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Abstract. The aim of the study was to evaluate the mechanical characteristics of 

polycarbonate on the example of polycarbonate samples for 3D printing, to obtain the 

dependence of stress intensity on strain intensity taking into account compressibility. An 

experimental study of the mechanical properties of polycarbonate used in 3D printing has 

been carried out. Polycarbonate samples were made to perform tensile tests on a 3D printer. A 

series of stretching experiments were carried out in the elastic stage of samples to determine 

the Poisson's ratio of polycarbonate. To calculate the tensile strength, the conditional yield 

strength, polycarbonate samples were tested for rupture. Diagrams of conditional stresses 

from relative deformations are constructed. Since polycarbonate for 3D printing mainly works 

in the elasticity stage, the study constructed diagrams of polycarbonate deformation taking 

into account the compressibility of the material. According to the results of the study, the 

average values of the tensile elastic limit, the conditional yield strength, the tensile strength 

and the relative deformation at rupture of samples made by the 3d- printing method of 

polycarbonate were obtained. Deformations curves will allow us to estimate the stress-strain 

state of loaded polycarbonate elements not only under simple tension, but also under 

conditions of complex volumetric loading, since they relate the intensity of stresses and 

deformations. 
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Introduction 

The sustainable development of industry today involves the use of more economical and 

accurate methods of manufacturing products, one of such methods is the 3D prototyping 

method, which allows manufacturing parts for the aviation and automotive industries by 

printing on a 3D printer. The relevance of this direction lies in the possibility of switching 

from all-metal products to the manufacture of parts from polymers of optimized shape. 

However, it is important to assess the mechanical properties of polymers, in particular 

polycarbonate, which is actively used in 3D printing. Modern reference materials are mainly 

limited to the basic characteristics of the polymer, such as modulus of elasticity, yield 

strength, tensile strength. It is quite difficult to find stress dependence on polycarbonate 

deformations during loading, especially for samples obtained by 3D printing methods. Taking 

into account the compressibility of the material is important, since polycarbonate used for 3D 
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furnaces practically does not work in the field of plastic deformation, respectively, in the field 

of elasticity, it is necessary to determine experimentally the value of the Poisson's ratio and 

take into account when constructing the dependence of stress intensity on strain intensity. 

According to the literature review, the issues of sustainable development of domestic 

industry at the present stage require solving a large number of engineering problems, which is 

noted in [1]. Modern production automation systems and the design of complex structures are 

mainly associated with the use of metals [2-4]. At the same time, the transition to the use of 

polymers in the production of parts is one of the vectors of sustainable development. Issues 

related to the study of the mechanical and thermal properties of polycarbonate for 3D furnaces 

were investigated in [5-10]. Structural models and chemical features of the properties of 

substances used in industry are investigated in [11-13]. A feature of the use of polymers in 

industry is the possibility of reuse. The problems of recycling of secondary raw materials 

were investigated in the works [14, 15]. 

Since many products experience prolonged loads during operation, accompanied by the 

appearance of fatigue defects, it is important to assess cyclic loads, fatigue failure [16-18]. 

Experimental studies of the creep and dynamic properties of polycarbonate are presented in 

[19]. In addition, the peculiarity of polymers is that in the process of cyclic deformation, self-

heating phenomena may occur. The problems of temperature modeling, optimization of 

polymer structures in self-heating conditions are presented in [20-23]. The problems of finite 

element simulation related to the assessment of the stress-strain state are considered in studies 

[24-28]. The issues of studying the mechanics of plastics and composite materials are 

investigated in the works [29-31]. 

  

Methods  

The purpose of the study was to construct a diagram of polycarbonate deformation taking into 

account the compressibility of the material. The peculiarity of the deformation diagram is that 

it relates the intensity of stresses and the intensity of deformations, in contrast to the diagram 

for simple stretching. Therefore, the deformation diagram can be used in the study of the 

volumetric stress state of the elements. Taking into account the compressibility of 

polycarbonate will allow taking into account the influence of the elastic component of 

deformation when assessing the stress-strain state. 

To achieve this goal, it was necessary to consider a number of subtasks, namely: 

- conduct a full-scale experiment on simple stretching of samples made of polycarbonate by 

3D printing until destruction; 

- build a diagram of conditional stresses; 

- to conduct a full-scale experiment on simple stretching in order to calculate the Poisson's 

ratio when loaded to the yield point; 

- construct a deformation diagram for true stresses and logarithmic deformations with and 

without taking into account the compressibility of the material. 

When constructing the polycarbonate deformation diagram, it was necessary to switch 

to true stresses and logarithmic deformations. This step is due to the need to take into account 

the change in the cross-sectional area of the sample during deformation, since the conditional 

stress diagram is constructed under the assumption that the cross-sectional area remains 

unchanged, while in the process of simple stretching, the transverse dimensions of the sample 

decrease. Since samples made of polymers by 3D printing methods can be used under 

repeated loads, it is necessary to take into account the need for summation of deformations. 

Since relative deformations do not have the additivity property, we will construct the diagram 

using logarithmic deformations that have the summation property. 

To switch to true stresses, taking into account the reduction of the cross-sectional area, 

we use the condition: 
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𝜎𝑠𝐹 = 𝜎𝐹0,                                                                                                                                    (1) 

where 𝜎𝑠 − true stresses, 𝐹 − current cross−sectional area, 𝜎 − conditional stresses, 𝐹0 − 

initial cross-sectional area of the sample. 

Taking into account the incompressibility condition 𝐹0𝑙0 = 𝐹𝑙, the true stresses are 

determined through the relative longitudinal strain ε and conditional stresses according to (1): 

𝜎𝑠 = 𝜎(1 + 𝜀),                                                                      (2) 

To determine the true stresses, taking into account the compressibility of the material, 

consider the change in the geometric characteristics of the sample: thickness a, width b and 

length l. Let the dimensions of the body change after deformation according to the ratios: 

𝑎 = 𝑎0(1 + 𝜀⊥), 𝑏 = 𝑏0(1 + 𝜀⊥), 𝑙 = 𝑙0(1 + 𝜀),                                  (3) 

where 𝑎0 − the initial thickness, 𝑏0 − the initial width, 𝑙0 − the initial length, 𝜀⊥ − relative 

transverse strain. 

The initial cross-sectional area is determined by 𝐹0 = 𝑎0𝑏0. After deformation, the 

cross-sectional area will change according to (3): 

𝐹 = 𝑎𝑏 = 𝐹0(1 + 𝜀⊥)2.                                                                      (4) 

We express the cross-sectional area (4) in terms of the coefficient of transverse strain: 

𝜇′ = −
𝑒⊥

𝑒
,                                                                         (5) 

where 𝑒 = ln(1 + 𝜀) − logarithmic longitudinal deformation, 𝑒⊥ = ln(1 + 𝜀⊥) − logarithmic 

transverse strain. 

We express the transverse relative deformation in terms of the coefficient of transverse 

deformation according to (5): 

𝜀⊥ = 𝑒𝑥𝑝(−𝑒𝜇′) − 1.                                                           (6) 

Substituting (6) into (4), we obtain a change in the cross-sectional area taking into 

account the compressibility of the material: 

𝐹 = 𝐹0exp(−2𝜇′𝑒).                                                               (7) 

Then the true stresses according to (1), (7) are determined through the coefficient of 

transverse deformation: 

𝜎𝑠 = 𝜎exp(2𝜇′𝑒).                                                                  (8) 

The coefficient of transverse deformation is determined according to [29] 

𝜇′ =
1

2
−

(1−2𝜇)

2𝐸

𝜎𝑠

𝑒
.                                                          (9) 

Taking into account (9), the true stresses (8), taking into account the compressibility of 

the material, will be determined: 

𝜎𝑠 = 𝜎exp (𝑒 −
1−2𝜇

𝐸
𝜎𝑠).                                                       (10) 

Since the true stresses cannot be expressed explicitly in terms of logarithmic 

deformations and conditional stresses, we substitute in the right part (10) the value of the true 

stress obtained without taking into account compressibility: 

𝜎𝑠 ≈ 𝜎 ∙ exp(𝑒), 
then the true stress is determined by 

𝜎𝑠 = 𝜎exp (𝑒 −
1−2𝜇

𝐸
𝜎 ∙ exp(𝑒))                                           (11) 

To construct a deformation diagram, imagine the intensity of logarithmic deformations 

[32]: 

𝑒𝑖 =
√2

3
√(𝑒1 − 𝑒2)2 + (𝑒2 − 𝑒3)2 + (𝑒3 − 𝑒1)2                            (12) 

where 𝑒1, 𝑒2, 𝑒3 − main logarithmic strains: 

𝑒1 = 𝑒, 𝑒2 = 𝑒3 = −𝜇′𝑒.                                               (13) 

Substitute the relations (9), (13) in (12), then the intensity of deformations is expressed 

in terms of longitudinal deformation by the ratio: 
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𝑒𝑖 = 𝑒 −
(1 − 2𝜇)

3𝐸
𝜎𝑠 , 

because  𝜎𝑠 = 𝜎𝑖 − the intensity of the stresses, we get 

𝑒𝑖 = 𝑒 −
(1−2𝜇)

3𝐸
𝜎𝑖 .                                                      (14) 

In the elasticity stage , the dependence of the intensity of deformations on the intensity 

of stresses will take the form: 

𝑒𝑖 =
2(1+𝜇)

3𝐸
𝜎𝑖 , 𝑒𝑖 ≤ 𝑒𝑖𝑇           (15) 

In the case of an incompressible material (𝜇 = 0.5)  the deformation diagram and the 

true stress diagram according to (15) coincide. As a result, the deformation diagram 𝜎𝑖 − 𝑒𝑖 

can be presented in parametric form according to the diagram 𝜎𝑠 − 𝑒: 

{

𝜎𝑖 = 𝜎𝑠

𝑒𝑖 = 𝑒 −
(1 − 2𝜇)

3𝐸
𝜎𝑠

. 

Thus, according to the discrete data of the diagram of conditional stresses σ from 

relative deformations ε, the construction of the deformation diagram will be determined by the 

relations: 

𝜎𝑖 = 𝜎exp (ln(1 + 𝜀) −
1−2𝜇

𝐸
𝜎(1 + 𝜀)),                                      (16) 

𝑒𝑖 = ln(1 + 𝜀) −
(1−2𝜇)

3𝐸
𝜎exp (ln(1 + 𝜀) −

1−2𝜇

𝐸
𝜎(1 + 𝜀)).            (17) 

 

Results and Discussion 

To conduct a simple stretching experiment, samples made by 3D printing from polycarbonate 

on a Designer X printer of the Picaso3D brand were used (Figure 1). The tests were carried 

out according to the methodology described in [33]. When printing samples, the Fused 

Filament Fabrication technology was used. 

 

 
Fig. 1.  Simple stretching of a sample made of polycarbonate by 3D printing 
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To calculate the Poisson's ratio, the tensile force loading was carried out within elastic 

deformations. The stress from the external load was 25 MPa. The initial geometric 

characteristics of the cross-section of the sample are presented in Table 1. Measurements of 

the thickness and width of the cross-section were carried out twice at 5 points along the length 

of the sample. The results of thickness and width measurements before the start of the tests 

are presented in Table 1. The length of the sample before and after the test: 𝑙0 = 120 𝑚𝑚, 𝑙 =
121.425 𝑚𝑚.  
 

Table 1.  Geometric characteristics of the cross-section of the sample before deformation 

№ point 

Thickness, mm Width, mm 

First dimension Second dimension First dimension Second dimension 

1 4.258 4.258 10.429 10.422 

2 4.278 4.273 10.321 10.315 

3 4.321 4.315 10.227 10.227 

4 4.355 4.358 10.209 10.208 

5 4.403 4.401 10.22 10.215 

 

The arithmetic mean values of the thickness 𝑎̅ and width 𝑏̅ of the sample were 

determined by the formulas: 

𝑎̅ =
1

10
∑ 𝑎𝑖

10

𝑖=1

, 𝑏̅ =
1

10
∑ 𝑏𝑖

10

𝑖=1

.                                       

Accordingly, the average values of thickness and width before the sample test were 

obtained: 

𝑎̅ = 4,32 𝑚𝑚, 𝑏̅ = 10.28 𝑚𝑚 

The average quadratic error of measuring the average thickness and width of the sample 

was determined by the formulas: 

𝑆𝑎̅ = √∑
(𝑎𝑖 − 𝑎̅)2

90

10

𝑖=1

,   𝑆𝑏̅ = √∑
(𝑏𝑖 − 𝑏̅)

2

90

10

𝑖=1

                                    

𝑆𝑎̅ = 0.018 ,            𝑆𝑏̅ = 0.028    

For the confidence probability 𝛼 = 0,98, the Student's coefficient was assumed to be 

equal to 𝑡𝛼 = 3,7. As a result, the average values of the cross-section of the sample with a 

confidence interval were assumed to be equal: 𝑎 = 4,32 ± 0.065 𝑚𝑚, 𝑏 = 10,28 ±
0.102 𝑚𝑚. 

The relative measurement errors are equal to: 𝛿𝑎̅ = 1,5%, 𝛿𝑏̅ = 1%. 
The results of measurements of the thickness and width of the sample after stretching 

are presented in Table 2. 

 

Table 2.  Geometric characteristics of the cross-section of the sample after deformation 

№ point 
Thickness, mm Width, mm 

First dimension Second dimension First dimension Second dimension 

1 4.249 4.240 10.360 10.352 

2 4.251 4.259 10.264 10.239 

3 4.289 4.295 10.161 10.169 

4 4.329 4.330 10.171 10.165 

5 4.382 4.369 10.177 10.173 
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                               а)                                                                    b) 

 
                             c)                                                                      d) 

 
                                                                   e) 

Fig. 2.  Diagram of the dependence of the conditional stresses on the relative strains of 

polycarbonate: a) sample 1, b) sample 2, c) sample 3, d) sample 4, e) sample 5 

 

The average quadratic error of measuring the average thickness and width of the sample 

after deformation: 

𝑆𝑎̅ = 0.01 ,  𝑆𝑏̅ = 0.025 

The average values of the thickness and width of the sample after deformation with a 

given confidence interval: 

𝑎 = 4.30 ± 0.06 𝑚𝑚, 𝑏 = 10.22 ± 0.09 𝑚𝑚, 
The relative measurement errors are equal to: 
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𝛿𝑎̅ = 1.4%, 𝛿𝑏̅ = 0.8% 

Poisson's ratio according to (5) when changing the thickness and width of the sample in 

the experiment for simple stretching: 

𝜇𝑎 = 0.41, 𝜇𝑏 = 0.46                                                   (18) 

According to the calculated values (18), the average value of the Poisson's ratio of 

polycarbonate under simple tension is determined: 

𝜇 = 0.44                                                                     (19) 

Based on the results of the simple stretching experiment, a diagram of the dependence 

of conditional stresses on relative deformations was taken for 5 different samples (Figure 2). 

Table 3 shows the values of the mechanical characteristics of 5 samples: tensile 

modulus of elasticity, conditional yield strength, tensile strength, relative deformation at the 

moment of rupture. 

 

Table 3. Mechanical properties of polycarbonate based on the results of a simple stretching 

experiment. 
Modulus of elasticity, 

MPa 

Conditional yield strength, 

MPa 

Tensile strength, 

MPa 

Relative strain at the 

break, % 

2602 42.24 54.17 2.64 

2756 43.45 52.28 2.28 

2679 41.96 45.40 1.96 

2687 40.98 51.17 2.36 

2719 41.23 47.11 2.05 

 

The deformation diagram (Figure 3), taking into account and without taking into 

account the compressibility of the material, was constructed according to the ratios (20), (21), 

(25) according to the diagrams of conditional stresses (Figure 2). 

Thus, according to the results of the conducted experiments on rupture and stretching in 

the field of elasticity, the average values of the main mechanical characteristics of 

polycarbonate used for 3D printing were determined: the elastic modulus at tension, the 

conditional yield strength, the tensile strength, the relative deformation at the moment of 

rupture, the Poisson's ratio (table 4). 

 

Table 4. Mechanical properties of polycarbonate based on the results of a simple stretching 

experiment. 
Mechanical characteristics of polycarbonate for 3D 

printing 
Average values 

Tensile modulus of elasticity 2689 MPa 

Conditional yield strength 41.97 MPa 

Tensile strength 50.03 MPa 

Relative strain at break 2.26 % 

Poisson's Ratio 0.44 

 

Deformation diagrams were obtained for 5 samples made by 3D printing from 

polycarbonate with and without compressibility. Comparing the results in Figures 1 and 2, it 

should be noted that the maximum error when using a conditional stress diagram instead of a 

deformation diagram is 5 %; failure to take into account the compressibility of the material 

during deformation leads to an error of 2 %. 
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                             а)                                                                   b) 

 
                             c)                                                                      d) 

 
                                                                e) 

1 – taking into account the compressibility of the material, 2 – without taking into 

account the compressibility of the material 

 

Fig 3. Polycarbonate deformation diagram: a) sample 1, b) sample 2, c) sample 3, d) 

sample 4, e) sample 5 
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Conclusion 

The results of the study make it possible to increase the efficiency of industrial production, 

since the obtained deformation diagrams can be used to assess the stress-strain state of 

manufactured parts for aviation and automotive purposes by 3D prototyping methods made of 

polycarbonate. This approach creates the necessary prerequisites for the sustainable 

development of industry, since the use of polymers instead of metals in the manufacture of 

parts will allow for more accurate production except for the costs of finishing work. 
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