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Abstract. The technological modes of annealing of the layered glass-metal composite material 

– glass-metal composite – which include heating-up to the glass softening point and 

aftercooling with annealing are investigated. The mathematical model of stress evolution is 

considered. The complexity in modeling is caused by the combined deformation of the glassy 

layer and the elastic-plastic layer with non-uniform temperature changes.  Structural and 

mechanical relaxation processes in the glass transition interval are described within the 

framework of the relaxation kinetic theory of glass transition. The algorithm for calculations of 

technological and residual stresses in glass-metal composite, at different modes, is proposed. A 

comparison of the numerical method with the analytical solution obtained for constant 

thermomechanical parameters of materials is presented. The practical implications are in the 

possibility of modeling technological and residual stresses in laminated structural cylindrical 

systems functioning during cyclic heating-cooling to high temperatures, including glass 

transition and plastic deformation of the layers. 
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Introduction 

Advanced approaches to the simulation of new materials stand out the tendency of producing 

materials that combine the properties of glass and metal, which are called glass-metal 

composites: bioactive glass coatings in biomedicine [1], glass microspheres reinforced metal 

matrix [2–3], glass-metal nanocomposites, layered structural materials based on metal and glass 

fabric [4–6] or glass monolayers [7–8]. Manufacturing of glass-metal composites based on glass 

and metal monolayers is associated with heat treatment, during which glass layers are brought 

to a viscous liquid state, and then during cooling due to the difference in thermal coefficients 

of expansion, certain compressive stresses are formed in them, which are the reason for 

increasing the strength of glass layers.  

The formulation of the mathematical model forecasting the mechanical behavior of the 

material with due regard to the glass transition process and plastic yield in metal in the course 

of heat treatment is essential.  

The studies of the glass transition phenomenon have not yet allowed to develop a general 

theoretical understanding of the process, there are several basic theoretical approaches, among 

which the relaxation theory (transition theory within the two-state model) stands out as the most 
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experimentally tested one [10–12]. In the relaxation theory, glass transition is modeled as a 

transition of a medium from equilibrium (liquid) state to metastable (glassy) state through the 

change of a structural parameter characterizing the system state - "fictitious" temperature 

fT  [12–17]. The methods of calculating stresses in the course of heat treatment of, for example, 

flat leak-proof two-layered soldered joints of glass with metal, which are effectively used for 

calculations of stresses in amorphous coatings, are known [18–20]. Meantime, in the course of 

the glass-metal composite manufacture, the development of the elastoplastic strenuously-

deformed state (in metal) resulting sometimes in destruction of the metal layer in case of 

mismatched parameters of the technological process and dimensions of metal layer is possible.  

The attempts to describe a change in the geometry of soldered joints under consideration and 

elastoplastic deformation of the metal element of a soldered joint require complication of the 

problem and adjustment of calculation methods of stress relaxation when passing through the 

glass transition interval, which determines the objective of this paper.   

 

Statement of the Problem and mathematical model 

The thermal regime of manufacturing the glass-metal composite (Fig. 1(a)) includes intervals 

of heating-up aI , exposure bI , cooling cI  and annealing, which is carried out either immediately 

at the cooling stage and associated with control of the rate of temperature change and exposure 

at the glass transition temperature or on reheating 0

aI  and following stages of controlled cooling 

0

bI  and 0

cI . Simulation of controlled cooling is necessary for monitoring and regulating of 

technological and residual stresses. On cooling from a temperature which can coincide with the 

glass-melting temperature or be not so many as it, the structure and properties of the glass 

change continuously. Such process is termed as glass transition, and it proceeds in certain 

interval ( ),g gT T− +  (Fig. 1(b)). The average temperature of the glass transition interval is referred 

the glass transition temperature 
gT . The position of glass transition interval depends on the 

cooling rate and the prehistory of temperature treatment while the boundaries of glass transition 

interval 
gT −  and 

gT + are usually associated with those of hysteresis loop characterizing change 

of enthalpy under uniform cooling and heating-up from the equilibrium condition of the liquid 

melt to the frozen structure.  

 

 

 

   (a)                                                                               (b) 

Fig. 1. Photographs of the experimental samples (a); temperature 

conditions of annealing (b) 
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When passing through the glass transition interval, the specificity of structure change, 

and mechanical relaxation is described by changing the fictitious (structural) temperature and 

the rate of its change relative to temperature, an analytical expression in the form of the Tule-

Nayaranaswamy-Moynihan formula [13–15]: 

( )( )0

0

1 ,

t

f s

dT
T T M d

d
  


 = + − −

                                                         (1) 

here 0 maxT T= , the function of the structural relaxation of glass properties is well described by 

the function of Kohlrausch [18]: 

( ) ( ) ( )
,

b b
r r rK

sM e e
   


− −

= =                                                           (2) 

where b is a constant for the glasses having fixed compositions (0 1b  ),   is a "true" time, 

which being a temperature-invariant characteristic of viscoelastic properties, can be written as 

0

( )
( )

t

rt dt
t





=

 , where r  — shearing viscosity at arbitrarily chosen comparison temperature rT , 

( )t  — is current viscosity,  r r rK  = , r  — is relaxation time at the comparison temperature. 

The analytical dependences of the change in viscosity and the thermal coefficient of linear 

expansion can be written as (3) and (4) commonly used for calculating thermal stresses in the 

flat soldered joint of glass with metal in the algorithm called "IHS calculation method (Institute 

of Silicate Chemistry)". 

( ) ( )( 1) ( 1) ( 1) ( 1)
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,                                                            (4) 

where 0  is viscosity at 0 , ,e eT B  , ,f fB    are coefficients characterizing the temperature 

dependences of    and   under conditions of the equilibrium and frozen structures, 

respectively. 

The change of fictitious temperature (1), its rate and physical and chemical properties of 

liquid glass melt (2)-(4) during temperature treatment is determined from the solution of the 

heat and mass transfer problem, which is considered in work [21] for different methods of 

heating and cooling.  

In mathematical simulation of the evolution of stresses in the glass-metal composite, 

different ways of thermomechanical deformation of the materials of which it composes – 

thermo-visco-plastic one with structural changes in the glass component and thermo-elastic-

plastic one in the metal were taken into account. Simulation has been performed for a specific 

geometry representing composite stems: a glassy core and a steel shell. Assuming an 

axisymmetric, uniform heating along generatrix at small deformations in the cylindrical 

coordinate system, the components of the displacement tensor can be written in the form of the 

following unknown functions: ( ),ru u r t= , 0u = , ( ),zu w z t= , and deformation tensors has 

a diagonal form and the components: rr

u

r



=


, 
u

r
 = , ( )zz z

w
t

z
 


= =


, 0r rz z   = = = .

 Equations of state for glass can be described on the basis of the Boltzmann-Volterra 

superposition principle [22] and the absence of bulk relaxation properties condition 

( )( )
0

2 , , , ,

t

i i is G e M t t e dt i r z 
 

 = − = 
 

 ,                                            (5) 

( ), 3r t K = ,                                                                    (6) 
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here ( ) 3r z   = + + , ( ) 3r z   = + + , ( )
0

3

T

T

T dT  = −  , i is  = − , i ie  = − , 

G  is the shear modulus, K  is bulk modulus; is the relaxation core characterizing the decrease 

by the time t in shearing stresses caused by deformation at time t  the analytic record of which 

is non-exponential as in (2), at that, the parameters b  and rK  are different from values used 

for determination of the structural parameter 
fT ; ( )T  is the thermal coefficient of linear 

expansion determined from the solution of the temperature problem according to formula (4).  

The constitutive relations for the outer cylinder are written in line with the Prandtl-Reuss 

model with respect to thermal phenomena and division of small deformations into the 

convertible (elastic e ) and irreversible (plastic p ) components  
e p

i i i  = + .                                                                         (7) 

The elastic state in stress space will be limited by the surface of limiting state of Mises 

and condition of active loading: 

( )2 2 2 2( , ) ( ) ( ) ( ) 2 0r z r z Tf T T        = − + − + − − =  

0,r r r

r r r

f f f f
T

T
  

  

   
+ + + 

   
                                           (8) 

where maximum tensile stress ( )T T  depends only on temperature. The plastic components of 

the deformation tensor are determined in accordance with the law of associated flow: 

, , ,p p p

r z

r z

f f f




  
  

  
=  =  = 

  
                                               (9) 

here,   has meaning of Langrangian multiplier while finding the maximum specific capacity 

of deformation with restriction (8). 

Considering the relation (7) and the assumptions about the displacements the elastic 

deformations are rewritten as: 

, , .e p e p e p

r r z z z

u u

r r
       


= − = − = −


                                                 (10) 

The boundary conditions are determined according to no-load conditions at the outer 

surfaces of the stem and equality of radial stresses and displacements when passing through the 

glass-metal boundary in case of perfect contact, without slippage along the cylinder axis 
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Here 1R  radius of the glassy stem, 2 1R R− thickness of metal layer. Using the expressions (5)-

(6), the displacement equation of equilibrium at  10 r R  : 

( )
2 2

2 2 2 2

0

4 1 2 1
, 0

3 3

t
u u u u u u

G K G M t t dt
r r r r r r r r

       
 + + − − + − =    

       
          (12) 

at the same time, for  1 2R r R   with regard to (10) will be written as: 
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1 2
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When the plastic flow in the outer cylindrical layer is described by the Mises’ equation 

of yielding (8) while the visco-elastic deformation, with consideration for the structural 

changes, is determined by the Kohlrausch relaxation core (2) and (5), at the moment, it seems 

to be impossible to achieve the analytic solution of the problem (5)-(13) even on the basis of 

all adopted simplications. Based on the finite-difference method, the numerical analytic method 

of the problem is proposed in this paper. 

 

Numerical-analytical method 

The characteristic property of the problem (5)-(13) consists in its dependence on loading 

history, therefore, for numerical implementation, all equations were rewritten in small 

increments in time. The approximation of all defining relations with the use of the finite-

difference method is accurately described, for example, in the work [23], therefore, we will 

highlight only distinctive features of the approach developed by authors in this paper.  

In each temporal layer, the increments of displacements at 10 r R   are written as the 

known coordinate functions, in which only the increment of integration constant 
1

k ku C r =    

should be found. The increments of displacements at 1 2R r R   are considered as the grid 

functions k

ju , being determined from the system solution obtained as a result of finite-

difference writing of equation (13). Herewith, the increment of constant 
1

kC  can be found 

from solution of the consistent system resulting from the finite-difference presentation of 

equations (11) and (13). It is suggested to find the influence of the relaxation processes on the 

stresses in the form of the difference of the sums of the stress deviator components increments 

in all preceding time layers and "relaxation correcting" stress deviator components in the 

current layer. 

When determining of the plastic deformations, the method of additional strains [24] is 

used, in which the iterative procedure of calculating the plastic deformation starts at each time 

step after the zero increments of stresses and strains are determined if the conditions (8) are 

met, when the plastic deformation “correcting” the stresses emerges. 

With consideration for structural changes when passing through the glass transition phase 

and elastic-plastic stresses in the metal at (in) each time layer, under initial conditions of no 

increments of displacements, deformations and stresses, the calculation algorithm of combined 

visco-elastic stresses in the glass is: 

1. When solving the temperature problem, the structural parameters (1)-(4) are 

determined:  
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1
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2. The displacements in the region 10 r R   are determined as solutions of the Euler 

equation, which is a consequence of the integro-differential equation (12), provided that the 

relaxation core (2) is independent on the 𝑟: 
k k

j ju C r =  ; 
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at 1 2R r R   the displacement increments are determined from the system:   

2

1 12

1 1 1 12
1 1

1 2 1
2 2

2
,

4 2
3

k k km m m
j j j

j j j
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  −   −
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in general, at each temporal layer the displacements in the whole area are determined as 
1k k k

j j ju u u−= +   

3. Determination of the stress increments is carried out using an iterative procedure that 

should contain at least two iterations: at the zero step for finding the increments k

jС , k

ju , 

k

z  the system (11) and (13) is solved in finite difference approximation, and at the interface 

of the layers the condition of continuity of displacements are written as 

0

0

k

jk

g

u
C

J r


 =


 

here 
0 gJ r − layer interface. After determining the displacement and stress increments using 

finite-difference analogues (5) and (6) as  

2 2
6 3 3 ,

3 3

k k k k k
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                        (14) 
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2 3 3 3 ,
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we determine the increments of the stress deviator components and calculate the correction part 

that takes into account the mechanical relaxation in the layer 

( )
2 1

3 3

k k k k

r rj j zjS    =  −  +  , ( )
2 1

3 3

k k k k

j rj zjS    =  −  +  , 

( )
2 1

3 3

k k k k

r zj j rjS    =  −  +  , 

( ) ( )11 1

1 1

1 1

1 2

,

1 1

1 1

b b
k kk k

r r

r r

K K

k k
k kk

cor i i i

k k

S e S e S

 

    

 

−      − −      − −      − −      
      

= =

   
   
    = −  − − 
   
   
   

  , 

,

k k k k

i i cor i jS S S С =  −   

here ,k k

g g T  =  ( ).k k

g g T =  

At the next iteration, with consideration of the corrected deviatoric part of the stresses, 

we redefine the , k

ju , k

z  from the repeated solution of the finite-difference analog of the 

system (11) and (13). We redefine the stress increments 10 r R   with the use of formulas (14) 

and for 1 2R r R   as 

1 14 2
3 3 3 2 ,

3 2 3

k k k

j j jk k k pk
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m j
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1 14 2
3 3 3 2 ,

3 3 2

k k k
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where k k

m m T  =  , ( )k k

m m T = , j−  coordinate step number. 

4. The increment of plastic deformation is calculated by method of additional 

deformations [23-24], if the stresses at k - th step satisfy the conditions (8) in time then in the 

process of additional iterations: at 10 r R   let’s specify kC , k

z  are improved and the stress 

increments are redefined according to the algorithm described in step 3 for every iteration; at 

1 2R r R  , at the zero step of iteration, the increment of the plastic deformation intensity P

i  

is defined as: 
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then the increment of the plastic deformations are determined as 
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Determined 0p

rj , 0p

j , 0p

zj  are inserted into the equations of the previous steps 2 and 

3 and the increments of displacements are determined, and the stresses are redefined. Further, 

the iterative process of calculating the deformation increments is performed: 
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The iterative process is ceased subject to the condition: 
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the transition to the next time layer takes place ( is the prescribed accuracy). 
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Calculation results 

When investigating different modes of annealing, the following data were used for borosilicate 

glass [25]: 4.25

0 10 =  MPa·s;0 28726.85eB =  °C; 13726.85fB =  °C; 10.710rsK = ; 0.65sb = ; 

310r =  MPa·s; 752 10f −=   ℃-1; 7210 10e
−=   ℃-1;  4.710rK  = ; 0.5b = ; 

50.24 10gG =   MPa;  50.4 10gK =   MPa; 7115 10m
−=   ℃-1; 50.81 10mG =   MPa;  

51.75 10mK =   MPa. The calculations when solving the temperature part of the problem have 

shown that the characteristic change in the fictitious temperature during cooling and heating up 

(Fig. 2) allows us to determine the boundaries of the glass transition interval as temperatures at 

which the rates of change of the fictitious temperature by temperature begin to differ from 

0 and 1, which means, respectively, the difference from glass in the frozen state and equilibrium 

melt, which is reflected respectively in the changes in the thermal coefficient of linear 

expansion and viscosity (Fig. 3) 

 

 
Fig. 2. Characteristic change in the fictitious temperature during cooling and heating up 

 

 

 
                                        (a)                                                                       (b) 

Fig. 3. Temperature dependence of the thermal coefficient of linear expansion (a) and 

viscosity (b): - heating up, -- cooling; -∙-∙ thermal coefficient of linear expansion of the 

metal 

 

In Figure 3(a) it is possible to identify the temperature at which the graphs of thermal 

coefficients of linear expansion of glass and metal on heating up and cooling have points of 

intersection for certain mode. At this temperature the stress in the soldered joint changes the 

sign, for flat soldered joints [19–20] it is accepted to choose the cooling rate ( )3q in the area 
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between the upper temperature of annealing and the intersection point of graphs of thermal 

coefficients of linear expansion of glass and metal, as much as possible reduced at least by the 

increase of compressive stresses. 

The following Figs. 4-5 show graphs of stress changes as a function of temperature in the 

1st layer (glass) and at the interface between the layers in the 2nd layer (metal), the beginning 

of the process was assumed as cooling after obtaining the soldered joint from 650 ℃ (1st 

stage at a constant rate 1 3q =  ℃/min), then annealing was carried out according to the scheme 

of stage 2 - heating up to the annealing temperature (after pre-calculations, a temperature of 

560 ℃ was taken), exposure at  560 ℃ for 2 h and cooling; 2 3 4 3q q q= = =  ℃/min. 

From the graphs in Fig. 4, the temperature range and the stress level at which plastic flow 

develops in the 2nd layer is noticeable; on the graph of the intensity change at all stages in this 

interval, the graphs merge and correspond to the graph of the change in the yield stress (Fig. 4, 

lower right graph). 

 

  
(a) (b) 

 
 

(c) (d) 

Fig. 4. Change of stress and intensity in the 2nd layer (metal) at the interface of the 

connection with the glass: (a) 𝜎𝑟(𝑇) ; (b) 𝜎𝜑 (𝑇); (c) 𝜎𝑧 (𝑇); d) 𝜎𝑖  (𝑇) 

 

In the graphs of stress changes in the 1st layer (glass) (Fig. 5) it is noticeable that after 

cooling during annealing the stress level changes (highlighted area in 𝜎𝑧) and is controlled not 

only by annealing but also by the cooling rate after exposure. It is proved that the stress level 

and the value of exposure, besides the cooling rate, are also influenced by the heating rate 

(Figs. 5 and 6). Let's note that such effects are not revealed either at analytical solution for the 

case of simple Maxwell type cores, or moreover at elastic approximation. 
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(a) (b) 

  

 
(c) 

 

Fig. 5. Change of stress and intensity in the 1st layer (glass):  

(a) 𝜎𝑟(𝑇) и 𝜎𝜑 (𝑇); (b) 𝜎𝑧 (𝑇); (c) 𝜎𝑖  (𝑇) 

 

 

    
                                      (a)                                                                    (b) 

Fig. 6. Fragments of graphs for the layer (1) in the area of exposure at the heating rate 

1 10q =  ℃/min and cooling at 3 4 1,5q q= = ℃/min (a), at 3 4 3q q= = ℃/min (b) 
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Conclusion 

The problem of determining the change in parameters of the strenuously-deformed state in the 

two-layer cylindrical glass-metal composite in the course of annealing with consideration for 

glass transition process in the inner glass layer and plastic deformation of the outer metal layer 

was set and solved. The algorithm of calculation of the cylindrical vitrified layer connected to 

the plastically deformed non-vitrified layer was proposed. The calculations in accordance with 

the proposed algorithm allow us to determine the technological stresses with consideration for 

structural and mechanical relaxation processes. The numerical method suggested in the paper 

can be applied to the case of several vitrified cylindrical layers. 
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