ≤ 𝛽 ≤ 2 √3⁄ ). 
In order to obtain by the method of variable elasticity parameters of the solution 

depending on the angle α, it is necessary for equations (15), (16) to replace the current radius 𝜌 

with the current angle α, using the given relations (16) and to integrate along the angle α:  

𝑒𝑚 = −𝜇∗𝑒𝜃 +
(1−𝜇∗2) 𝑒𝑥𝑝(−𝑓𝛼)

𝐸∗𝑆 (𝑅𝑚 cos𝛼+𝑎)
∗ [∫ −

𝐸∗𝑆𝑅𝑚(sin𝛼+𝑓cos𝛼)exp(𝑓𝛼)

(1−𝜇∗2)
(𝑒𝜃 + 𝜇

∗𝑒𝑚)
𝛼

𝛼0
𝑑𝛼] ;         (18) 

𝑒𝜃 = ln (
𝑅𝑚 𝑐𝑜𝑠 𝛼+𝑎

𝑅0
) .                                                              (19) 

Further determination of the stress-strain state is carried out according to the algorithm 

described above. 

 

 
Fig. 4. Comparison of the results of calculations obtained by the method of variable elasticity 

parameters without taking into account changes in thickness with an analytical solution 

without taking into account changes in thickness: 

1 – analytical solution for 𝛽 = 1 for 𝜎𝑚 𝜎𝑇⁄ ; 2 – analytical solution for 𝛽 = 2 √3⁄  for 𝜎𝑚 𝜎𝑇⁄ ; 
3 – solution by the method of variable elasticity parameters for 𝜎𝑚 𝜎𝑇⁄ ; 4 – analytical solution 

for 𝛽 = 1 for 𝜎𝜃 𝜎𝑇⁄ ; 5 – analytical solution for 𝛽 = 2 √3⁄  for 𝜎𝜃 𝜎𝑇⁄ ; 6 – analytical solution 

for 𝜎𝜃 𝜎𝑇⁄  

 

Figure 4 shows the results of calculations for an absolutely plastic material obtained 

analytically at two extreme values of β and by the method of variable elasticity parameters 

without taking into account thickness changes. 

As expected, the results obtained by the method of variable elasticity parameters using 

equations (18 and 19) lie between the results obtained for the extreme values of β. Moreover, 

the smallest difference between the two solutions is observed when 𝛽 = 2 √3⁄ . 
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Figure 5 shows the results of calculations for an absolutely plastic material obtained 

analytically without taking into account changes in thickness and by the method of variable 

elasticity parameters taking into account changes in thickness. 

As can be seen from the comparison of Figs. 4 and 5, calculations without taking into 

account the thickness change give an underestimated value of the required deformation force 

by more than 20 %. 

 

 
 

Fig. 5. Comparison of the results of calculations obtained by the method of variable elasticity 

parameters, taking into account the change in thickness, with an analytical solution without 

taking into account the change in thickness: 

1 – analytical solution without taking into account the change in thickness at 𝛽 = 2 √3⁄  for 

𝜎𝑚 𝜎𝑇⁄ ; 2 – solution by the method of variable elasticity parameters taking into account the 

change in thickness for 𝜎𝑚 𝜎𝑇⁄ ; 3 – analytical solution without taking into account the change 

in thickness at 𝛽 = 2 √3⁄  for 𝜎𝜃 𝜎𝑇⁄ ; 4 – solution by the method of variable elasticity 

parameters taking into account the change in thickness for 𝜎𝜃 𝜎𝑇⁄  

 

Conclusion 

A comparison of the results of calculations obtained by the method of variable elasticity 

parameters with the known analytical solution showed the reliability of the obtained integral 

equations. With the well-known equation of a curve forming the shape of a curved matrix or a 

curved punch, as well as with a well-known material deformation diagram, the obtained integral 

equations allow solving the problems of deformation of pipe blanks by the method of variable 

elasticity parameters, taking into account changes in thickness and nonlinear plasticity.  
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