
 

Submitted: December 27, 2023 Revised: February 25, 2024 Accepted: March 10, 2024 

© A.V. Khokhlov, 2024. 

Publisher: Peter the Great St. Petersburg Polytechnic University 

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/li-censes/by-nc/4.0/) 

MATERIALS PHYSICS AND MECHANICS                                                RESEARCH  ARTICLE 

 

 

Hybrid of a nonlinear Maxwell-type viscoelastoplastic model with 

the linear viscoelasticity constitutive constitutive equation and 

properties of crossbred creep and stress-strain curves 

A.V. Khokhlov  1,2  

1 Lomonosov Moscow State University, Moscow, Russia 

2 North-Eastern Federal University, Yakutsk, Russia 

 andrey-khokhlov@ya.ru 

ABSTRACT 

A generalization for the physically nonlinear Maxwell-type constitutive equation is proposed with two 

material functions for non-aging rheonomic materials, which have been studied analytically in previous 

articles to elucidate its properties and application. To extend the set of basic rheological phenomena that it 

simulates, we propose to add the third strain component expressed as the Boltzmann-Volterra linear integral 

operator governed by an arbitrary creep function. To generalize and conveniently tune the constitutive 

relation, to fit it to various materials and various lists of phenomena (test data), we introduce a weighting 

factor (i.e. nonlinearity factor) into the equation. This allows us to crossbreed primary physically nonlinear 

Maxwell-type model with the linear viscoelasticity equation in an arbitrary proportion, to construct a hybrid 

model and to regulate prominence of different phenomena described by the two constitutive equations we 

crossbred. General expression for stress-strain curves at constant stress rate and for the creep and recovery 

curves families obtained using the proposed hybrid constitutive equation are derived and analyzed. The basic 

properties of the stress-strain curves and the creep-recovery curves are studied assuming  three material 

functions are arbitrary. They are also compared to the properties obtained using primary Maxwell-type model 

and linear viscoelasticity theory. New properties are found that allow the hybrid model to tune the form of 

the stress-strain curves and the creep-recovery curves and to simulate additional effects observed in constant 

stress rate tests and creep-recovery tests of various materials at different stress rates and stress levels. 
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Introduction 

The problem of reliable modeling of thermomechanical behavior and fracture of materials 

and structures, the issues of construction or selection of adequate constitutive equations 

(CEs) for viscoelastoplastic materials (out of dozens and hundreds proposed in the 

literature), analysis of their properties and the scope of application, sphere of influence 

of material functions (MFs) and phenomenological limitations on them, development of 

identification and certification techniques, still remain relevant in mechanics, materials 
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science and the practice of engineering calculations. For a reasonable choice of the CE, 

determination of its possibilities and the scope of application, for competent processing 

of experimental data and identification of MFs and parameters of the chosen CE it is 

necessary to study analytically general properties of loading and unloading curves, 

relaxation curves, creep curves under stepwise loading programs generated by the CE 

with arbitrary MFs [1–10]. It is also necessary to investigate the influence of loading 

parameters and characteristics of MFs, to identify the necessary conditions (indicators) of 

applicability of the CE to the modeled material. 

In the series of papers [4–10] (and others) such an analysis was performed for a 

physically nonlinear CE: 

𝜀(𝑡) = 𝐸−1𝐹(𝜎(𝑡)) + 𝜂−1 ∫ 𝑉(𝜎(𝜏))𝑑𝜏
𝑡

0
, or 𝜀̇ = 𝐸−1[𝐹′(𝜎)𝜎̇ + 𝜏𝑟

−1𝑉(𝜎)], 𝑡 > 0, (1) 

connecting (in one-dimensional case) the strain 𝜀(𝑡) with the history of stress changes 

𝜎(𝜏), 𝜏 ∈ [0; 𝑡], in isothermal deformation processes of stable rheonomic materials (stress 

and time are assume to be dimensionless). The CE (1) includes two increasing MFs 𝐹(𝑥), 

𝑉(𝑥), 𝑥 ∈ (𝜔−, 𝜔+) (their constraints are given in the next section) and two constants: 

𝐸, 𝜂 > 0. The elastic modulus 𝐸 and the viscosity coefficient 𝜂 are explicitly extracted 

from the MF to account for the effect of temperature in the form 𝐸 = 𝐸(𝑇), 𝜂 = 𝜂(𝑇) [5]. 

The CE (1) is based on the decomposition of the total strain into the sum of elastic and 

viscoplastic components: 𝜀 = 𝜀𝑒 + 𝜀𝑣, 𝜀𝑒 = 𝐹(𝜎)/𝐸, 𝜀𝑣̇ = 𝑉(𝜎)/𝜂. 

It is aimed at describing a set of effects typical of non-aging materials with heredity 

and plasticity, high rate sensitivity and, possibly, tension-compression asymmetry.  

The CE (1) combines relative simplicity and wide scope of applicability: it generalizes a 

number of classical models (due to the arbitrariness of MFs 𝐹(𝑥) and 𝑉(𝑥)) and describes 

a very wide range of rheological effects typical of many rheonomic materials exhibiting 

viscoelastic and plastic properties [4–10]. 

The CE (1) generalizes (includes) the classical power-law models of viscous flow 

and creep (see the surveys and the references on these topics in works [4,5,8]), the 

Herschel–Bulkley and Shvedov–Bingham rheological models, and the special case of the 

Sokolovsky–Malvern model. In the case of 𝐹(𝑥) ≡ 0, 𝑉(𝑥) = 𝑥|𝑥|𝑛−1, 𝑛 > 1, the CE (1) 

gives the power law of flow (Norton–Bailey model), the most popular (due to its 

simplicity) in the theory of creep, viscoplasticity, hydrodynamics of non-Newtonian fluids 

and the rheology of polymers [11–41]. It has been used to model the dependence of 

steady-state creep rate on stress [11–19,24,25,29], power-law fluid flows (in particular, 

those associated with oil production) [20–24], superplastic flow of materials [32–40], 

and the motion of avalanches and mudflows [41]. Setting 𝐹(𝑥) = 𝑥 and 𝑉(𝑥) = 𝑥|𝑥|𝑛−1, 

we obtain a model with linear elasticity and power-law viscosity, which has been used in 

a number of works to describe the creep curves, to model superplasticity and to solve 

specific problems [8–10,13,34,42–45]. In [46,47], the CE, related to the CE (1), was used 

as the basis for a nonlinear model for describing the shear strain of thixotropic 

viscoelastic fluids, which takes into account the influence of the kinetics of formation and 

destruction of intermolecular bonds and associates of macromolecules on viscosity and 

shear modulus and the influence of the deformation process to this kinetics. The general 

tensor formulation of nonlinear Maxwell-type CEs for (severe strain of) viscoelastic 

media, related to the CE (1), the description of kinematics, thermodynamic aspects and 
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methods of specifying the CRs were studied in [48–53]. Those papers focused on 

describing the behavior of fluids and discussed experiments and effects inherent in fluids 

(polymer melts and solutions, etc.). However, they did not consider creep, relaxation and 

stress-strain curves generated by the CE, did not ask many questions specific to 

mechanics of deformable solids, and did not analyze the corresponding 

phenomenological constraints on the MFs and parameters of the CE (1) and methods for 

their identification. The CE (1) with arbitrary MFs 𝐹(𝑥) and 𝑉(𝑥) has not been 

systematically investigated and validated before the works [4–10]. 

Thus, the CE (1) generalizes several commonly used models and describes a wide 

range of rheological effects (see the next section and [4–10] for more details). However, 

along with many advantages, it has some features that limit its scope of applicability. 

Thus, the CE (1) is not capable of describing some effects observed during the 

deformation of many materials. For example, in [7,8] the following was proved: 

1. the CE (1) models only creep at a constant rate (steady-state creep, characteristic of 

many ductile metals, polymers in a viscous-flow state and materials in a state of 

superplasticity) and is not capable of describing the stages of transient and accelerated 

creep, as well as limited creep, characteristic, for example, of many polymers; 

2. the CE (1) does not describe recovery after complete unloading ("reverse creep", "elastic 

aftereffect"), i.e. the process of gradual relaxation of the accumulated strain reaching a 

certain constant level at large values of time, as it is observed in tests of many materials 

(for example, for cross-linked polymers and for bone tissue, reverse creep curves tend to 

the asymptote 𝜀 = 0). The CE (1) describes only the instantaneous recovery of the elastic 

part of strain. The "highly elastic" component of strain, which ensures gradual decrease, 

is completely absent in model (1); 

3. under cyclic loading beyond the elastic limit, the CE (1) always gives ratcheting at a 

constant rate: “unlimited” increase in plastic strain without stabilization and adaptability, 

cyclic weakening. 

Due to the abundance of advantages and possibilities of the CE (1), as well as the 

presence of several disadvantages, it is advisable to generalize the CE in such a way as 

to preserve the advantages, but eliminate the noted disadvantages and expand the range 

of rheological effects described by it and its scope of applicability. This is precisely the 

main purpose of this article (see the next sections). 

The most important types of uniaxial tests, which make it possible to capture and 

examine various aspects of material behavior, to detect signs of nonlinearity in its 

behavior and to gather sufficiently rich information for the selection and identification of 

the CE, are the tests on loading (shear, tension, compression) at a constant rate 𝜎(𝑡) = 𝑏𝑡 

and on creep at a constant stress and recovery after unloading (reverse creep)  

[4,7,11–17,54–56] for different stress levels and durations of the loading stage 𝜎̄, 𝑇 > 0, 

i.e. study of the response 𝜀(𝑡; 𝜎̄, 𝑇) of a material (specimen) to a rectangular stress pulse: 

𝜎(𝑡; 𝜎̄, 𝑇) = 𝜎̄[ℎ( 𝑡) − ℎ( 𝑡 − 𝑇)], 𝑡 > 0,   (2) 

where ℎ( 𝑡) is the Heaviside function, instantaneous unloading and endurance at the 

𝜎(𝑡) = 0, 𝑡 > 𝑇. 

Another objective of this article is to derive equations for the curves family and 

creep-recovery curves generated by the new CE (4) with three arbitrary MFs under loadings 

in the form (2). We also aim to study the influence of loading parameters and 
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characteristics of all MFs, in particular, to identify new qualitative properties (effects), 

which make it possible to describe a more general CE (4) in comparison with the CE (1). 

In the future, the properties found will be used to develop methods for identifying  

the CE (4) and searching for its applicability indicators using experimental creep and 

recovery curves of materials, as was done for the CE (1) in [4–10,56]. 

 

On restrictions on MFs of the CE (1) and its scope of applicability 

The MF 𝐹 defines in the CE (1) the elastic strain 𝜀𝑒(𝜎). The minimum primary constraints 

on it are: 𝐹(𝑥), 𝑥 ∈ (𝜔−, 𝜔+) is a continuous (strictly) increasing function with a piecewise 

continuous derivative, such that 𝐹(0) = 0. These conditions ensure that the signs of 

stress and elastic strain 𝜀𝑒(𝜎) coincide and that the condition 𝜀𝑒(0) = 0 is met. From  

the strictly increasing 𝐹(𝑥) it follows that 𝜀𝑒(|𝜎|) and the energy of elastic strain increase 

with increasing |𝜎| and the existence of the inverse to 𝐹 function 𝑓. The viscosity function 

𝑉(𝑥)/𝜂 in the CE (1) controls the viscoplastic properties: it governs the material memory, 

the rate of dissipation, relaxation rate, creep and plastic strain accumulation rate,  

the sensitivity of stress (in particular, the instantaneous modulus and flow stress) to the 

strain rate, and the long-term strength [4–10]. The minimum constraints on it are: 𝑉(𝑥) 

is a continuous (non-strictly) increasing function on the interval (𝜔−, 𝜔+), such that  

𝑉(0) = 0. These constraints on the MF provide, in particular, an increase in strain-stress 

curves and creep curves, a decrease in relaxation and long-term strength curves, a 

description of the complex of rheological effects typical of viscoelastoplastic materials 

(see below), and the thermodynamic consistency of the CR, i.e., the positivity of the stress 

work 𝜎(𝜏) in an arbitrary deformation process and the non-negativity and increasing of 

dissipation 𝑊[𝑡, 𝜎(𝜏)]: 𝑊̇(𝑡) = 𝜎(𝑡)𝑉(𝜎(𝑡))/𝜂 > 0. If 𝜔+ and 𝜔− are finite, they can be 

interpreted as tensile strength at tension and compression (as material parameters). 

Mathematical properties of the operator (1), literature reviews and related to (1) models 

used in the theory of creep, superplasticity and polymer mechanics, taking into account 

the effect of temperature and generalization of the CE (1) to the triaxial stress state are 

given in [4–10]. 

In [4–10] and others, were analytically studied the equations of the basic quasi-

static curves families generated by the CE (1) with arbitrary MFs 𝐹(𝑥) and 𝑉(𝑥): relaxation 

and creep curves with arbitrary initial loading to a given level stage, creep under stepwise 

loading, long-term strength, stress-strain curves at constant and piecewise constant 

strain or loading rates, under cyclic loading. The general properties of these curves were 

studied depending on the characteristics of MFs and parameters of loading programs: 

intervals of monotonicity and convexity, inflection points, responses to discontinuities in 

the input process (jumps and breaks), asymptotics and two-sided estimates of theoretical 

curves, the nature of the convergence of their families to limit curves at the tendency of 

the parameters of loading programs (strain or loading rate, duration of the initial stage 

of loading, etc.) to zero and infinity, conditions for memory decay, the effect of 

permutation of loading stages on asymptotics and residual strain, etc. As a result of 

comparing the discovered properties of the theoretical curves with typical qualitative 

properties of test curves for a wide class of viscoelastoplastic materials (with a target list 

of mechanical effects), the necessary additional constraints on MFs were derived to 
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ensure adequate modeling of the main rheological effects, and theoretical and 

experimental applicability indicators of the CE (1) were identified, as well as those effects 

that it fundamentally cannot describe at any MFs. 

A systematic study of the CE (1), carried out in a series of works [4–10] and others, 

showed that it can be used to describe a set of basic rheological effects typical of 

viscoelastoplastic materials with memory, high sensitivity to loading rate, and, possibly, 

tension-compression asymmetry. They are characterized by the following features of 

mechanical behavior: 

1. increasing loading curves at a constant rate, which can be either convex upward or may 

have an inflection point; 

2. positive rate sensitivity; 

3. monotonous decrease and convexity of the unloading curve or the presence of a 

maximum point or inflection point on it (depending on the rate and level of loading), 

4. lack of recovery (strain relaxation) after a stress pulse exceeding the elastic limit and 

complete unloading; 

5. significant influence of the duration and rate of loading on the magnitude of plastic 

strain; 

6. pronounced stage of flow at constant stress in stress-strain curves with constant rate 

and (increasing) dependence of the flow stress on rate; 

7. "unlimited" increase in plastic strain under cyclic loading beyond the elastic limit 

(ratcheting without stabilization and adaptability, cyclic weakening); 

8. creep at a constant rate; 

9. stress relaxation to zero or non-zero value; 

10. increase in compliance and rate sensitivity, an increase in the dissipation rate, 

relaxation rate, creep and ratcheting rates with increasing temperature. 

Such materials (in certain deformation modes) include, for example, many polymers, 

their melts and solutions, solid fuels, asphalt concrete, high-modulus polyethylene yarns, 

geofabrics and geogrids, ice and frozen soils, titanium and aluminum alloys, carbon and 

ceramic materials at high temperatures, etc. 

The analysis of the properties of theoretical curves generated by the CE (1) [4–10] 

showed that two main cases should be distinguish, in which the CE (1) (or the modeled 

material) behaves differently. In the first case, |𝑉(𝑥)| > 0 for all 𝑥 ≠ 0, 2) 𝑉(𝑥) ≡ 0 at a 

certain interval 𝑍: = [𝜎−, 𝜎+] ⊂ (𝜔−, 𝜔+), 𝜎− ≤ 0, 𝜎+ ≥ 0, 𝜎+ ≠ 𝜎− (by definition, 𝜎− and 

𝜎+ are the lower and upper bounds of the set of zeros of the MF 𝑉(𝑥)). In the second case, 

as long as 𝜎(𝑡) ∈ 𝑍, the CE models the elastic behavior of the material: the dissipation is 

small and there is no hysteresis loop on the loading-unloading curve, the relaxation and 

creep are absent, the stress-strain curve does not depend on the loading (or strain) rate 

at 𝜀 ∈ [𝜀−, 𝜀+], where 𝜀±: = 𝐹(𝜎±)/𝐸). Thus, 𝜎− and 𝜎+ play the role of elastic limits (and 

creep thresholds) of the material under compression and tension. At 𝜎 > 𝜎+ (or 𝜎 < 𝜎−) 

the dissipation is significant and viscoplastic properties also begin to appear.  

For example, in [10], the elastic limit equal to one tenth of the tensile strength was found 

from the testing data of a complex polyester yarn and the methods of identification of 

the CE (1), developed in [8], were tested. 

 

The use of a MF of the second kind, i.e. with 𝜎+ > 0, is very convenient for taking 
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into account the features of the manifestation of nonlinear viscoelastoplastic properties 

in testing data of a particular material, namely, for connecting the nonlinear 

viscoplasticity model (1) to the linear viscoplasticity CE (3) and surgical adjustment of this 

connection. Due to the material parameters 𝜎+ and w it is possible to add to the CE (3) 

the nonlinear viscoplasticity, starting from any stress 𝜎 ≥ 𝜎+ > 0 and in any proportion. 

 

Generalization of the CE (1) by crossbreeding with the linear viscoelasticity CE 

A natural way to generalize the CE (1) in such a way as to preserve its advantages, but 

eliminate the noted disadvantages and expand the range of rheological effects described 

by it and its scope of applicability, is to add to the CE (1) a third strain component – 

viscoelastic, highly elastic strain, i.e, to sequentially attach to the nonlinear Maxwell-type 

model a linear viscoelastic element (a parallel connection is also promising, but will entail 

a distortion of the good properties already presented in the CE (1)): 𝜀 = 𝜀𝑒 + 𝜀𝑣 + 𝜀𝑣𝑒. This 

viscoelastic element can be chosen differently: a Scott-Blair fractal element can be added, 

Voigt or Kelvin models, etc. But it seems most reasonable to maximize the 

communication in this direction, i.e., to add a term governed not by two or three 

parameters, but expressed in general form by the linear Boltzmann-Volterra integral 

operator with an arbitrary creep function (CF): 

𝜀(𝑡) = ∫ 𝛱(𝑡 − 𝜏)
𝑡

0
𝑑𝜎(𝜏), 𝜎(𝑡) = ∫ 𝑅(𝑡 − 𝜏)

𝑡

0
𝑑𝜀(𝜏), 𝑡 ≥ 0.  (3) 

If, of course, it is possible to analyze in sufficient depth the properties of such a 

complex CE, depending on three arbitrary MFs, and to learn how to adjust these 

properties in order to describe typical material testing data. For generality and 

convenience of model control, its adjustment to different materials and lists of modeled 

effects, we introduce a weighting factor 𝑤 ∈ [0; 1] (nonlinearity factor), which allows us 

to “mix” the CE (1) and the linear viscoelasticity operator (3) (and the effects modeled by 

them) in any proportions: 

𝜀(𝑡) = 𝑤𝐸−1𝐹(𝜎(𝑡)) + 𝑤𝜂−1 ∫ 𝑉(𝜎(𝜏))𝑑𝜏
𝑡

0
+ (1 − 𝑤) ∫ 𝛱(𝑡 − 𝜏)

𝑡

0
𝑑𝜎(𝜏), 𝑡 > 0. (4) 

Thus, the new CE (4) is a hybrid (and simultaneous generalization) of the nonlinear 

CE (1) and the linear viscoelasticity CE (3) (at 𝑤 = 0, the nonlinearity is switched off and 

the linear viscoelasticity CE is obtained, and at 𝑤 = 1 the CE (1) is obtained). It is the 

parameter w that allows us to adjust the contributions of the CE (1) and the CE (3) and 

thus to adjust the severity of the effects they model. 

Further, we assume minimal constraints on the CF 𝛱(𝑡),𝑡 > 0, in the CE (4), inherited 

from the viscoelasticity CE (3) [1]: it is positive, differentiable, increasing and convex 

upward by (0; ∞). For example, the following CF: 

𝛱 = 𝐴𝑡𝑢, 𝑢 ∈ (0; 1), 𝐴 > 0,     (5) 

defines the so-called “fractal” element of "fractional" models with the fractional 

differentiation operator. It has the property 𝛱(0) = 0, which characterizes irregular 

viscoelastic models (the corresponding relaxation function has a singularity at 𝑡 = 0: 

𝑅(𝑡) = 𝐵𝑡−𝑢) [54]. The following CFs family: 

𝛱(𝑡) = 𝛼𝑡 + 𝛽 − 𝛾𝑒−𝜆𝑡, 𝜆 > 0, α,β ≥ 0, 𝛾 ∈ [0, 𝛽],  (6) 

generates at 𝛾 ∈ (0; 𝛽), α,β > 0 all four regular structural models of four elements (they 

are equivalent), and at 𝛼 = 0 it generates two regular models of three elements (Kelvin 

and Poynting–Thomson models). Since 𝛱(0) = 𝛽 − 𝛾, then the CF (6) generates irregular 
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models when 𝛾 = 𝛽: at λβ = 0 it is the Newtonian fluid, at 𝛼 = 0 it is the Voigt model, at 

𝛼 > 0 it generates both singular models of three elements. At 𝛾 = 0 (6) it gives the linear 

Maxwell-type model. These CFs will be used to illustrate the properties of the creep and 

recovery curves generated by the CE (4). The case 𝛾 < 0 in (6) violates the constraint 

𝛱̈(𝑡) ≤ 0, which entails an increase in the recovery curve (15) (a contradiction with 

experimental data). 

The generalization of the CE (4) to the triaxial stress state in the case of isotropic 

media can be carried out according to the same standard scheme as the generalization of 

the CE (1), based on the postulate about the absence of cross-influence of the spherical 

and deviatoric parts of the stress and strain tensors 𝝈(𝑡) and 𝜺(𝑡) to each other  

(i.e., independence of volumetric strain from tangential stresses, and shear strains from 

average stress) and the postulate about the proportionality of deviators 𝒔 = 𝝈 − 𝜎0𝑰,  

𝒆 = 𝜺 − 𝜀0𝑰 [9]: 

𝜀𝑖𝑗(𝑡) =
3

2
𝜀(𝑡)𝜎(𝑡)−1𝑠𝑖𝑗(𝑡) +

1

3
𝜃(𝑡)𝛿𝑖𝑗, 

𝜀(𝑡) = 𝑴𝜎 = 𝐸−1𝐹(𝜎(𝑡)) + 𝜂−1 ∫ 𝑉(𝜎(𝜏))𝑑𝜏
𝑡

0
,   (7) 

𝜃(𝑡) = 𝑴0𝜎0 = 𝐸0
−1𝐹0(𝜎0(𝑡)) + 𝜂0

−1 ∫ 𝑉0(𝜎0(𝜏))𝑑𝜏
𝑡

0
, 

where 𝜎0(𝑡) = 𝜎𝑖𝑖(𝑡)/3, 3ε0 = 𝜃(𝑡) = 𝜀𝑖𝑖(𝑡), 𝜎(𝑡) = (
3

2
𝑠𝑖𝑗𝑠𝑖𝑗)0.5, 𝜀(𝑡) = (

2

3
𝑒𝑖𝑗𝑒𝑖𝑗)0.5 are the 

average stress, volumetric strain and the intensity of stresses and strains. This CE 

expresses 𝜺(𝑡) through the history of 𝝈(𝑡) and is governed by two pairs of MFs 𝐹(𝑥), 𝑉(𝑥) 

and 𝐹0(𝑥), 𝑉0(𝑥), whose constraints are described in the previous section, and the 

parameters 𝐸,  η, 𝐸0,  𝜂0 > 0. The CE (7) can be crossbred according to the described 

scheme with the general linear viscoelasticity CE for isotropic media: 

𝜀𝑖𝑗(𝑡) = 𝑒𝑖𝑗 + 𝜀0𝛿𝑖𝑗, 𝑒𝑖𝑗(𝑡) =
3

2
𝜫𝑠𝑖𝑗(𝑡), 𝜃 = 𝜫𝟎𝜎0, (8) 

𝜫𝑦 = ∫ 𝛱(𝑡 − 𝜏)
𝑡

0
𝑑𝑦(𝜏), 𝜫𝟎𝑦 = ∫ 𝛱0(𝑡 − 𝜏)

𝑡

0
𝑑𝑦(𝜏), 𝑡 > 0, (9) 

with two arbitrary MFs 𝛱(𝑡) and 𝛱0(𝑡) (functions of shear and volumetric creep), i.e., 

consider the CE expressing 𝜺(𝑡) through the history of 𝝈(𝑡) as follows: 

𝜀𝑖𝑗(𝑡) = 𝑒𝑖𝑗(𝑡) +
1

3
𝜃(𝑡)𝛿𝑖𝑗, 

𝑒𝑖𝑗 =
3

2
𝑤

𝑴𝜎

𝜎(𝑡)
𝑠𝑖𝑗(𝑡) +

3

2
(1 − 𝑤)𝜫𝑠𝑖𝑗(𝑡),    (10) 

𝜃 = 𝑤𝑴0𝜎0 + (1 − 𝑤)𝜫𝟎𝜎0 
The CE (10), like the CEs (7) and (8), describes the processes of isothermal 

deformation of non-aging isotropic viscoelastic media by connecting the histories of 

changes in the components of the deviators 𝒔, 𝒆 and the first invariants 𝜎0(𝑡) and 𝜀0(𝑡) 

of the stress tensors 𝝈(𝑡) and small strains 𝜺(𝑡) at an arbitrary point of the body.  

The CE (10) contains six MFs: three governing the change in shape (F, V, 𝛱) and three 

governing the volumetric strain (or only one or two in the case of simplifications 

associated, for example, with the postulation of an elastic or linearly viscoelastic relation 

between the volumetric strain and the average stress). 

A systematic study of the three-dimensional CE (10) and the study of the 

possibilities for modeling triaxial effects (in particular, the scenarios for changes in time 

of the transverse strain coefficient under creep and other types of loading, the influence 

of volumetric strain and hydrostatic pressure on the tension-compression curve [9,56]) – 

these are the topics of subsequent articles. The analysis should begin with the one-
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dimensional operator (4). In the case of uniaxial (“pure”) shear, when only the components 

𝜎12 = 𝜎21 of the stress tensor are nonzero, there will be 𝜎0(𝑡) ≡ 0, 𝒔(𝑡) = 𝝈(𝑡), and from 

the CE (10) it follows, that 𝜃(𝑡) ≡ 0, 𝒆(𝑡) = 𝜺(𝑡), only the components 𝜀12 = 𝜀21 are 

nonzero and they are connected to 𝜎12(𝑡) by an operator in the form (4). Therefore,  

all statements proved below about the creep and strain curves generated by the uniaxial  

CE (4) are automatically transferred to the CE (10) in the case of shear, as well as in the 

case of hydrostatic loading without shape change: for the volumetric creep curves 𝜃(𝑡, 𝜎̄0) 

and loading curves 𝜎0(𝜃, 𝑏) families all properties are preserved when the triple of MFs 

F, V, 𝛱 are replaced by the MFs 𝐹0, 𝑉0, 𝛱0. 

 

Creep curves generated by the CE (1) and the CE (4) 
At the stress 𝝈(𝒕) = 𝝈̄ 𝒉( 𝒕), 𝑡 > 0, the CE (1) generates the creep curves family: 

𝜀(𝑡, 𝜎̄) = 𝑟(𝜎̄)𝑡 + 𝑐𝐹(𝜎̄), or 𝜀(𝑡, 𝜎̄) = 𝑐[𝑉(𝜎̄)𝜏𝑟
−1𝑡 + 𝐹(𝜎̄)] (11) 

where 𝑐 = 𝐸−1, 𝑟(𝜎̄) = 𝜂−1𝑉(𝜎̄) = 𝑐𝜏𝑟
−1𝑉(𝜎̄), 𝜏𝑟: = 𝜂/𝐸 is the relaxation time of the 

linear Maxwell-type model with 𝑉(𝑥) = 𝐹(𝑥) = 𝑥 (𝜏𝑟 is convenient to use for 

dimensionless time). 

If 𝑉(𝑥) ≡ 0 on a certain segment [𝜎−, 𝜎+], 𝜎− < 0, 𝜎+ > 0, then at 𝜎 ∈ [𝜎−, 𝜎+]  

the CE (1) models (nonlinearly) the elastic behavior of the material and at 𝜎̄ ∈ [𝜎−, 𝜎+]  

the creep is absent (the elastic limits for compression and tension coincide with the creep 

thresholds). 

If 𝑉(𝜎̄) ≠ 0, then all creep curves are linear in time at 𝑡 > 0, i.e., for any MFs, the 

CE (1) models only creep at a constant rate (as does the linear Maxwell-type model),  

the rate |𝑟(𝜎̄)| increases with the increase of |𝜎̄|. Since 𝑉(𝜎̄) > 0 at 𝜎̄ > 0 and increases, 

the creep curve (11) increases along 𝑡 (at 𝜎̄ > 0) and along 𝜎̄, which is observed in tests 

of stable materials. 

A pronounced stage of creep at a constant rate is characteristic of many plastic 

metals, polymers in a viscous-flow state, and materials in a state of superplasticity. The 

creep curves of polymers have a stage of steady-state creep only at sufficiently high 

temperatures, when the polymer is in a viscous-flow state. The CE (1) is not capable of 

describing the stages of transient and accelerated creep, as well as limited creep, 

characteristic, for example, of many polymers. 

For example, Fig. 1(a) shows the creep and recovery curves of 110×2Z50 complex 

polyester yarn under tension according to program (2), carried out in 2019 by O.N. 

Stolyarov and A.V. Khokhlov at the Peter the Great St. Petersburg Polytechnic University 

(on the Instron 5965 universal measuring complex). The basic characteristics of the yarn 

were measured beforehand. Linear density of the yarn θ = 220 tex, specific density of the 

yarn material  = 1360 kg/m3, elastic modulus 15.3 ± 1.1 GPa, breaking force  

𝑁∗ = 150 ± 5 N (tensile strength 𝜎∗ = 960 ± 35 MPa, relative strength of the yarn is  

0.7 N/tex), relative elongation at break is 11 ± 0.75 % (based on the results of ten tests 

to break with a crosshead rate of 50 mm/min). Figure 1(a) shows creep and recovery 

curves of yarn specimens (the length of the working part of the specimen is 100 mm)  

for different stress levels: the curve i corresponds to the stress 𝜎̄ = 𝜎̄𝑖 = 𝑖𝜎∗/10 (from  

10 to 50 % of the tensile strength). The ideal program (2) was implemented as follows: 

"instantaneous" loading (more precisely, very fast: within 1–3 sec, at a rate of 
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1500 N/min) of the specimen to a given stress level 𝜎̄, holding for a time 𝑡∗ = 4𝑡̃,  

𝑡̃ = 3600 sec (1 hour), "instantaneous" unloading and subsequent holding at (almost) zero 

stress (2 N) for a time of 2𝑡̃ to analyze the recovery process. 

 

 

  
(a) (b) 

Fig. 1. Test creep and recovery curves at different tensile loads for a polyester yarn (a) and polyamide-6 (b) 

 

The data of these tests the CE (1) approximates well except for the initial segments 

of the creep curve and the recovery stage. However, the data from tests of polyamide-6 

under tension (Fig. 1(b)) the CE (1) cannot describe for the reasons mentioned above 

(creep at an unstable rate, pronounced reverse creep). S.B. Sapozhnikov at the South Ural 

State University (in August 2022) carried out these (preliminary) tests according to the 

following program. Rapid loading up to 𝜎̄ = 𝜎̄𝑖 = 10; 20; 25; 30 MPa, observation of creep 

at constant stress for 4 hours (curves 1–4), "instant" unloading and observation of 

recovery at (almost) zero stress for 4 hours. To select the stress levels, preliminary tests 

to failure were carried out at different loading rates and the conditional tensile strength 

of polyamide-6 was found in the range of loading rates from 0.5 to 50 MPa/min and  

𝜎∗ = 60 ± 5 MPa (true stress at the break 𝜎∗ = 80 ± 10 MPa, relative elongation at break 

is from 20 to 50%). For polyamides and similar materials, the proposed CE (4) is useful. 

Since the response of the linear CE (3) to the loading program 𝝈(𝒕) = 𝝈̄ 𝒉( 𝒕), has 

the form 𝜀(𝑡, 𝜎̄) = 𝜎̄𝛱(𝑡), then the CE (4) generates the creep curves family: 

𝜀(𝑡, 𝜎̄) = 𝑤𝑟(𝜎̄)𝑡 + 𝑤𝑐𝐹(𝜎̄) + (1 − 𝑤)𝜎̄𝛱(𝑡)  . (12) 

Since 𝑤 ∈ [0; 1], then the creep curves family (12) increases along 𝜎̄, which 

coincides with the typical properties of creep curves of structurally stable materials.  

At 𝜎̄ > 0 the additional term (1 − 𝑤)𝜎̄𝛱(𝑡) increases along 𝑡 and is convex upward (since 

𝛱(𝑡) is increasing and convex upward). Therefore, the creep curve (12) increases along 𝑡 

and is convex upward at 𝑡 > 0, as in linear viscoelasticity, but no longer depends linearly 

on the stress level 𝜎̄ (since the first two terms do not have this property). At 𝑤 > 0.5  

the influence of the first term on the creep rate and the accumulation of irreversible 

(residual) strain is significant, and it is possible to make the creep curve as close as desired 

to the straight-line creep curve (11) by increasing w. On the contrary, at 𝑤 → 0 it is 

possible to make the relative contribution of terms nonlinear along σ ̄ as small as desired 

and give the creep curves family any shapes characteristic of linear viscoelasticity.  

The convexity of the creep curve (12) means that the CE (4), like the linear viscoelasticity 

CR, is not capable of describing accelerated creep (the third stage of creep). 
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(a) (b) 

Fig. 2. Creep curves for four stress levels 𝜎̄ = 0.1; 0.2; 0.3; 0.4 (curves 1–4), generated by several models 

of the form (4) with 𝐹(𝑥) = 𝑥, 𝑉(𝑥) = 𝑥|𝑥|, 𝐸 = 50, 𝜂 = 50 and three different weighting factors 

 𝑤 = 0; 0.5; 1 (red, black, and light blue curves): (a) three models with the creep function (5) with 𝑢 = 1/3, 

𝐴 = 0.03; (b) three models with the creep function (6), 𝛼 = 0, 𝛽 = 0.07, 𝛾 = 0.05, 𝜆 = 0.25 

 

Figure 2(a) shows the creep curves of the three CE (4) with 𝐹(𝑥) = 𝑥, 𝑉(𝑥) = 𝑥|𝑥|, 

𝐸 = 50, 𝜂 = 50 (then 𝜏𝑟 = 1), 𝛱 = 𝐴𝑡𝑢, 𝑢 = 1/3, 𝐴 = 0.03 with three different weighting 

factors 𝑤 = 0; 0.5; 1 (red, black, and light blue curves) for four stress levels  

𝜎̄ = 0.1; 0.2; 0.3; 0.4 (curves 1–4). Dimensionless time is plotted along the abscissa axis: 

the considered qualitative properties of the curves do not depend on its scaling, 𝜎̄ and E 

are dimensionless by dividing by one tenth the quasi-static tensile strength at a standard 

rate. Since 𝛱(0) = 0, the initial value of the creep curve 𝜀(0) = 𝑤𝑐𝐹(𝜎̄). 

Figure 2(b) shows the creep curves of the three CE (4) with the same MFs 𝐹(𝑥) = 𝑥, 

𝑉(𝑥) = 𝑥|𝑥|, 𝐸 = 50, 𝜂 = 50 (𝜏𝑟 = 1) and three weighting factors 𝑤 = 0; 0.5; 1 (red, black, 

and light blue curves) for the same 𝜎̄ = 0.1; 0.2; 0.3; 0.4 (curves 1–4), but with a different 

CF: in the form (6) with 𝛼 = 0, 𝛽 = 0.07, 𝛾 = 0.05, 𝜆 = 0.25. That is, to modify the CE (1) 

with the same MFs, the Kelvin model with retardation time 1/𝜆 = 4 = 4𝜏𝑟 and relaxation 

time (𝛽 − 𝛾)/(βλ) = 8/7 was used. Its CF is limited, 𝛱(∞) = 𝛽, the creep curves of this 

model (red lines) tend at 𝑡 → ∞ to asymptotes 𝜀 = 𝜎̄𝛽. This example clearly shows how 

significantly the creep curves of the CE (4) differ from the creep curves of the CE (1) due 

to the introduction of an additional strain component (and the MF 𝛱, that governs it). 

Obviously, changing the “hybridization” parameter 𝑤 ∈ [0; 1] provides a wide range of 

possibilities to adjust the shape of the creep curves of the CE (4) (Fig. 2(b) shows in blue 

the creep curves 3´,4´, generated by the CR (4) with the same MFs, but with 𝑤 = 0.1). 
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Creep and recovery curves 

The creep and recovery curves, generated by the CE (1), are its responses to a rectangular 

stress pulse (2) with parameters 𝑇 > 0, 𝜎̄ > 𝜎+ ≥ 0. Substituting Eq. (2) into Eq. (1) gives 

the equation for the creep and recovery curves family: 

𝜀(𝑡; 𝜎̄, 𝑇) = 𝑟(𝜎̄)𝑡 + 𝑐𝐹(𝜎̄) at 𝑡 < 𝑇, 𝜀(𝑡; 𝜎̄, 𝑇) = 𝑝(𝜎̄, 𝑇) at 𝑡 > 𝑇,     (13) 

𝑟(𝜎̄) = 𝜂−1𝑉(𝜎̄), 𝑝(𝜎̄, 𝑇) = 𝜂−1𝑉(𝜎̄)𝑇 = 𝑐𝜏𝑟
−1𝑉(𝜎̄)𝑇.       (14) 

The strain jump at the point 𝑡 = 𝑇 is equal to −𝑐𝐹(𝜎̄), 𝑐 = 𝐸−1, at 𝑡 > 𝑇 the strain 

becomes constant and equal to the creep strain 𝑝(𝜎̄, 𝑇) accumulated over time T.  

At complete unloading, only the elastic strain 𝜀(+0) = 𝑐𝐹(𝜎̄) disappears, and the entire 

accumulated creep strain turns out to be irreversible, plastic. This is precisely the 

behavior that many metals (and other materials) exhibit at sufficiently high temperatures. 

Thus, the CE (1) does not describe "reverse creep", i.e., the process of gradual relaxation 

of the accumulated strain to some constant level at large values of time, as is observed 

in tests of many materials. The CE (1) describes only the instantaneous recovery (the 

limiting, idealized case) of elastic strain. The "highly elastic" component of strain, which 

ensures gradual decrease, is completely absent in model (1). The residual strain 𝑝(𝜎̄, 𝑇) 

is proportional to the duration of the loading stage T, depends only on the MF V (as does 

the creep rate 𝑟(𝜎̄)) and increases with increasing 𝜎̄. 

Due to (13), the trace left by a finite stress pulse (2) is never erased, i.e., the memory 

of model (1) is not fading, but is "permanent". The inability to describe materials with 

fading memory is a disadvantage of the CE (1), which narrows the range of modeled 

materials and processes. 

However, this indicates that the CE (1) may be capable of describing not only 

viscoelasticity, but also viscoplasticity. This hypothesis is confirmed by the presence of 

horizontal asymptotes in the stress-strain curves generated by the CE (1) at a constant 

strain rate, horizontal asymptotes, i.e., flow segments at constant stress (without 

subsequent strengthening), as is observed in materials in a state of superplasticity [32-40] 

(they are characterized by creep at a constant rate and the absence of recovery after 

unloading). 

The MF 𝐹 does not affect the creep rate, its jumps and plastic strain 𝑝(𝜎̄, 𝑡∗), and 𝑉 

does not affect instant strain jumps. This allows to determine the MFs 𝛾𝑉(𝑥) and 𝐹(𝑥)/𝐸 

separately based on the material creep and recovery curves [7]. 

The response of the linear CE (3) to a rectangular stress pulse (2) has the form: 

𝜀(𝑡) = 𝜎̄𝑆(𝑡; 𝑇), 𝑆(𝑡; 𝑇): = 𝛱(𝑡) ℎ( 𝑡) − 𝛱(𝑡 − 𝑇) ℎ( 𝑡 − 𝑇), 𝑡 > 0. 

At the point 𝑡 = 𝑇 the creep and recovery curve 𝜀(𝑡) has a jump −𝜎̄𝛱(0), and 𝜀̇(𝑡) 

has a jump −𝜎̄𝛱̇(0). In the interval 𝑡 > 𝑇 the equation of creep and recovery curves has 

the following form: 

𝜀(𝑡; 𝜎̄, 𝑇) = 𝜎̄𝑆(𝑡; 𝑇), 𝑆(𝑡; 𝑇) = 𝛱(𝑡) − 𝛱(𝑡 − 𝑇), 𝑡 > 𝑇. (15) 

From the (non-strict) requirement that the recovery curve (15) decreases (with any T) 

it follows that 𝛱̇(𝑡) does not increase [54]. Therefore, a constraint should be imposed on 

the CF in the CE (1): 𝛱(𝑡) has no downward convexity segments. Since 𝛱̇(𝑡) decreases on 

the ray 𝑡 > 0 and 𝛱̇(𝑡) > 0, there exists a limit 𝑣: = 𝛱̇(∞) ≥ 0. Since the function (15) is 

decreasing and positive (bounded from below), it has at 𝑡 → ∞ a limit 𝜀∞ ≥ 0, and  

𝜀∞ = 𝜎̄𝑆(∞, 𝑇). It is easy to prove that 𝑆(∞, 𝑇) = 𝑣𝑇 [54], i.e., in the case of 𝑣 > 0 after 
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complete unloading (infinitely long), the residual strain 𝜀∞ = 𝜎̄𝑣𝑇 remains. This means 

that at 𝑣 > 0, the memory of the integral operator 𝜫, defining the CE (3), does not fade. 

It can be proven that 𝑣 > 0 for all regular structural models with even number of 

elements and all singular models with odd number of elements. If the CF is bounded (as 

for all regular structural models of an even number of elements), then 𝑣 = 0 and 𝜀∞ = 0. 

It can also be 𝑣 = 0 for an unbounded CF, for example, for a power-law CF 𝛱 = 𝐴𝑡𝑢,  

𝑢 ∈ (0; 1),𝐴 > 0. For models (6) 𝑣 = 𝛼 and 𝑆(𝑡; 𝑇) = 𝛼𝑇 + 𝜇𝑒−𝜆𝑡, 𝜇 = 𝛾(𝑒𝜆𝑇 − 1);  

in particular, 𝑣 > 0 at 𝛼 > 0 (for the Maxwell-type model and its sequential connection 

with the Voigt model); for the Maxwell-type model and Newtonian fluid 𝛾 = 0 and  

𝜀(𝑡) = 𝜎̄𝛼𝑇 ≡ const at 𝑡 > 𝑇, i.e. there is no recovery at all. For the Voigt (singular two-

element model) and Kelvin (regular three-element model) models 𝛼 = 0, and therefore 

the creep and recovery curve (15) has the form 𝜀(𝑡) = 𝜎̄𝜇𝑒−𝜆𝑡, and 𝜀∞ = 0. 

The creep and recovery curve of the CE (4) is obtained by combining the responses 

(13) and (15) of the CE (1) and the linear CE (3) to the stress pulse (2): at 𝑡 < 𝑇 𝜀(𝑡; 𝜎̄, 𝑇) 

is given by equation (12), and at 𝑡 > 𝑇: 

𝜀(𝑡; 𝜎̄, 𝑇) = 𝑤𝑝(𝜎̄, 𝑇) + (1 − 𝑤)𝜎̄𝑆(𝑡; 𝑇), 𝑆(𝑡; 𝑇) = 𝛱(𝑡) − 𝛱(𝑡 − 𝑇), 𝑡 > 𝑇. (16) 

Obviously, both terms (16) increase in absolute value with increasing |𝜎̄|, and 

|𝜀(𝑡; 𝜎̄, 𝑇)| increases along |𝜎̄| and decreases along t at 𝑡 > 𝑇 (since 𝑆(𝑡; 𝑇) decreases). These 

properties reflect typical qualitative properties of creep and recovery curves of structurally 

stable materials, i.e., the CE (4) adequately describes the recovery effect, in contrast to the 

CE (1). At 𝑡 → ∞ there is a limit (residual strain, horizontal asymptote for (16)): 

𝜀∞(𝜎̄, 𝑇) = 𝑤𝑝(𝜎̄, 𝑇) + (1 − 𝑤)𝜎̄𝑣𝑇 = 𝑤𝜂−1𝑉(𝜎̄)𝑇 + (1 − 𝑤)𝜎̄𝑣𝑇, 𝑣: = 𝛱̇(∞) ≥ 0.  (17) 

It is proportional to the duration of the loading stage T (this is one of the applicability 

indicators of the CE (4)), does not depend on the MF F and increases with increasing 𝜎̄. If 

the CF is chosen so that 𝑣 = 0, then the residual strain (16) can be made as small as 

desired by decreasing the parameter w, and thus “remove” the residual strain given by 

the CE (1), if the CE is adjusted to the testing data of a specific material requires this. 

At the point 𝑡 = 𝑇 the creep and recovery curve (12), (16) has a jump  

−𝑤𝑐𝐹(𝜎̄) − (1 − 𝑤)𝛱(0)𝜎̄. It is equal in absolute value to the jump 𝜀(0+; 𝜎̄, 𝑇) = 

= 𝑤𝑐𝐹(𝜎̄) + (1 − 𝑤)𝛱(0)𝜎̄ at the point 𝑡 = 0. The equality of these jumps is another 

applicability indicator of the CE (4): this property is not always satisfied in material tests. If 

𝛱(0) = 0 (such linear models are called irregular, they have many specific properties [54]; 

these include, in particular, the Voigt model, the fractal element and all their successive 

connections), then the creep and recovery curve (15) is continuous at the point 𝑡 = 𝑇, and 

the jump of the creep and recovery curve (12), (16) is equal to −𝑤𝑐𝐹(𝜎̄) and it can be 

made as small as desired by decreasing w. 

Figure 3(a) shows the creep and recovery curves of three CE (4) with 𝐹(𝑥) = 𝑥, 

𝑉(𝑥) = 𝑥|𝑥|, 𝐸 = 50, 𝜂 = 50 (then 𝜏𝑟 = 1), the CF (5) with 𝑢 = 1/3, 𝐴 = 0.03 and three 

weighting factors 𝑤 = 0; 0.5; 1 (red, black and light blue curves) for loadings (2) with 

𝑇 = 10 and three stresses 𝜎̄ = 0.1; 0.2; 0.3 (curves 1–3). Since 𝛱(0) = 0, the creep and 

recovery curves of the (linear) CE with с 𝑤 = 0 are continuous at the point 𝑡 = 𝑇 and the 

jump of any creep and recovery curve of the model with 𝑤 = 0.5 (black curves) is half the 

jump of the creep and recovery curve of the model with 𝑤 = 1 (i.e. model (1)) for the 

same 𝜎̄. Since 𝑣 = 𝛱̇(∞) = 0, for all creep and recovery curves the (linear) CE with  

𝑤 = 0, 𝜀∞(𝜎̄, 𝑇) = 0, i.e. they converge at 𝑡 → ∞ to a common asymptote 𝜀 = 0. 



Hybrid of a nonlinear Maxwell-type viscoelastoplastic model with the linear viscoelasticity constitutive equation  126 

and properties of crossbreed creep and stress-strain curves 

Therefore, the residual strain 𝜀∞(𝜎̄, 𝑇) of the model with 𝑤 = 0.5 is two times smaller 

than that of the model (1) (the asymptotes of curves 1–3 are shown as dash-dotted 

straight lines), and the recovery is slow (in comparison, for example, with Fig. 3(b)). This 

example clearly shows how significantly different the creep and recovery curves of the 

CE (4) are from the creep and recovery curves of the CE (1) due to the introduction of an 

additional strain component (and the MF 𝛱, that controls it). 
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(a) (b) 

Fig. 3. Creep and recovery curves for three stress levels 𝜎̄ = 0.1; 0.2; 0.3 (curves 1–3) generated by several 

models of the form (4) with 𝐹(𝑥) = 𝑥, 𝑉(𝑥) = 𝑥|𝑥|, 𝐸 = 50, 𝜂 = 50 and three different weighting factors 

𝑤 = 0; 0.5; 1 (red, black, and light blue curves): (a) three models with the creep function (5) with 𝑢 = 1/3, 

𝐴 = 0.03; (b) three models with the creep function (6) with 𝛼 = 0, 𝛽 = 0.07, 𝛾 = 0.05, 𝜆 = 0.25 

 

Figure 3(b) shows the creep and recovery curves of three CR (4) with the same MFs 

𝐹(𝑥) = 𝑥, 𝑉(𝑥) = 𝑥|𝑥|, 𝐸 = 50, 𝜂 = 50 (𝜏𝑟 = 1) with three different weighting factors 

𝑤 = 0; 0.5; 1 (red, black and light blue curves) for loadings (2) with 𝑇 = 10 and three 

stress levels 𝜎̄ = 0.1; 0.2; 0.3 (curves 1–3), but with a different CF: in the form (6) with 

𝛼 = 0, 𝛽 = 0.07, 𝛾 = 0.05, 𝜆 = 0.25. That is, to modify the CE (1) with the same MFs, the 

Kelvin model with retardation time 1/𝜆 = 4 = 4𝜏𝑟 is used; its CF is limited, 𝛱(∞) = 𝛽, 

𝛱(0) = 𝛽 − 𝛾, 𝑆(𝑡; 𝑇) = 𝛾(𝑒𝜆𝑇 − 1)𝑒−𝜆𝑡 and the creep and recovery curves of this model 

(red lines) have jumps 𝛱(0)𝜎̄ = (𝛽 − 𝛾)𝜎̄ at the points 𝑡 = 0 and 𝑡 = 𝑇, and at 𝑡 → ∞ they 

tend to common asymptote 𝜀 = 0 (for any material parameters and any 𝜎̄, since  

𝜀∞ = 𝜎̄𝑣𝑇 = 0) with a rate 𝑒−𝜆𝑡 (much faster than the model in Fig. 3(a)). 

It should be noted that the results of this section allow us to derive the equation of 

creep curves of the CE (4) under arbitrary stepwise loading (with any number of stress 

stages) by analogy with those obtained in articles [4,7,54]. 

 

General properties of stress-strain curves generated by the linear 

viscoelasticity CE 

The loading 𝜎(𝑡) = 𝑏𝑡 at a constant rate 𝑏 > 0 (for definiteness, we consider the case 

 𝑏 > 0), the linear CE (3) maps into following strain: 𝜀(𝑡, 𝑏) = 𝑏𝑄(𝑡) = 𝑏𝑡𝛩(𝑡), 

𝑄(𝑡) = ∫ 𝛱(𝜏)
𝑡

0
𝑑𝜏, 𝛩(𝑡) = 𝑡−1𝑄(𝑡), 𝑡 > 0. 
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Excluding the parameter t gives the loading curves generated by the CE (3) under 

loading 𝜎(𝑡) = 𝑏𝑡: 

𝜀(σ,𝑏) = 𝑏𝑄(σ/𝑏) = Θ(σ/𝑏)𝜎, 𝜎 ≥ 0.    (18) 

The properties of averaging 𝛩(𝑡) are similar to the properties of the CF [55, 56]: 

𝛩(𝑡) is an increasing smooth function at 𝑡 > 0, 𝛱(𝑡)/2 < 𝛩(𝑡) < 𝛱(𝑡/2) < 𝛱(𝑡) (since 

𝛱(𝑡) is increasing and convex upward), 𝛩(0+) = 𝛱(0), 𝛩(∞) = 𝛱(∞), 𝛩̇(0+) =

𝛱̇(0+)/2, and 𝑄 has the following properties: 𝑄(0) = 0, 𝑄(∞) = ∞, 𝑄̇(𝑡) = 𝛱(𝑡) > 0, 

𝑄̈(𝑡) = 𝛱̇(𝑡) > 0, 𝑄(𝑡) = 𝛱̈(𝑡) ≤ 0 и 0.5(𝛱(𝑡) + 𝛱(0)) < 𝑄(𝑡)/𝑡 < 𝛱(𝑡/2) < 𝛱(𝑡), 𝑡 > 0. 

To obtain the equations of loading curves (18) in the form 𝜎 = 𝜎(ε,𝑏), it is necessary to 

introduce into consideration the function 𝑃(𝑥), 𝑥 > 0 inverse to the increasing function Q: 

𝜎(ε,𝑏) = 𝑏𝑃(ε/𝑏), ε,𝑏 > 0.           (19) 

From the positivity and increase of the CF, it follows that P is an increasing upward 

convex function, 𝑃(0) = 0, 𝑃(∞) = ∞, 𝑃′(0+) = 1/𝛱(0) (in particular, 𝑃′(0+) = ∞,  

if 𝛱(0) = 0), 𝑃′(∞) = 1/𝛱(∞), the function 𝑃(𝑥)/𝑥 is decreasing and 𝑃(𝑥)/𝑥 > 𝑃′(𝑥)  

at 𝑥 > 0 [3]. From the constraints 𝛱̇ > 0 and 𝛱̈ ≤ 0 on the CF and the properties of the 

functions Q and P, the following general properties of the loading curves (19) follow. 

The tangent and secant moduli of the stress-strain curves (19) are: 

𝜎𝜀
′(ε,𝑏) = 1/𝜀𝜎

′ (𝜎, 𝑏) = 1/𝛱(𝜎/𝑏) and 𝜎/𝜀 = 1/𝛩(𝜎/𝑏) (since the uniaxial CE (3) 

coincides with the linear viscoelasticity CE for the components of the deviators of the 

stress and strain tensors, they can be considered shear moduli, although similar 

properties can be derived for loading curves in tension or compression [56]). Since 

𝜀𝜎
′ (𝜎, 𝑏) > 0 and 𝜎𝜀

′ > 0, any loading curve (18) increases along 𝜎, and the loading curve 

𝜎 = 𝜎(𝜀, 𝑏) increases along 𝜀 at any 𝑏. Since the CF increases, 𝜀𝜎
′ (𝜎, 𝑏) increases along σ 

and decreases along 𝑏, and 𝜎𝜀
′(𝜀, 𝑏) decreases along ε and increases along 𝑏. Therefore, 

for any 𝑏 > 0 the loading curves (18) are convex downward, and the loading curves in the 

form (19) are convex upward on the semi-axis 𝜀 > 0. The upward convexity of the loading 

curve up to the beginning of fracture or to the yield point is characteristic of many 

polymers, asphalt concretes, metals and alloys [11,18,19,24,27,28,32–34]. 

The stress-strain curves family (18) decreases along 𝑏, since 𝛩̇(𝑡) > 0 and 𝛩(𝜎/𝑏) 

decreases along 𝑏, and the loading curves family in the form (19) increases along 𝑏 (the 

higher the rate, the higher lies the loading curve 𝜎 = 𝜎(𝜀, 𝑏)), i.e. the CE (3) models only 

positive rate sensitivity. 

The stress-strain curve (18) depends on b, but the instantaneous modulus (shear modulus 

G or volumetric modulus K) does not depend on the loading rate: 𝐺: = 𝜎𝜀
′(0, 𝑏) = 𝛱(0)−1  

(for models with 𝛱(0) = 0 it will be 𝐺 = ∞). At 𝜀 → ∞ the tangent and secant moduli 

tend to the common limit 𝐺∞ = 𝑅(∞) = 1/𝛱(∞) ≥ 0 (if the CF is limited, then 𝐺∞ > 0;  

if the CF is not limited, then 𝐺∞ = 0). Thus, the long-term modulus 𝐺∞ also does not 

depend on the loading rate. 

Any stress-strain curve (18) lies "above" (along the ε axis) the straight line  

𝜀 = 𝛱(0)𝜎, since 𝛩(𝑡) > 𝛩(0+) = 𝛱(0), and all the stress-strain curves in the form 

𝜎(𝜀, 𝑏) lie below (along the σ axis) this straight line. More precisely, in the case of  

𝛱(0) ≠ 0 (for regular models), two-sided estimates are valid for all loading curves (18) and (19): 

𝛱(0)𝜎 < 𝜀(σ;𝑏) < Π(∞)𝜎, 𝐺∞𝜀 < 𝜎(𝜀, 𝑏) < 𝐺𝜀.      (20) 

At 𝑏 → +∞ the stress-strain curves family 𝜀(σ;𝑏) of any regular model converges from above 

(and the family 𝜎(𝜀, 𝑏) from below) to the straight line 𝜀 = 𝜎/𝐺 uniformly on any segment of 
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the σ axis [55]: 𝑠𝑢𝑝
[0,𝜔]

|𝜀 − σ/𝐺| = 𝑠𝑢𝑝
[0,𝜔]

𝜎|𝛩(σ/𝑏) − Π(0)| = 𝜔|𝛩(ω/𝑏) − Π(0)| → 0, since 

𝛩̇(𝑡) > 0 and 𝛩(0+) = 𝛱(0). Therefore, the straight line 𝜎 = 𝐺𝜀 is the instant loading 

curve of the CE (3) in the case of 𝛱(0) ≠ 0. The stress-strain curves family at a constant 

strain rate also converges to it [55]. If 𝛱(0) = 0 (as in the CF (5)), then 𝐺 = ∞, the tangent 

to any loading curve (18) at zero is horizontal, and the tangent to the loading curve in the 

form (19) is vertical, and the loading curves  family (18) uniformly converges at 𝑏 → +∞ 

to the straight line 𝜀 = 0. 

At 𝑏 → 0 the stress-strain curves family (18) always converges (from above) to the 

straight line 𝜎 = 𝐺∞𝜀 (equilibrium loading curve) uniformly on any segment of the semi-

axis 𝜀 > 0. This is also true in the case of unbounded or singular relaxation functions. 

The stress-strain curve (18) has an asymptote at 𝜎 → ∞ only when the CF is limited 

and the integral 𝑌: = ∫ [𝛱(∞) − 𝛱(𝜏)]
+∞

0
𝑑𝜏 converges (obviously, 𝑌 > 0) [55], its 

equation: 𝜀 = 𝛱(∞)𝜎 − 𝑏𝑌, or 𝜎 = 𝐺∞(𝜀 + 𝑌𝑏). All the stress-strain curves 𝜎(𝜀, 𝑏) tend to 

an asymptote from below. Its angular coefficient is equal to the long-term modulus 𝐺∞ 

and does not depend on b. The question of the existence of asymptotes for the stress-

strain curves is not purely abstract, since reaching an asymptote (straightening of stress-

strain curves, "linear hardening" mode) can occur in the operating range of strains and 

stresses. 

For example, for models (6) 𝑄 = 0.5𝛼𝑡2 + 𝛽𝑡 − γλ−1(1 − 𝑒−𝜆𝑡), and the stress-strain 

curves family (18) has the following form: 

𝜀(𝜎, 𝑏) = 0.5𝛼𝑏−1𝜎2 + βσ − γλ−1𝑏(1 − 𝑒−𝜆𝜎/𝑏), 𝜎 > 0.       (21) 

The instantaneous modulus 𝐺 = 1/(𝛽 − 𝛾); for models with 𝛾 = 𝛽 (singular)  

𝐺 = ∞. If 𝛼 = 0, i.e, for Voigt (with 𝛾 = 𝛽) and Kelvin (𝛾 ∈ (0; 𝛽)) models, then  

𝛱(∞) = 𝛽 < ∞, 𝑌 = 𝛾/𝜆, 𝐺∞ = 1/𝛽, and each loading curve has an asymptote  

𝜎 = 𝛽−1(𝜀 + γλ−1𝑏) at 𝜀 → ∞. If 𝛼 > 0, then 𝛱(∞) = ∞ and the loading curve (21) have 

no asymptotes. For the Maxwell-type model (the CF (6) with 𝛾 = 0, α,β > 0) 𝐺 = 1/𝛽, 

𝐺∞ = 0 and the loading curves family converges at 𝑏 → 0 to the function 𝜎 = 0. 

Figure 4(a) shows the stress-strain curves (21) of the Kelvin model (the CF (6) with 

𝛼 = 0) at 𝜆 = 0.1, 𝛽 = 1, 𝛾 = 0.9 (then 𝛱(0) = 𝛽 − 𝛾, 𝐺 = 1/(𝛽 − 𝛾) = 10, 𝐺∞ = 1/𝛽 = 1, 

retardation time 𝜏 = 1/𝜆 = 10, relaxation time 𝜏𝑟 = (1 − γ/β)𝜏 = 0.1𝜏) for the rates 

 𝑏 = 0.001; 0.01; 0.1; 1 (black loading curves 1–4). Each loading curve 𝜎(𝜀, 𝑏) at 𝜀 → ∞ has 

an asymptote 𝜎 = 𝐺∞(𝜀 + γτ𝑏). The dash-dotted red straight lines 0 and ∞ are the 

instantaneous and equilibrium stress-strain curves 𝜎 = 𝐺𝜀 and 𝜎 = 𝐺∞𝜀, appearing in 

estimate (20); the family of loading curves of Kelvin model with any value of 𝜆 converges 

to them at 𝑏 → ∞ and 𝑏 → 0. For comparison, the stress-strain curves (21) of the Voigt 

model with 𝛾 = 𝛽 = 1, the same 𝜆 = 0.1 and retardation time 𝜏 = 10 (blue dashed loading 

curves 1˝–4˝) are given. For it, 𝛱(0) = 0 (and the model is singular, since the relaxation 

function contains the term ηδ(𝑡) with the delta-function), 𝐺 = ∞, 𝐺∞ = 1/𝛽 = 1, the 

equilibrium loading curve 𝜎 = 𝐺∞𝜀 coincides with the straight line 0, at 𝑏 → ∞ the family 

𝜀(σ,𝑏) converges to 𝜀 = 0, and the loading curves 𝜎(ε,𝑏) converge to the vertical semi-

axis (i.e. the instantaneous loading curve does not exist). Each stress-strain curve at  

𝜀 → ∞ has an asymptote 𝜎 = 𝐺∞𝜀 + 𝜏𝑏, parallel to the equilibrium loading curve 0. The 

light blue curves 1´–4´ are the loading curves (21) of the Maxwell-type model (i.e., the 

model with the CF (6) with 𝛾 = 0) with 𝛼 = 1, 𝛽 = 1 for the same rates. Like Voigt model 
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it depends on two material parameters, but is regular: 𝛱(0) = 𝛽, 𝐺 = 1/𝛽 = 1,  

𝛱(∞) = ∞, 𝐺∞ = 0, relaxation time 𝜏𝑟 = β/𝛼 = 1. The stress-strain curves of the 

Maxwell-type model have no asymptotes. At 𝑏 → 0 and 𝑏 → ∞ the loading curves family 

𝜎(ε,𝑏) converges to the straight lines 𝜎 = 0 and 𝜎 = 𝐺𝜀 (the straight line 0). The light 

blue dashed curves 2´–4´ are the stress-strain curves of Maxwell-type model with the 

same instantaneous modulus 𝐺 = 10, as the stress-strain curves 1–4 of the Kelvin model, 

i.e., the Maxwell-type model with 𝛽 = 0.1, 𝛼 = 1. Therefore, its instantaneous loading 

curve coincides with the curve ∞. The curve 1˝´ is the loading curve of the fractal 

model (5) with 𝑢 = 0.3 for 𝑏 = 0.1, i.e., exactly the stress-strain curve 3 from Fig. 4(b). 
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(a) (b) 

Fig. 4. (а) Stress-strain curves (21) generated by the classic Kelvin-Voigt, Maxwell and standard linear 

solid models (blue, light blue, and black curves) at four stress rates 𝑏 = 0.001; 0.01; 0.1; 1 (curves 1–4,  

1´– 4´, 1´´–4´´); (b) stress-strain curves (22) generated by three models of the form (5) with 𝑢 = 0.3; 0.9; 0.1 

(black, light blue, and blue curves) at stress rates 𝑏 = 0.001; 0.01; 0.1; 1 (curves 1–4, 1´–4´, 1´´–4´´) 

 

Let us consider the loading curves of a fractal element, i.e., the model with a power-

law CF (5) (it corresponds to an unlimited unbounded relaxation function 

𝑅(𝑡) = 𝐴−1𝐶(𝑢)𝑡−𝑢, 𝐶(𝑢) = (𝑢𝜋)−1 𝑠𝑖𝑛 𝑢 𝜋 [55]). For the CF (5) 𝛱(0) = 0 (the model is 

irregular), 𝛱(∞) = ∞, 𝛩 = 𝐴(𝑢 + 1)−1𝑡𝑢, and the equation of loading curves (18) has the 

following form: 

𝜀(σ,𝑏) = 𝐴(𝑢 + 1)−1𝜎(σ/𝑏)𝑢, or 𝜎(ε,𝑏) = [(𝑢 + 1)𝐴−1𝑏−1𝜀]1/(𝑢+1)𝑏.     (22) 

𝐺 = ∞, 𝐺∞ = 0, at 𝜀 → ∞ the loading curves have no asymptote. At 𝑏 → 0 the 

loading curves family 𝜎(ε,𝑏) converges to the function 𝜎 = 0, and at 𝑏 → ∞ the family 

𝜀(σ,𝑏) converges to 𝜀 = 0, i.e., the loading curves 𝜎(ε,𝑏) converge to the semi-axis, the 

segment in the estimate (20) turns into the first quadrant. 

Figure 4(b) shows the curves (22) of three models of the form (5) with 𝐴 = 0.3 and 

𝑢 = 0.3; 0.9; 0.1 (black, light blue and blue dashed curves) for loading rates 
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𝑏 = 0.001; 0.01; 0.1; 1 (loading curves 1–4, 1´–4´, 1˝–4˝). An additional curve 0 is for  

𝑏 = 0.0001. As u increases, the tangent modulus in the vicinity of zero increases, and the 

loading curves (22) become increasingly higher. At small u, the model becomes much less 

sensitive to rate: the curves straighten and come closer (loading curves 1˝–4˝), the fan 

opening angle quickly decreases, and at 𝑢 → 0 it contracts into a straight line 𝜎 = 𝐴−1𝜀 

(red dash-dotted line). 

 

Properties of stress-strain curves with constant rate generated by the CE (1) 

The loading 𝜎(𝑡) = 𝑏𝑡 at a constant rate 𝑏 > 0 CE (1) maps into the strain: 

𝜀(𝑡; 𝑏) == 𝐸−1𝐹(𝑏𝑡) + 𝜂−1 ∫ 𝑉(𝑏𝜏)dτ
𝑡

0
= 𝐸−1[𝐹(𝑏𝑡) + (𝜏𝑟𝑏)−1𝐼(𝑏𝑡)],    𝐼(𝑠): = ∫ 𝑉(𝑥)𝑑𝑥

𝑠

0
, 

𝜏𝑟: = 𝜂/𝐸. 

Excluding the time 𝑡 = 𝜎/𝑏, we obtain the stress-strain curves equation: 

𝜀(𝜎, 𝑏) = 𝐸−1[𝐹(𝜎) + (𝜏𝑟𝑏)−1𝐼(𝜎)], 𝑏, 𝜎 > 0.     (23) 

If 𝜎+ > 0 (i.e., 𝑉(𝑥) ≡ 0 at 𝑥 ∈ [0; 𝜎+]), then at 𝜎 < 𝜎+ 𝐼(𝜎) ≡ 0, and therefore the 

stress-strain curve (23) has the form 𝜀(𝜎, 𝑏) = 𝐹(𝜎)/𝐸, i.e., the CE describes the behavior 

of a nonlinearly elastic material and the stress-strain curve does not depend on the 

loading rate at 𝜎 < 𝜎+. If 𝜎 > 𝜎+ (in particular, in the case of 𝜎+ = 0), then 𝑉(𝑥) > 0 and 

𝐼(𝜎) > 0, and therefore the stress-strain curve depends on the rate b: the loading curves 

family (23) decreases along b at 𝜎 > 𝜎+, and the loading curves family in the inverse form 

𝜎 = 𝜎(𝜀, 𝑏) increases along b at 𝜀 ≥ 𝜀+, where 𝜀+: = 𝐹(𝜎+)/𝐸 (the higher the loading rate, 

the higher lies the stress-strain curve 𝜎 = 𝜎(𝜀, 𝑏)). For the strain (23), the estimate from 

below 𝜀(𝜎, 𝑏) ≥ 𝐸−1𝐹(𝜎) at 𝑏, 𝜎 > 0 is valid (if 𝜎 > 𝜎+, then the inequality is strict), and 

therefore for loading curves in the form 𝜎(𝜀, 𝑏) for all 𝑏, 𝜀 > 0 the estimate from above 

𝜎(𝜀, 𝑏) ≤ 𝑓(𝐸𝜀) is true, where 𝑓 = 𝐹−1 is the inverse function of F. At 𝜀 > 𝜀+ this estimate 

can be refined: 

𝜎+ < 𝜎(𝜀, 𝑏) < 𝑓(𝐸𝜀), 𝜀 > 𝜀+           (24) 

(in the case of 𝜎+ = 0 it is true for all 𝜀 > 0, and in the case of 𝜎+ > 0 𝜎(𝜀, 𝑏) = 𝑓(𝐸𝜀) at 

𝜀 ≤ 𝜀+). 

The MF 𝐼(𝑠) increases and is convex downward at 𝜎 > 𝜎+, since 𝐼″(𝑠) = 𝑉′(𝑠) > 0. 

Therefore, all loading curves (23) increase along σ and the loading curves 𝜎 = 𝜎(𝜀, 𝑏) 

increase along 𝜀, and if 𝐹″(𝑥) ≥ 0, then 𝜀″(𝜎) > 0, the loading curves (23) are convex 

downward, and the loading curves 𝜎 = 𝜎(𝜀) are convex upward for any b. 

As a result of analyzing the implicit representation of the loading curves (23) under 

the above mentioned minimum constraints on the two MF in [8], other basic properties 

of the loading curves 𝜎 = 𝜎(𝜀, 𝑏), 𝑏 > 0 were found. Many properties of the loading 

curves of the nonlinear CE (1) are similar to the properties of the loading curves of the 

linear integral viscoelasticity CE. In particular, the CE (1) is also unable to describe the 

negative rate sensitivity [57–60] and the behavior of materials for which the dependence 

of the instantaneous modulus on the loading rate or strain has been reliably established: 

polymers at sufficiently high temperatures, copper, tin, aluminum, titanium alloys in the 

superplasticity regime, etc. [8,32–40,61–64]. Polymers in the glassy state and many other 

materials do not exhibit rate sensitivity at sufficiently small strains. This effect can be 

described only by replacing the instantaneous modulus with a secant modulus or one 

averaged in the vicinity of zero. These properties are the inapplicability indicators of the 
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CE (1), along with its inability to model creep at a variable rate, fading memory, recovery 

after unloading, the Mullins effect, and adaptability under soft asymmetrical cyclic 

loading [4–10]. But, in contrast to the loading curves of the linear CE, which are always 

convex upward, the loading curves of the CE (1) can (if 𝐹″(𝑥) < 0) have inflection points 

and convexity downward on a certain interval 𝜀 < 𝜀̃(𝑏), (at sufficiently small strain, as in 

many elastomers, foams, and biological tissues: ligaments, tendons, vessels [18,65–69]). 

There are several other features of the loading curves of the CE (1) in comparison 

with the loading curves of the linear CE: 

1. the dependence of the loading curve of the CE (1) on the loading rate b is monotonic, 

but nonlinear and can be different under tension and compression; 

2. the tangent modulus of the loading curves 𝜕𝜎/𝜕𝜀 = 𝐸[𝐹′(𝜎) + (𝜏𝑟𝑏)−1𝑉(𝜎)]−1 

depends on the rate (increases along b), but instantaneous moduli in tension and 

compression 𝐸± = 𝐸/𝐹′(0±) (limit values of the tangent modulus of the loading curves 

at 𝜀 → 0 ± 0) do not depend on the rate b and the MF V, and can be different; 

3. the instantaneous and equilibrium loading curves of the CE (1) (the limits of the loading 

curves family 𝜎(𝜀, 𝑏) at 𝑏 → 0 + and at 𝑏 → ∞) are no longer necessarily rectilinear: at 

𝑏 → ∞ the loading curves family 𝜎(𝜀, 𝑏) converges on the ray 𝜀 ≥ 0 to the curve 𝜎 =

𝑓(𝐸𝜀), 𝑓 = 𝐹−1 (curve ∞ in Fig. 5) uniformly on any segment of the axis 𝜀. And at 𝑏 → 0 + 

the loading curves family 𝜎(𝜀, 𝑏) converges to the constant 𝜎 = 𝜎+ on the ray 𝜀 ≥ 𝜀+ 

(curve 0 in Fig. 5), where 𝜀+: = 𝐹(𝜎+)/𝐸. And at 𝜀 ∈ [0; 𝜀+] it converges to the function 

𝜎 = 𝑓(𝐸𝜀). The equilibrium loading curve of the CE (1) has a different form in the cases 

of 𝜎+ = 0 or 𝜎+ > 0: if 𝜎+ = 0, the loading curves family 𝜎(𝜀, 𝑏) converges at 𝑏 → 0 + to 

the straight line 𝜎 ≡ 0 on the entire ray 𝜀 ≥ 0, and if 𝜎+ > 0, it converges to the diagram 

of an ideal elastoplastic material with a yield stress 𝜎𝑦 = 𝜎+ and an initial segment of 

elastic strain 𝜎 = 𝑓(𝐸𝜀), 𝜀 ∈ [0; 𝜀+] [8]. Setting 𝜎+ > 0 and 𝑉(𝑥) ≡ 0 at 𝑥 ∈ [0, 𝜎+] 

ensures that the initial segments of all loading curves 𝜎(𝜀, 𝑏) at 𝜀 ∈ [0; 𝜀+] (i.e., at  

𝜎 ≤ 𝜎+) coincide with the curve 𝜎 = 𝑓(𝐸𝜀) (Fig. 5). 

All discovered general properties of tensile loading curves are also inherent in 

compression loading curves, i.e., at 𝑏 < 0 (and 𝜎 < 0): you just need to replace the signs 

of all inequalities with their inverses and upward convexity with downward convexity, 

𝑏 → 0 + with 𝑏 → 0 −, 𝜎+ ≥ 0 with 𝜎− ≤ 0, 𝜀+ ≥ 0 with 𝜀− = 𝐸−1𝐹(𝜎−) ≤ 0, the segment 

[0; 𝜀+] with [𝜀−; 0], [0, 𝜎+] with [𝜎−; 0]. The parameter 𝜎− ≤ 0 (the lower bound of the set 

of zeros, the MF 𝑉(𝑥)) has the same physical meaning in compression as 𝜎+ in tension. 

Figure 5 shows the loading curves 𝜎(𝜀, 𝑏) of the model with 𝜎+ > 0 and the MF 

𝑉(𝑥) ≡ 0 at 𝑥 ∈ [𝜎−, 𝜎+]: 

𝑉 = 𝐴+(𝑥 − 𝜎+)𝑛 at 𝑥 > 𝜎+, 

𝑉 = −𝐴−|𝑥 − 𝜎−|𝑚 at 𝑥 < 𝜎−;    (25) 

𝐹(𝑥) = 𝑥 + 𝑞𝑉(𝑥), 𝑥 > 0, 

𝐴+, 𝐴− > 0, 𝑚, 𝑛 ≥ 1, 𝑞 ≥ 0 (for any 𝑞 ≥ 0 the constraints 𝐹′(𝑥) > 0 and 𝐹(0) = 0 

are satisfied, since they are satisfied for 𝑉). At 𝜎 ∈ [𝜎−, 𝜎+] this model describes a linearly 

elastic material, and at 𝜎 ∉ [𝜎−, 𝜎+] rheonic properties and tension-compression 

asymmetry appear (if 𝜎− ≠ −𝜎+ or 𝐴− ≠ 𝐴+ or 𝑚 ≠ 𝑛). The loading curve (23) has the 

following form: 𝜀 = 𝐸−1𝜎 at 𝜎 ∈ [0, 𝜎+], 𝜀 = 𝐸−1[𝜎 + 𝑞𝐴+(𝜎 − 𝜎+)𝑛 + 𝐴+(𝑛 + 1)−1(𝜎 −

−𝜎+)𝑛+1(𝜏𝑟𝑏)−1], 𝜎 > 𝜎+. 
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Figure 5 shows the loading curves of this model with 𝑞 = 5, 𝜎+ = 0.1, 𝑛 = 2,  

𝐴+ = 1, 𝜂 = 10, 𝐸 = 10, 𝜏𝑟 = 1 for 𝑏 = 10𝑖−7, 𝑖 = 1, . . . ,6 (curves 1–6). All loading curves 

have a common straight segment 𝜎 = 𝐸𝜀, 𝜀 ≤ 𝜀+, 𝜀+ = 𝜎+/𝐸, independent of rate. At 𝜎 >

𝜎+ the loading curves depend on the rate and shift upward as b increases. At 𝑏 → 0 𝜎(𝜀, 𝑏) →

𝜎+ for any 𝜀 ≥ 𝜀+, i.e., the loading curves family 𝜎(𝜀, 𝑏) converges to the loading curves of 

an ideal elastoplastic material with a yield stress 𝜎𝑦 = 𝜎+ (𝜎 = 𝜎+ is the straight line 0).  

The dashed curve ∞ is the limited loading curve at 𝑏 → ∞ (since 𝑞 > 0, the instantaneous 

loading curve is not rectilinear at 𝜎 > 𝜎+). For comparison, the dash-dotted line shows the 

limiting loading curves at 𝑏 → ∞ and 𝑏 → 0 for 𝜎+ = 0.05 (see the estimate (24)). 
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Fig. 5. Different forms of stress-strain curves 𝜎(𝜀, 𝑏), generated by the constitutive equation (1): (а) curves 

𝜎(𝜀, 𝑏) generated by the model (25) with 𝜎+ > 0 at stress rates 𝑏 = 10𝑖−7, 𝑖 = 1, . . . ,6 (curves 1–6) and 

limit curves at 𝑏 → 0 + or 𝑏 → ∞; (dashed lines); (b) stress-strain curves generated by the model (1) with 

𝜎+ = 0, 𝜏𝑟 = 1, 𝐹 = 𝑥1/2 and 𝑉 = 𝑥 at stress rates 𝑏 = 1 ⋅ 10−𝑖; 2 ⋅ 10−𝑖; 3 ⋅ 10−𝑖 , 𝑖 = 4; 3; 2; 1 

 

For the power-law MFs 𝐹 = 𝑥𝑚, 𝑉 = 𝑥𝑛 we have 𝐼(𝑠) = (𝑛 + 1)−1𝑠 
𝑛+1, and the 

loading curve (23) takes the form: 𝜀(𝜎, 𝑏) = 𝐸−1𝜎 
𝑚 + (𝛾𝑏)−1(𝑛 + 1)−1𝜎 

𝑛+1. 

In the case of 𝑛 > 𝑚 − 1 ≥ 0, 𝐹″(𝑥) ≥ 0 and 𝑉(𝑥) increases, therefore all loading 

curves 𝜎(𝜀, 𝑏) with 𝑏 > 0 are convex upward on the semi-axis 𝜀 > 0. At 𝑚 < 1 this is not 

the case: the loading curves have an inflection point and a segment of convexity 

downwards in the vicinity of zero (see [8] and Fig. 5(b)). Figure 5(b) shows the loading 

curves 𝜎(𝜀, 𝑏) of the model with 𝐹 = 𝑥𝑚, 𝑉 = 𝑥𝑛, 𝑚 = 0.5, 𝑛 = 1, 𝜂 = 𝐸 = 10, 𝜏𝑟 = 1 for 

different rates: 𝑏 = 1 ⋅ 10−𝑖; 2 ⋅ 10−𝑖; 3 ⋅ 10−𝑖, 𝑖 = 4; 3; 2; 1 (the loading curves 𝑏 = 1 ⋅

10−𝑖 are marked with arrows). The dashed loading curves are the limit curves 𝜎 = 𝑓(𝐸𝜀), 

𝑓 = 𝑦1/𝑚, at 𝑏 → ∞ (instantaneous loading curves) and 𝜎 = 0 at 𝑏 → 0 (equilibrium 

loading curve). The dash-dotted curve is the geometric locus of inflection points 

(𝜀̃(𝑏), 𝜎̃(𝑏)) of the loading curves with different 𝑏 > 0; the set {(𝜀̃(𝑏), 𝜎̃(𝑏))|𝑏 > 0} does 
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not depend on 𝜂 and 𝜏𝑟, since 𝜎̃ and 𝜀̃ з depend only on the parameter 𝜏𝑟𝑏 [8], and 𝜂 s 

included only in it. 

 

Properties of the loading curves with constant rates generated by the CE (4) 

The stress-strain curve of the CE (4) is obtained by combining the responses of the CE (1) 

and the linear CE (3) to the loading 𝜎 = 𝑏𝑡, 𝑏 > 0: 

𝜀(𝜎, 𝑏) = 𝑤𝐸−1[𝐹(𝜎) + (𝜏𝑟𝑏)−1𝐼(𝜎)] + (1 − 𝑤)𝛩(𝜎/𝑏)𝜎, 𝑏, 𝜎 > 0,    (26) 

where 𝐼(𝑠) and 𝛩(𝑡) are defined in (23) and (18). The equation (26) specifies the stress-

strain curves family 𝜎 = 𝜎(𝜀, 𝑏) of the CE (4) in implicit (inverse) form. The strain (26) 

increases along 𝜎 and decreases along b at σ,𝑏 > 0, and the stress-strain curves family 

𝜎 = 𝜎(𝜀, 𝑏) increases along 𝜀 and b. The derivative 𝜕𝜀/𝜕𝜎 = 𝑤𝐸−1[𝐹′(𝜎) +

(𝜏𝑟𝑏)−1𝑉(𝜎)] + (1 − 𝑤)𝛱(𝜎/𝑏) is positive and decreasing along b at any 𝜎 > 0 (since the 

CF increases), and at 𝜎 = 0 does not depend on b and the MF V: 𝜕𝜀/𝜕𝜎|𝜎=0 =

𝑤𝐸−1𝐹′(0) + (1 − 𝑤)𝛱(0) (and can be equal to 0 or ∞, if 𝐹′(0) = 0 or 𝐹′(0) = ∞). It is 

obvious that 𝜀(0, 𝑏) = 0, and adding the previously proven estimates from below for 

terms (27) (in particular, 𝛩(𝑡) > 𝛩(0) = 𝛱(0) [55]), we obtain at any 𝑏, 𝜎 > 0 the 

following estimate: 

𝜀(𝜎, 𝑏) > 𝐸−1𝛷(𝜎), 𝑏, 𝜎 > 0, 𝛷(𝜎) = 𝑤𝐹(𝜎) + 𝐸(1 − 𝑤)𝛱(0)𝜎.   (27) 

(the inequality is strict even at 𝜎 < 𝜎+ in contrast to the inequality for the loading curves 

of the CE (1)). Since 𝛷(𝜎) is an increasing function (and 𝛷(0) = 0), then there is an inverse 

function 𝜑, 𝜑(0) = 0, and for all loading curves in the form 𝜎(𝜀, 𝑏) the estimate from 

above is valid: 𝜎(𝜀, 𝑏) < 𝜑(𝐸𝜀) at 𝑏, 𝜀 > 0 (it does not depend on the MF V). In the case 

of the model with 𝐹(𝑥) = 𝑥 it has the form 𝜎(𝜀, 𝑏) ≤ [𝑤 + 𝐸(1 − 𝑤)𝛱(0)]−1𝐸𝜀, and in 

the case of the model with 𝛱(0) = 0 (as does the CF (5), for example) it has the form 

𝜎(𝜀, 𝑏) ≤ 𝑓(𝐸𝑤−1𝜀), where 𝑓 = 𝐹−1. 

The stress-strain curves (26) inherit the general properties of the stress-strain curves 

𝜀(𝜎, 𝑏), generated by the CE (1) or the CE (3), but they lose some (because the properties 

of the stress-strain curves of the crossbred CEs are different) and acquire new ones. For 

arbitrary MFs F, V, П, subject only to the minimal constraints of one of previous section, 

and any 𝑤 ∈ (0; 1), the following statements are true. 

1. The stress-strain curves family (26) increases along 𝜎 and decreases along b at σ,𝑏 >

0, and the loading curves family in the form 𝜎 = 𝜎(𝜀, 𝑏) increases along 𝜀 and b, and the 

estimate 𝜎(𝜀, 𝑏) < 𝜑(𝐸𝜀) is true at 𝑏, 𝜀 > 0. 

2. If 𝐹″(𝑥) ≥ 0, then 𝜀″(𝜎) > 0, the stress-strain curves (26) are convex downward, and 

the loading curves 𝜎 = 𝜎(𝜀) are convex upward for any b, and if 𝐹″(𝑥) < 0, then the 

loading curves 𝜎(𝜀, 𝑏) of the CE (4) can have points of inflection and convexity downward 

on a certain interval 𝜀 < 𝜀̃(𝑏), as well as the stress-strain curves of the CE (1) (in contrast 

from the CE (3)). 

3. The tangent modulus of stress-strain curves 𝜎(𝜀, 𝑏) 𝜕𝜎/𝜕𝜀 = [𝑤𝐸−1(𝐹′(𝜎) +

+(𝜏𝑟𝑏)−1𝑉(𝜎)) + (1 − 𝑤)𝛱(𝜎/𝑏)]−1 increases along b at any 𝜀 > 0 (i.e., 𝜎 > 0). 

4. Instantaneous modulus of stress-strain curves 𝜎(𝜀, 𝑏) (limit of the tangent modulus at 

𝜀 → 0 +) 𝐺 = [𝑤𝐸−1𝐹′(0) + (1 − 𝑤)𝛱(0)]−1 does not depend on the rate 𝑏 and MF 𝑉 

(and can be equal to 0 or ∞). 

5. At 𝑏 → ∞ 𝛩(𝜎/𝑏) → 𝛩(0+) = 𝛱(0) the stress-strain curves family (26) also converges 
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to the function 𝐸−1𝛷(𝜎) on the ray 𝜎 ≥ 0 (see (27)). Therefore the loading curves family 

in the form 𝜎(𝜀, 𝑏) converges at 𝑏 → ∞ to the inverse function 𝜑(𝐸𝜀) on the semi-axes 

𝜀 ≥ 0, i.e., the curve 𝜎 = 𝜑(𝐸𝜀) is the instantaneous loading curve of the CE (4) (it does 

not depend on the MF V, in particular, on the material parameter 𝜎+, and on the CF 𝛱(𝑡), 

because in the definition of 𝛷(𝜎) only the initial value 𝛱(0) is included). It is easy to 

check that the convergence is uniform on any segment of the ε axis. 

6. If 𝛱(0) = 0, then 𝛷(𝜎) = 𝑤𝐹(𝜎), 𝜑(𝜀) = 𝑓(𝜀/𝑤) and the instantaneous stress-strain 

curve has the form 𝜎 = 𝑓(𝐸𝑤−1𝜀), i.e., is obtained from the loading curves of the CE (1) 

by tension along the ε axis with a coefficient w. In contrast to the linear CE (3), it does 

not degenerate into a vertical straight line 𝜀 = 0, if 𝛱(0) = 0. That is adding the CE (1) 

with any weighting factor 𝑤 > 0 (arbitrarily small) to the singular linear model produces 

its regularization. This can also be seen from the formula for the instantaneous modulus 

G, which no longer goes to infinity in the case of 𝛱(0) = 0 (provided that 𝐹′(0) ≠ 0). 

7. If 𝜎+ = 0, then for any 𝜎 > 0 from (26) follows 𝜀(𝜎, 𝑏) → ∞ at 𝑏 → 0 +, and the stress-

strain curves family 𝜎 = 𝜎(𝜀, 𝑏) converges at 𝑏 → 0 + (and 𝜀 = const) to the function 

𝜎 ≡ 0 on the entire ray 𝜀 ≥ 0. The first is obvious (since 𝐼(𝜎) > 0 at 𝜎 > 0, and 𝑏−1 → ∞), 

and to prove the second we need to fix 𝜀 = 𝜀̄ = const in (26) and go to the limit 𝑏 → 0 +: 

assuming that 𝜎(𝜀, 𝑏) → 𝜎∗, 𝜎∗ > 0, we obtain that the first term in (26) has a finite limit 

𝑤𝐸−1𝐹(𝜎∗), the third term has a limit (1 − 𝑤)𝛩(∞)𝜎∗ = (1 − 𝑤)𝛱(∞)𝜎∗, which can be 

finite at 𝛱(∞) < ∞, and the second term is 𝑤𝐸−1(𝜏𝑟𝑏)−1𝐼(𝜎∗) → ∞, and therefore the 

entire sum tends to infinity, which contradicts the finiteness of the left side of (26). 

Therefore, the assumption 𝜎∗ > 0 is untrue and 𝜎∗ = 0 for any 𝜀 ≥ 0. For models with 

𝜎+ > 0 the equilibrium diagram may differ from 𝜎 ≡ 0. 

8. If 𝜎+ > 0 in the MF of the CE (4), then 𝐼(𝜎) ≡ 0 at 𝜎 ≤ 𝜎+, and therefore the stress-

strain curve (26) has the following form: 

𝜀(𝜎, 𝑏) = 𝑤𝐸−1𝐹(𝜎) + (1 − 𝑤)𝛩(𝜎/𝑏)𝜎, 𝜎 ≤ 𝜎+, 𝑏 > 0, (28) 

that is, in contrast with the CE (1) (case 𝑤 = 1) the stress-strain curve depends on the rate 

at 𝜎 ≤ 𝜎+ (Fig. 6(а)) also. Since 𝛱(0) < 𝛩(𝑡) < 𝛱(∞) [55], then at 𝛱(∞) < ∞(т.е. 𝐺∞ > 0) 

the two-sided estimate is true: 𝐸−1𝛷(𝜎) < 𝜀(𝜎, 𝑏) < 𝐸−1𝛷∞(𝜎), 𝜎 ≤ 𝜎+, 𝑏 > 0,  

𝛷∞(𝜎) = 𝑤𝐹(𝜎) + 𝐸(1 − 𝑤)𝛱(∞)𝜎. Since 𝛷(𝜎) and 𝛷∞(𝜎) are the increasing functions, 

then applying to the inequalities the inverse functions 𝜑 = 𝛷 
−1 and 𝜑∞ = 𝛷∞

−1 (𝜑(0) = 0 

and 𝜑∞(0) = 0, because 𝛷(0) = 0, 𝛷∞(0) = 0), we obtain an estimate for the loading 

curves (29) in the form 𝜎 = 𝜎(𝜀, 𝑏): 𝜑∞(𝐸𝜀) < 𝜎(𝜀, 𝑏) < 𝜑(𝐸𝜀) at 𝜀 ≤ 𝜀+̄(𝑏), 𝑏 > 0, where 

𝜀+̄(𝑏) = 𝜀(𝜎+, 𝑏) = 𝑤𝐸−1𝐹(𝜎+) + (1 − 𝑤)𝛩(𝜎+/𝑏)𝜎+ (the strain value corresponding to 

the stress 𝜎 = 𝜎+ now depends on the loading rate in contrast to the value 𝜀+ = 𝐹(𝜎+)/𝐸 

in the CE (1)). The function 𝜀+̄(𝑏) decreases monotonically (since 𝛩(𝑡) increases) and 

𝜀+̄(𝑏) → 𝜀̂ at 𝑏 → 0 + (fig. 6а), where: 

𝜀̂ = 𝜀(𝜎+, ∞) = 𝑤𝐸−1𝐹(𝜎+) + (1 − 𝑤)𝛱(∞)𝜎+ = 𝐸−1𝛷∞(𝜎+).   (29) 

9. For models with 𝜎+ > 0 and 𝛱(∞) < ∞ (Fig. 6(а)) the loading curves family (28)  

at 𝑏 → 0 + has a limit 𝐸−1𝛷∞(𝜎) at all 𝜎 ≤ 𝜎+ (since 𝛩(∞) = 𝛱(∞)[55]), 𝜀̂ < ∞ and the 

stress-strain curves family 𝜎(𝜀, 𝑏), 𝜀 ≤ 𝜀+̄(𝑏), converges to the function 𝜎 = 𝜑∞(𝐸𝜀),  

𝜀 ∈ [0; 𝜀̂], i.e., the equilibrium stress-strain curve increases. 

10. For models with 𝜎+ > 0 and 𝛱(∞) = ∞ (Fig. 6(b)) 𝜀(𝜎, 𝑏) → ∞, 𝜀̂ = ∞ and the stress-

strain curves family 𝜎(𝜀, 𝑏) converges to the function 𝜎 ≡ 0 at all 𝜀 ≥ 0, i.e. the 

equilibrium stress-strain curve is the same as in the case of 𝜎+ = 0. 
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11. For models with 𝜎+ > 0 and 𝛱(∞) < ∞ the equilibrium curve at 𝜎 > 𝜎+, i.e., at 𝜀 > 𝜀̂, 

coincide with the straight line 𝜎 = 𝜎+ (and at 𝜀 ∈ [0; 𝜀̂] has a form 𝜎 = 𝜑∞(𝐸𝜀), as proven 

above). The proof is similar to the proof of property 7: the assumption 𝜎∗ > 𝜎+ leads to a 

contradiction, and therefore 𝜎∗ = 𝜎+ (only then 𝐼(𝜎∗) = 0, the second term in the limit of 

the right side of (26) vanishes, and it has a finite limit, since this is true for the third term 

due to the condition 𝛱(∞) < ∞). 

Figure 6(a) shows the stress-strain curves of three CE (4) with the same material 

parameters and MFs (25) as in Fig. 5(a) (𝜎+ = 0.1, 𝐸 = 10, 𝜏𝑟 = 1), and the CFs in the form (6) 

with the same parameters as in Fig. 4(а) (𝜆 = 0.1, 𝛽 = 1, 𝛾 = 0.9, 𝐺 = 10, 𝐺∞ = 1, 

retardation time 𝜏 = 1/𝜆 = 10, relaxation time 𝜏̃𝑟 = 1), with three different weighting 

factors 𝑤 = 1; 0.5; 0 (light blue, black and blue curves) for six rates 𝑏 = 10𝑖−6, 𝑖 = 1, . . . ,6 

(curves 1–6). The light blue stress-strain curves 1´–5´ (for 𝑤 = 1) coincide with the stress-

strain curves of the CE (1) in Fig. 5(a) (they have a common straight segment OA, 

independent of the rate: 𝜎 = 𝐸𝜀, 𝜀 ≤ 𝜀+, 𝜀+ = 𝜎+/𝐸), the blue stress-strain curves 3˝–6˝ 

(for 𝑤 = 0 and 𝑏 = 0.001;0.01; 0.1;1) coincide with the loading curves of the linear Kelvin 

model in Fig. 4(a) (stress-strain curves 1˝, 2˝ at lower rates merge with the equilibrium 

loading curve 0˝), dash-dotted blue straight lines 0˝ and ∞˝ are the limit stress-strain 

curves at 𝑏 → 0 and 𝑏 → ∞ from the estimate (20), the dashed red curves 0´ and ∞´ – are 

the limit stress-strain curves for CE (1) (the same as in fig. 5a), the dash-dotted red curve 

∞ is the limit stress-strain curve 𝜎 = 𝜑(𝐸𝜀), 𝜀 ≥ 0, of the CE (4) at 𝑏 → ∞. At 𝑏 → 0 

𝜎(𝜀, 𝑏) → 𝜎+ for any 𝜀 ≥ 𝜀̂, in our example 𝛱(∞) < ∞, 0 < 𝐺∞ < 𝐸 and 𝜀̂ = 0.055; for 

models with 𝐺∞ > 𝜎+/𝜀+ = 𝐸𝜎+/𝐹(𝜎+) it will be 𝜀̂ < 𝜀+). On the segment [0;ε̂] the stress-

strain curves family of the CE (4) 𝜎(𝜀, 𝑏) converges at 𝑏 → 0 to the linear function (since 

the MF F is linear and 𝛱(∞) < ∞), the graph of which is the segment OB, 𝐵(𝜀̂, 𝜎+). 
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Fig. 6. Stress-strain curves 𝜎(𝜀, 𝑏) generated by the constitutive equation (4) with the same material 

functions (25) as in the Fig. 5(a) for three different weighting factors 𝑤 = 0; 0.5; 1 (light blue, black, and 

blue curves) at stress rates 𝑏 = 10𝑖−6, 𝑖 = 1, . . . ,7 (curves 1–7): (а) crossbreed of the model (1) and the 

standard linear solid model (6) (with the same material parameters as in the Fig. 4(a)); (b) crossbreed of 

the model (1) and the fractional model (5) with 𝑢 = 0.3, 𝐴 = 0.3 
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Figure 6(b) shows the stress-strain curves of three CE (4) with the same material 

parameters and MFs (25) as in Fig. 5(a) (𝜎+ = 0.1, 𝐸 = 10, 𝜏𝑟 = 1), but with power-law 

CFs (5) with 𝑢 = 0.3, 𝐴 = 0.3, with three different weighting factors 𝑤 = 1; 0.5; 0 (light 

blue, black and blue curves) for seven rates 𝑏 = 10𝑖−6, 𝑖 = 1, . . . ,7 (curves 1´–5´, 1–7,  

1˝–7˝). The light blue stress-strain curves 1´–5´ (for 𝑤 = 1) coincide with the stress-strain 

curves of the CE (1) in Figs. 5(a) and 6(a) (they have a common straight segment OA, 

independent of the rate: 𝜎 = 𝐸𝜀), the dashed red curves 0´ and ∞´ are the limit loading 

curves at 𝑏 → 0 and 𝑏 → ∞ (the same as in Fig. 6(а)). The blue stress-strain curves 2˝–6˝ 

(for 𝑤 = 0 and𝑏 = 0.0001; 0.001; 0.01; 0.1; 1) coincide with stress-strain curves 0–4 of 

the linear fractal model (5) in Fig. 4(b); it is irregular, 𝛱(0) = 0, 𝐺 = ∞, 𝛱(∞) = ∞, 

𝐺∞ = 0, at 𝑏 → 0 its stress-strain curves family (22) 𝜎(ε,𝑏) converges to the function  

𝜎 ≡ 0, as at 𝑏 → ∞ the family 𝜀(σ,𝑏) converges to 𝜀 = 0, i.e., the stress-strain curves 

𝜎(ε,𝑏) converge to the vertical semi-axis. For this reason, at 𝑏 → 0 the stress-strain curves 

family of the CE (4) with 𝑤 ∈ (0; 1) (see the black loading curves 1-7) converges to the 

function 𝜎 = 0 on the entire semi-axis 𝜀 ≥ 0 (property 10), and at 𝑏 → ∞ converges to 

the function 𝜎 = 𝜑(𝐸𝜀) = 𝑓(𝐸𝑤−1𝜀), 𝜀 ≥ 0, 𝑓 = 𝐹−1 (the dash-dotted red curve ∞), since 

according to (27) 𝛷(𝜎) = 𝑤𝐹(𝜎). 

If the value of 𝑤 − 1 is sufficiently small, then the contribution of the last term to 

the strain (26) is negligible, the properties of the loading curves (26) coincide with the 

properties of the stress-strain curves (23) of the CE (1) with the exception of two 

qualitative differences: 

1. for models with 𝜎+ > 0 at any 𝑤 ≠ 1 the stress-strain curve (26) depends on the 

loading rate even in the range 𝜎 ∈ [0; 𝜎+] (see (28)), in which 𝑉(𝑥) ≡ 0 and 𝐼(𝜎) ≡ 0, 

although this dependence is weakly expressed if the material parameter w is close to one; 

2. the equilibrium stress-strain curve for 𝑤 ≠ 1 can differ qualitatively from the limiting case 

𝑤 = 1 (Fig. 6(b)) and has a different form in the cases 𝜎+ = 0 or 𝜎+ > 0, and in the latter 

case the key role is played by the limited or unbounded nature of the CF 𝛱(𝑡) (see properties 

of loading curves 7-11): for the models with 𝜎+ = 0 or with 𝜎+ > 0 and 𝛱(∞) = ∞  

(Fig. 6(b)), the equilibrium curve has a form 𝜎 ≡ 0 on the entire ray 𝜀 ≥ 0, and for the 

models with 𝜎+ > 0 and 𝛱(∞) < ∞ (Fig. 6(а)) the value (29) is finite and the equilibrium 

curve is non-zero: 𝜎 = 𝜑∞(𝐸𝜀) at 𝜀 ∈ [0; 𝜀̂] and 𝜎 = 𝜎+ at 𝜀 > 𝜀̂. 

 

Conclusion 

The paper formulates a generalization (4), (10) of the physically nonlinear CE of Maxwell-

type viscoelastoplasticity (1), (7) with four MFs (two MFs in the uniaxial case (4)), the 

general properties, the arsenal of possibilities, and the scope of applicability of which 

have been studied earlier in a series of articles by the author [4–10]. In order to generalize 

the CE (1), (7), preserving its advantages, but eliminating the detected disadvantages that 

reduce its applicability, and to expand the range of rheological effects it describes, it is 

proposed to add a third (viscoelastic) strain component to the CE (1), (7), a term expressed 

by the linear integral Boltzmann–Volterra operator (3), (8) with arbitrary CF. For 

generality and convenience of model control, for its adjustment for different materials 

and lists of simulated effects, in addition to the three MFs, a weighting factor 𝑤 ∈ [0; 1] 

(degree of nonlinearity) is introduced into the CE (4), which allows “mixing” the nonlinear 
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CE (1), (7) and the linear viscoelasticity operator (3), (8) in arbitrary proportions and 

regulate the severity of different sets of effects modeled by them. Thus, the CE (4), (10) is 

a hybrid (and simultaneous generalization) of the CE (1), (7) and the linear viscoelasticity 

CE (3), (8) (at 𝑤 = 0 nonlinearity is switched off, and the linear viscoelasticity CE is 

obtained, and at 𝑤 = 1 the nonlinear CE (1) is obtained). The proposed CE allows not only 

to expand the scope of applicability of the CE (1), (7), but also to connect the nonlinear 

viscoplasticity model (1), (7) to the linear viscoelasticity CE (3), (8), and to surgically adjust 

this connection depending on the characteristics of the testing data of a particular 

material: thanks to the choice of two material parameters 𝜎+ and w, nonlinear 

viscoplasticity can be added, starting from any stress 𝜎 ≥ 𝜎+ > 0 and in any proportion. 

The equations for the creep and recovery curves families and constant-rate loading 

curves generated by the proposed CE (4) with three arbitrary MFs are derived, their 

general properties and the influence of loading parameters and characteristics of all MFs 

on them are analytically studied and compared with the properties of the creep and 

stress-strain curves of crossbred CEs (1) and (3). In particular, new qualitative properties 

(effects) are identified that make it possible to describe the more general CE (4) in 

comparison with the original CE (1). It is verified that the generalization eliminates a 

number of disadvantages of the CE (1), but retains its valuable qualities (4–8). For 

example: 

1. the CE (4) makes it possible to describe not only creep at a constant rate, as the CE (1), 

but also creep at a variable rate, as well as limited creep, characteristic, for example, of 

many polymers; 

2. the CE (4) describes the recovery after complete unloading ("reverse creep") with  

a gradual yielding of strain to a certain constant level at large values of times; 

3. the possibilities for describing the various properties of the stress-strain curves 

families, in particular the forms of equilibrium and instantaneous loading curves, are 

significantly expanded; 

4. adding the CE (1) with any weighting factor 𝑤 > 0 (arbitrarily small) to any singular 

linear model of the form (3), (8) produces its regularization (in particular, the 

instantaneous modulus no longer goes to infinity in the case of 𝛱(0) = 0, and such a 

model appears with an instantaneous loading curve instead of a limiting vertical straight 

line at 𝑏 → ∞ [55,56]). 

Thus, the performed primary analysis showed that the proposed more general CE 

(4), (7) provides many opportunities for describing the various properties of stress-strain 

curves and creep and recovery curves of materials (for adjusting their shape and tuning 

them to testing data). It also allows expanding significantly the range of described 

rheological effects and the range of applicability of the Maxwell-type 

viscoelastoplasticity relation and deserves further research and application in modeling. 

In the following papers, the properties found will be used to develop methods for 

identifying the CE (4), (7) from the loading and creep curves and recovery curve of 

materials, as was done for the CE (1), (7) in [5,7–10,56]. 

 

  



Hybrid of a nonlinear Maxwell-type viscoelastoplastic model with the linear viscoelasticity constitutive equation  138 

and properties of crossbreed creep and stress-strain curves 

References 

1. Khokhlov AV. Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation 

curves during the ramp-deformation and the methodology of identification. Mechanics of Solids. 2018; 53(3): 307–328.  

2. Khokhlov AV. Analysis of properties of ramp stress relaxation curves produced by the Rabotnov non-

linear hereditary theory. Mechanics of Composite Materials. 2018;54(4): 473–486. 

3. Khokhlov AV. Properties of the Set of Strain Diagrams Produced by Rabotnov Nonlinear Equation for 

Rheonomous Materials. Mechanics of Solids. 2019;54(3): 384–399.  

4. Khokhlov AV. Long-term strength curves generated by the nonlinear Maxwell-type model for 

viscoelastoplastic materials and the linear damage rule under step loading. Journal of Samara State Technical 

University, Ser. Physical and Mathematical Sciences. 2016;20(3): 524–543.  

5. Khokhlov AV. The nonlinear Maxwell-type model for viscoelastoplastic materials: Simulation of 

temperature influence on creep, relaxation and strain-stress curves. The Journal of Samara State Technical 

University, Ser. Physical and Mathematical Sciences. 2017;21(1): 160–179. [In Russian]  

6. Khokhlov AV. A Nonlinear Maxwell-Type Model for Rheonomic Materials: Stability under Symmetric 

Cyclic Loadings. Moscow University Mechanics Bulletin. 2018;73(2): 39–42.  

7. Khokhlov AV. Applicability Indicators and Identification Techniques for a Nonlinear Maxwell-Type Elasto-

Viscoplastic Model using Multi-Step Creep Curves. Herald of the Bauman Moscow State Technical University. 

Series Natural Sciences. 2018(6): 92–112. [In Russian]  

8. Khokhlov АV. Applicability indicators and identification techniques for a nonlinear Maxwell–type 

elastoviscoplastic model using loading–unloading curves. Mechanics of Composite Materials. 2019;55(2): 195–210.  

9. Khokhlov AV. Possibility to Describe the Alternating and Non-monotonic Time Dependence of Poisson’s Ratio during 

Creep Using a Nonlinear Maxwell-Type Viscoelastoplasticity Model. Russian Metallurgy (Metally). 2019;10: 956–963.  

10. Khokhlov AV, Shaporev AV, Stolyarov ON. Loading-unloading-recovery curves for polyester yarns and identification 

of the nonlinear Maxwell-type viscoelastoplastic model. Mechanics of Composite Materials. 2023;59(1): 129–146.  

11. Rabotnov YuN. Creep Problems in Structural Members. Moscow: Nauka; 1966. [In Russian]  

12. Bugakov II. Creep of polymer materials. Мoscow: Nauka; 1973. [In Russian]  

13. Malinin NN. Creep design of engineering structures. Moscow: Mashinostroenie Publ.; 1981. [In Russian]  

14. Gokhfel’d DA, Sadakov OS. Plasticity and creep in structural elements under repeated loading. Moscow: 

Mashinostroenie Publ.; 1984. [In Russian] 

15. Nikitenko AF. Creep and long-term strength of metallic materials. Novosibirsk: NGASU; 1997. [In Russian] 

16. Betten J. Creep Mechanics. Berlin: Springer; 2008.  

17. Lokoshchenko АМ. Creep and long-term strength of metals. Moscow: Fizmatlit Publ.; 2016. [In Russian] 

18. Lakes RS. Viscoelastic Materials. Cambridge: Cambridge Univ. Press; 2009.  

19. Bergstrom JS. Mechanics of Solid Polymers. Theory and Computational Modeling. Elsevier; 2015.  

20. Vinogradov GV, Malkin AYa. Polymer rheology. Moscow: Khimiya Publ.; 1977. [In Russian] 

21. Larson RG. Constitutive Equations for Polymer Melts and Solutions. Butterworth: Boston; 1988.  

22. Gupta RK. Polymer and composite rheology. NY: Marcel Dekker; 2000.  

23. Malkin AY, Isayev AI. Rheology: Conceptions, methods, applications. 2-nd Ed. Toronto: ChemTec Publishing; 2012.  

24. Brinson HF, Brinson LC. Polymer Engineering Science and Viscoelasticity. Springer; 2008.  

25. Kalinnikov AE, Vakhrushev AV. Creep of materials of different tensile and compressive strengths under 

variable loads. Mechanics of Composite Materials. 1982;18(3): 267–272. 

26. Fatemi A, Yang L. Cumulative fatigue damage and life prediction theories: A survey of the state of the 

art for homogeneous materials. International Journal of Fatigue. 1998;20(1): 9–34. 

27. Launay A, Maitournam MH, Marco Y, Raoult I, Szmytka F. Cyclic behaviour of short glass fibre reinforced polyamide: 

Experimental study and constitutive equations. International Journal of Plasticity. 2011;27(8): 1267–1293. 

28. Darabi MK, Al-Rub RKА, Masad EA, Huang CW, Little DN. A modified viscoplastic model to predict the 

permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures. 

International Journal of Plasticity. 2012;35: 100–134. 

29. Takagi H, Dao M, Fujiwara M. Prediction of the Constitutive Equation for Uniaxial Creep of a Power-Law Material 

through Instrumented Microindentation. Testing and Modeling. Materials Transactions. 2014;55(2): 275–284. 

30. Chinh NQ, Szommer P. Mathematical description of indentation creep and its application for the 

determination of strain rate sensitivity. Materials Science & Engineering A. 2014;611: 333–336. 

https://doi.org/10.3103/S0025654418070105
https://doi.org/10.1007/s11029-018-9757-1
https://doi.org/10.3103/S002565441902002X
https://doi.org/10.14498/vsgtu1512
https://doi.org/10.14498/vsgtu1512
https://doi.org/10.14498/vsgtu1524
https://doi.org/10.14498/vsgtu1524
https://doi.org/10.3103/S0027133018020036
https://doi.org/10.18698/1812-3368-2018-6-92-112
https://doi.org/10.18698/1812-3368-2018-6-92-112
https://doi.org/10.1007/s11029-019-09809-w
https://doi.org/10.1134/S0036029519100136
https://doi.org/10.1007/s11029-023-10086-x
https://doi.org/10.1007/BF00604302
https://doi.org/10.1016/S0142-1123(97)00081-9
https://doi.org/10.1016/j.ijplas.2011.02.005
https://doi.org/10.1016/j.ijplas.2012.03.001
https://doi.org/10.2320/matertrans.M2013370
https://doi.org/10.1016/j.msea.2014.06.011


139  A.V. Khokhlov 

 

31. Petukhov DS, Keller IE. Dual plane problems for creeping flows of power-low incompressible medium. The Journal 

of Samara State Technical University, Ser. Physical and Mathematical Sciences. 2016;20(3): 496–507. [In Russian] 

32. Kaibishev ОА. Superplasticity of industrial alloys. Мoscow: Metallurgiya Publ.; 1984. [In Russian] 

33. Nieh TG, Wadsworth J, Sherby OD. Superplasticity in metals and ceramics. Cambridge Univ. Press; 1997.  

34. Padmanabhan KA, Vasin RA, Enikeev FU. Superplastic Flow: Phenomenology and Mechanics. Berlin: Springer; 2001. 

35. Segal VM, Beyerlein I.J, Tome CN, Chuvil’deev VN, Kopylov VI. Fundamentals and Engineering of Severe 

Plastic Deformation. NY: Nova Science Pub. Inc.; 2010.  

36. Zhilayev AP, Pshenichnyuk AI. Superplasticity and grain boundaries in ultrafine-grained materials. 

Cambridge: Cambridge Intern. Sci. Publ.; 2010.  

37. Cao Y. Determination of the creep exponent of a power-law creep solid using indentation tests. 

Mechanics of Time-Dependent Materials. 2007;11: 159–172.  

38. Megahed M, Ponter ARS, Morrison C.J. An experimental and theoretical investigation into the creep properties 

of a simple structure of 316 stainless steel. International Journal of Mechanical Sciences. 1984;26(3): 149–164. 

39. Enikeev FU. Experimental evaluation of speed sensitivity of superplastic material in strongly non-

uniform deflected mode. Industrial Laboratory. Diagnostics of Materials. 2007;73(10): 44–50. [In Russian] 

40. Mochugovskiy AG, Mosleh AO, Kotov AD, Khokhlov AV, Kaplanskaya LY, Mikhaylovskaya AV. 

Microstructure Evolution, Constitutive Modelling, and Superplastic Forming of Experimental 6XXX-Type 

Alloys Processed with Different Thermomechanical Treatments. Materials. 2023;16(1): 445.  

41. Eglit ME, Yakubenko AE, Zayko JS. Mathematical Modeling of Slope Flows of Non-Newtonian Media. 

Proceedings of the Steklov Institute of Mathematics. 2018;300: 219–229. 

42. Radchenko VP, Shapievskii DV. Mathematical creep model for micro-nonhomogeneous non-linear 

elastic material. Prikladnaya mekhanica I tekhnicheskaya fizika. 2008;49(3): 157–163. [In Russian] 

43. Naumenko K, Altenbach H, Gorash Y. Creep Analysis with a Stress Range Dependent Constitutive Model. 

Archive of Applied Mechanics. 2009;79: 619–630. 

44. Lu LY, Lin GL, Shih MH. An experimental study on a generalized Maxwell model for nonlinear 

viscoelastic dampers used in seismic isolation. Engineering Structures. 2012;34(1): 111–123. 

45. Monsia MD. A Simplified Nonlinear Generalized Maxwell Model for Predicting the Time Dependent 

Behavior of Viscoelastic Materials. World Journal of Mechanics. 2011;1: 158–167.  

46. Stolin AM, Khokhlov AV. Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into 

account the evolution of the structure and its analysis. Moscow University Mechanics Bulletin. 2022;77(5): 127–135.  

47. Khokhlov AV, Gulin VV. Analysis of the nonlinear Maxwell-type constitutive equation for shear flow of tixotropic viscoelastic 

media accounting for interaction of deformation process and structure evolution. Phisical Mesomechanics. 2023;26(6): 621–642.  

48. Gorodtsov VA, Leonov AI. On the kinematics, nonequilibrium thermodynamics, and rheological relationships 

in the nonlinear theory of viscoelasticity. Journal of Applied Mathematics and Mechanics. 1968;32(1): 62–84.  

49. Leonov AI, Lipkina ECh, Paskhin ED, Prokunin AN. Theoretical and experimental investigations of 

shearing in elastic polymer liquids. Rheologica Acta. 1976;15(7/8): 411–426. 

50. Pal’mov VA. Rheological models in the nonlinear mechanics of deformable bodies. Uspekhi mekhaniki. 

1980;3(3): 75–115. [In Russian] 

51. Prokunin AN. On the non-linear Maxwell-type defining equations for describing the motions of polymer 

liquids. Journal of Applied Mathematics and Mechanics. 1984;48(6): 699–706.  

52. Leonov AI, Prokunin AN. Non-linear Phenomena in Flows of Viscoelastic Polymer Fluids. London: Chapman and Hall; 1994.  

53. Leonov AI. Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with 

data. Rheology Series. 1999;8: 519–575.  

54. Khokhlov AV. Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings. 

The Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences. 2017;21(2): 326–361. [In Russian]  

55. Khokhlov AV. Specific features of stress-strain curves at constant stress rate or strain rate yielding from 

linear viscoelasticity. Problems of Strength and Plasticity. 2015;77(2): 139–154. [In Russian]  

56. Khokhlov AV. Analysis of the bulk creep influence on stress-strain curves under tensile loadings at 

constant rates and on Poisson’s ratio evolution based on the linear viscoelasticity theory. The Journal of 

Samara State Technical University, Ser. Physical and Mathematical Sciences. 2019;23(4): 671–704. [In Russian]  

57. Krishtal MM. Instability and mesoscopic inhomogeneity of plastic deformation (analytical review). Part 

I. Phenomenology of the sharp yield point and jerky flow. Phisical Mesomechanics. 2004;7(5–6): 5–26. 

58. Rudskoi AM, Rudaev YaI. Mechanics of dynamic superplasticity of aluminum alloys. St. Petersburg: Nauka; 2009. [In Russian]  

https://doi.org/10.1007/s11043-007-9033-6
https://doi.org/10.1016/0020-7403(84)90050-X
https://doi.org/10.3390/ma16010445
https://doi.org/10.1134/S0081543818010194
https://doi.org/10.1007/s00419-008-0287-5
https://doi.org/10.1016/j.engstruct.2011.09.012
https://doi.org/10.4236/wjm.2011.13021
https://doi.org/10.3103/S0027133022050065
https://doi.org/10.1134/S1029959923060036
https://doi.org/10.1016/0021-8928(68)90148-2
https://doi.org/10.1007/BF01574496
https://doi.org/10.1016/0021-8928(84)90037-6
https://doi.org/10.1007/978-94-011-1258-1
https://doi.org/10.1016/S0169-3107(99)%2080040-9
https://doi.org/10.14498/vsgtu1533
https://doi.org/10.32326/1814-9146-2015-77-2-139-154
https://doi.org/10.14498/vsgtu1710
https://doi.org/10.14498/vsgtu1710


Hybrid of a nonlinear Maxwell-type viscoelastoplastic model with the linear viscoelasticity constitutive equation  140 

and properties of crossbreed creep and stress-strain curves 

59. Yu D, Chen X, Yu W, Chen G. Thermo-viscoplastic modeling incorporating dynamic strain aging effect on 

the uniaxial behavior of Z2CND18.12N stainless steel. International Journal of Plasticity. 2012;37: 119–139. 

60. Trusov PV, Chechulina ЕА. Serrated yielding: physical mechanisms, experimental dates, macro-

phenomenological models. PNRPU Mechanics Bulletin. 2014;(3): 186–232. [In Russian] 

61. Lin YC, Chen XM. A critical review of experimental results and constitutive descriptions for metals and 

alloys in hot working. Materials and Design. 2011;32(4): 1733–1759. 

62. McClung AJW, Ruggles-Wrenn MB. The rate (time)-dependent mechanical behavior of the PMR-15 

thermoset polymer at elevated temperature. Polymer Testing. 2008;27(7): 908–914. 

63. Kastner M, Obst M, Brummund J, Thielsch K, Ulbricht V. Inelastic material behavior of polymers – Experimental 

characterization, formulation and implementation of a material model. Mechanics of Materials. 2012;52: 40–57. 

64. Yun KS, Park JB, Jung GD, Youn SK. Viscoelastic constitutive modelling of solid propellant with damage. 

International Journal of Solids and Structures. 2016;80: 118–127. 

65. Fung YC. Biomechanics. Mechanical Properties of Living Tissues. New York: Springer; 1993.  

66. Diani J, Fayolle B, Gilormini P. A review on the Mullins effect. European Polymer Journal. 2009;45(3): 601–612. 

67. Zhu Y, Kang G, Yu C, Poh LH. Logarithmic rate based elasto-viscoplastic cyclic constitutive model for 

soft biological tissues. Journal of Mechanical Behavior of Biomedical Materials. 2016;61: 397–409. 

68. Qi H, Boyce M. Stress-strain behavior of thermoplastic polyurethanes. Mechanics of Materials. 2005;37(8): 817–839. 

69. Drozdov AD, Dusunceli N. Unusual mechanical response of carbon black-filled thermoplastic 

elastomers. Mechanics of Materials. 2014;69(1): 116–131. 

 

 

About the Author 

Andrew V. Khokhlov   
Ph. D. in Technical Sciences 

Senior Researcher (Institute of Mechanics, Lomonosov Moscow State University, Moscow, Russia)  

Associate Professor (Department of Composites Mechanics, Faculty of Mechanics and Mathematics, Lomonosov 

Moscow State University, Moscow, Russia)  

Leading Researcher (Laboratory "Polymer composites for the North", North-Eastern Federal University, Yakutsk, Russia) 

 

https://doi.org/10.15593/perm.mech/2014.3.10
https://doi.org/10.1016/j.matdes.2010.11.048
https://doi.org/10.1016/j.polymertesting.2008.07.007
https://doi.org/10.1016/j.mechmat.2012.04.011
https://doi.org/10.1016/j.ijsolstr.2015.10.028
https://doi.org/10.1016/j.eurpolymj.2008.11.017
https://doi.org/10.1016/j.jmbbm.2016.03.014
https://doi.org/10.1016/j.mechmat.2004.08.001
https://doi.org/10.1016/j.mechmat.2013.09.019
https://orcid.org/0000-0002-9212-2579
https://www.scopus.com/authid/detail.uri?authorId=57083535100

