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Abstract. In this paper hybrid grey relations analysis (GRA) and an artificial neural network 

(ANN) are applied to study the influence of process parameters on the mechanical properties 

of friction stir welded aluminum alloy 6061-T6. Thirty experiments were performed by 

varying tool rotation speed, tool traverse speed, and tool tilt angle to study their effects on 

ultimate tensile strength, yield strength, percentage elongation, and impact strength of FSW 

joints. GRA was used to convert all responses into the single response variable, i.e., the grey 

relation grade (GRG). A feed-forward backpropagation ANN with two hidden layers 

composed of 9 and 7 neurons each was used to simulate the weld joint characteristics in terms 

of GRG. ANOVA analysis was used to study the influence of process parameters on grey 

relation grade. It was found that tool rotation speed has a significant impact on weld 

characteristics, followed by traverse speed and tilt angle. Based on the results it was revealed 

that tool rotation speed contributes 39.89% to the mechanical properties of underwater 

friction stir welding of AA 6061-T6, followed by tool traverse speed and tool tilt angle, 

respectively, by 29.87% and 19.59%. The tensile test demonstrates that the underwater FSW 

joint is approximately 8% stronger than the conventional air FSW joint due to grain 

refinement and increased nugget zone hardness because of less heat exposure and absorption. 
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Introduction 

Friction stir welding (FSW) was developed and patented by the Welding Institute (TWI) in 

1991. Earlier, it was limited to laboratory experiments to weld high-strength aluminum alloys 

(2xxx and 6xxx), which have limited weldability using fusion welding processes [1]. Since 

FSW is a solid-state welding process, it avoids defects like gas porosity, solidification 

cracking, residual stresses, weakening of HAZ and nugget zones, reduced corrosion 

resistance, etc., developed during traditional welding processes [1-2]. FSW is essentially a 

constrained extrusion process controlled by the non-consumable profiled tool. The tool 

shoulder constraints softened material, so it cannot escape easily. The material is gradually 

swept around the probe between the retreating side of the tool and the surrounding material as 

the tool traverses the joint line. Extruded material forms solid-phase joints behind the tool. 
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The asymmetrical joint is caused by the extrusion of the deformed material past the RS of the 

tool [1-3].  

This process generates a significant strain and strain rate compared to other solid-state 

metalworking processes such as rolling, extrusion, and forging. The key parameters affecting 

weld quality in this welding process are tool geometry, plunging depth, rotational speed, 

traverse speed, and tool tilt angle [1-3]. In the AA6XXX series, 6061-T6 is a moderately 

strong heat-treatable alloy containing Al-Mg-Si as its primary alloying element. The Mg2Si 

sediments are responsible for strengthening the AA6061 alloy. This material's high strength-

to-weight ratio and corrosion resistance make it ideal for fabricating lightweight structures 

[5]. AA6061 possesses excellent welding characteristics but suffers a loss in strength due to 

the dissolution of strengthening precipitates and softening of HAZ. Friction stir welding 

refines the grain in the nugget zone and improves mechanical properties compared to other 

welding processes. 

Thermal cycle and material flow behavior determine the FSW joint's microstructure 

evolution and mechanical properties, which are affected by process variables like rotation 

speed, welding speed, and tool geometry [6]. A fracture of the weld occurred along the LHZs. 

The tensile strength of the weld increased with increasing welding speed and was independent 

of tool dimension and rotation speed. Li et al. [7] reported UW-FSW of CNT/Al-Cu-Mg 

composites reach 94.7% efficiency when compared to FSW. The thermal cycle of underwater 

trials decreases, and fewer flash faults occur, which facilitates post-weld processing and 

increases welding productivity. 

Underwater or submerged friction stir welding (UFSW/ SFSW) has become a cutting-

edge welding technique that offers better mechanical properties while avoiding the welding 

flaws in traditional FSW [8–10]. During underwater friction stir welding, the entire welding 

process is carried out in the presence of water. Hofmann et al. [11] proposed using water as a 

cooling medium to produce ultra-fine grains in the nugget zone of friction stir processed 

AA6061–T6. As a result of water cooling, Wang et al. [12] found that underwater FSW of 

spray-formed 7075 Al alloy improves tensile properties and corrosion resistance and reduces 

the corrosion rate. Compared to conventional FSW, M. Hosseini et al. [13]found underwater 

friction stir welding to enhance the tensile strength and yield strength of ultrafine-grained 

AA1050. Furthermore, UFSW was proposed as a method for hardening materials on the 

surface. According to Rathinasuriyan et al. [14], SFSW requires more torque and power than 

conventional friction stir welding. Additionally, these values increase as the water head 

increases during submerged friction stir welding. 

Bagheri et al. [15] reported numerical analyses of friction stir welding (FSW) in the air 

and underwater using smoothed particle hydrodynamics and finite element modelling. 

Underwater welding results in a lower peak temperature than traditional welding due to its 

higher cooling impact. In addition, peak temperature and strain rate decreased under both 

welding conditions as welding speed increased. Abdollahzadeh et al. [16] found that 

underwater FSW of 60621 T6 significantly reduced the joint temperature. This resulted in a 

refined microstructure in the stir zone, which improved the welded joint's mechanical 

properties. UFSW joints have a higher hardness than CFSW joints due to the refined grains' 

synergetic effect, decreased dissolution of 𝛽" precipitates, and fast cooling rate (intensified 

local deformation). SFSW of AA6061 T6 tensile strength increased with tool rotation speed 

and decreased with welding speed [17]. Fratini et al. [18] investigated the effects of in-process 

cooling within normal air, forced air, and water on the mechanical properties of friction stir 

welding for AA7075-T6. Results show that water is a more powerful cooling medium, 

improving joint tensile strength due to narrowing the weakest TMAZ and HAZ. FSW samples 

with water as a cooling medium show increasing microhardness values and low hardness 

values in the nugget zone of the water FSW sample compared with natural air and forced air 
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FSW samples. Sharma et al. [19] studied the effects of liquid nitrogen, regular air, and 

compressed air on the FSW of AA7039. During welding, cooling absorbs the excess heat, 

which restricts grain growth in the nugget zone and coarsens it in the HAZ. Water was also 

found to be the best cooling medium for maximum tensile strength and percentage elongation 

than compressed air and liquid nitrogen. Sinhmar et al. [20] found that FSW joints with water 

cooling show improved yield strength, tensile strength, hardness in HAZ, and corrosion 

resistance due to more refined microstructure and limited precipitate restrictions as compared 

with conventional FSW with natural air cooling. Mahto et al. [21] reported that FSW 

AA6061-T6 and AISI304 form re-crystallized and deformation-textured grains in the SZ, 

which ultimately transform into dominant shear-and deformation-textured grains in water and 

air, respectively.  

Abbasi et al. [22] evaluated the formability characteristics of tailor-welded blanks 

created by combining AA6061 aluminum alloy sheets of various thicknesses and devising 

friction stir vibration welding (FSVW). The results showed that FSVW-ed blanks exhibited 

better mechanical and formability characteristics than FSW-ed blanks. According to Abbasi et 

al. [23], grain size decreases from approximately 57 μm for friction stir welding to 

approximately 34 μm for friction stir vibration welding and approximately 23 μm for 

underwater friction stir welding. Underwater friction stir welding and friction stir vibration 

welding effectively reduce precipitation size and interparticle distance. The underwater 

friction stir welding processed samples have the highest strength and ductility compared to 

friction stir welding processed samples. The cylindrical and conical tool pins used in FSW are 

simple in shape and easy to manufacture. Conical pin tools have better mechanical properties 

than cylindrical, square, and pin tools.  

Multiobjective optimization is one of the elements of research in manufacturing 

processes. Several researchers used AHP, TOPSIS [23-25], and GRA [26-30] for the 

multiobjective optimization of FSW. The use of empirical non-analytical models, such as 

Artificial Neural Networks (ANNs), can be an effective alternative in manufacturing 

problems characterized by complex relationships among variables and unknown relationships 

among variables [22]. The usefulness of artificial neural networks has been demonstrated in 

metal forming, fusion welding, and machining [32]. Thapliyal et al. [33] proposed a machine-

learning model to predict the ultimate tensile strength of friction stir-welded copper 

specimens. The result shows that ANN can predict UTS with 94% accuracy. Using five 

different neural networks, Manvatkar et al. [34] calculated tool and workpiece temperatures, 

torque, traverse force, and stresses according to the thickness of the plate, welding speed, 

rotating tool speed, shoulder, pin, and pin length, and the tool material for the friction stir 

welding. Both experimental and numerical methods were used to evaluate the performance of 

all ANNs. Ghetiya et al. [35] predicted the tensile strength of FSWed aluminum alloy 

AA8014. ANN was used to study the influence of welding parameters such as axial force, 

welding speed, rotational tool speed, and tool shoulder diameter on joint strength. In their 

study of friction stir lap welding of the Al-Mg and CuZn34 alloys, Shojaeefard et al. [36] 

developed an ANN model to analyze the relationship between the mechanical properties and 

the process parameters. Ansari et al. [37] predicted the average grain size of Magnesium ingot 

under friction stir extrusion processing with the effect of rotational speed, vertical speed, and 

extrusion hole size (HS) using a 3-6-1 artificial neural network.  

Buffa et al. [38]  predicted microstructure and microhardness values using ANN for the 

nugget zone of a Ti–6Al–4V titanium alloy FSW joint. Laubscher et al. [39] proposed a 

single-layer backpropagation ANN with RSM for predicting friction-welded titanium joint 

tensile strength based on ANN architecture 3-10-1 and sensitivity analysis. Patel et al. [40] 

have developed a cellular automata finite element – artificial neural network (CAFE-ANN) 

hybrid model to predict grain size and yield strength evolution during friction stir welding. 
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Maleki et al. [41] predicted tensile and hardness properties of the welding zone of FSWed 

AA-7075-T6 considering input parameters as the rotational and welding speed, pin diameter, 

shoulder diameter, axial force, and tool hardness as input parameters using ANN.  

Since the submerged FSW is gaining a lot of interest nowadays, optimizing the process 

parameters of submerged FSW for better results would be more critical. In this research, grey 

relation analysis (GRA) was chosen along with an artificial neural network for the 

multiobjective optimization and selection of optimum process parameters. FSW is a complex 

welding mechanism; obtaining all the required responses for a particular set of input 

parameters is challenging. Hence, it is desired to use a multiobjective decision-making 

technique to solve this problem. Four output parameters were selected, such as yield strength, 

ultimate tensile strength, % elongation, and impact strength for the multiobjective 

optimization of underwater FSW of AA6061-T6. ANOVA analysis was carried out to 

determine the influence of process parameters on the mechanical properties of the welded 

joint.  

 

Methods and materials 

The research was carried out on rolled plates of aluminum alloy AA 6061-T6 of 6 mm 

thickness. A conical tool with an 18 mm shoulder diameter and a pin with a 6 mm diameter, 

14° semi-cone angle, and 5.6 mm length were considered to manufacture the tool. The 

chemical composition and mechanical properties of AA 6061-T6 are shown in Table 1 and 

Table 2, respectively. Aluminum alloy sheets were cut into sample sizes of 

200(L)×75(W)×6(T)mm with an abrasive cutting machine. Edges are machined with a milling 

machine, and an edge of 200 mm in length, cut to a transverse direction rolling line, was 

considered to form a weld. Plates were washed with acetone to avoid contamination during 

the welding procedure. In order to manufacture the tool, a conical tool with a shoulder 

diameter of 18 mm and a pin diameter of 6 mm, a semi-cone angle of 14°, and a length of 

5.6 mm was considered. Hot work dies steel (AISI-H13) was used as a tool material with 

hardening of 50-55 HRC. The main constituents of the chemical composition of H13 are C-

0.4, Mn-0.4, Si-1, Mo-1.35, Cr-0.25, V-1, and Fe-balance (all elements in wt.%). A new 

fixture was developed to carry out welding trials, which can hold the workpiece properly and 

withstand the load acting on it. A special vessel-type arrangement was made with an acrylic 

sheet to store water in the fixture.  

 

Table 1. Chemical Composition of AA6061-T6 Alloy 

Elements Mg Si Mn Zn Fe Cu Al 

Alloying elements (in %) 1.1 0.6 0.12 0.25 0.35 0.3 Rest 

 

Table 2. Mechanical properties of AA6061-T6 Alloy 

Properties UTS YS E % el 𝜇 MP H D 

Values 303 MPa 240 MPa 68.9 GPa 20% 0.33 582–652°C 107Hv 2.7 g/cc 

 

All the experiments were carried out on a universal milling machine (G. DUFOUR 

make) 624D model having a vertical spindle attachment with DRO. The machine consists of 

the main spindle motor of 15 HP with a spindle speed range of between 24-1180 rpm. There 

are also two feed motors with 5 HP power, with a feed in the range of 22-1180 mm/min. The 

experimental setup of underwater friction stir welding is shown in Fig. 1. The Friction Stir 

welding tool is mounted with a collet on the spindle of a universal milling machine. The 

fixture was rigidly mounted on the bed of the milling machine. Specimens to be welded were 
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fixed in the slot made in a fixture with clamps to avoid lateral and transverse movement of 

specimens during trials. Firstly, the rotating tool shoulder is allowed to touch the top surface 

of the specimen, and then water is allowed to pour into the fixture vessel to make a 30 mm 

water head. An arrangement was made to pour and drain hot water from the vessel. At a 

distance of 14 mm from either side of the weld line and 100 mm from the start point, K-type 

thermocouples were employed. 

  

  
 

Fig. 1. Experimental setup 

 

In this research, rotation speed, welding speed, and tilt angle were chosen as process 

parameters. Initial trials were performed to derive levels of process parameters by considering 

defects in the weld zone shown in Table 3.  

 

Table 3. Process parameters levels 

Parameter (Notation) Unit Level 

Tool rotation speed (TRS) rpm 710 900 1180 

Welding speed (WS) mm/min 22 29 49 64 83 108 

Tilt Angle (TA) ° degree 1° 2° 3° 

 

The specimens welded with the underwater FSW procedure are shown in Fig. 2 (a) and 

(b) of final experimentation by considering different levels of process parameters. A total of 

30 trials (shown in Table 4) were performed to analyse the effects of process parameters.  

After welding trials, all welded samples were cut into the required size per the 

American Society for Testing of Materials (ASTM) E-8M-08 [ASTM-2008] guidelines using 

an abrasive water jet machine shown in Figs. 2 and 3. In this study, three samples of tensile 

strength, one for each impact strength, microstructure, and microhardness, were considered 

for the characterization. Tensile tests were performed on a 2000KN universal testing machine 

(UTM) (Make: Universal Motion Inc, Model: MUTCS-20 model). During tensile testing, a 

crosshead speed of 1 mm/min of UTM was chosen. Selected samples were considered for 

macro and microstructure evaluation. Optical microscopy has been carried out using a light 

optical microscope (Make: Conation technologies) with an image analysis system.  
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Table 4. Grey relation analysis 

Sr. 

No. 

Input Parameter Output Parameters Normalized Inputs Normalized Responses 
GR

G 

Ran

k TRS 
TT
S 

TT
A 

UTS % El YS IS 
RP
M 

WS TA 
UT
S 

% 
El 

YS IS 

1 710 22 2 
186.5

6 

14.2

8 

105.9

7 

21.7

6 
0.00 

0.0

0 

0.5

0 
0.21 0.97 

0.3

2 

0.8

3 
0.63 8 

2 710 29 2 
222.0

1 
7.50 

140.2

6 

18.4

8 
0.00 

0.0

8 

0.5

0 
0.76 0.20 

1.0

0 

0.5

9 
0.65 3 

3 710 49 2 
174.8

9 
9.37 

104.1
8 

24.1
0 

0.00 
0.3
1 

0.5
0 

0.03 0.41 
0.2
8 

1.0
0 

0.55 16 

4 710 64 2 
208.9

4 

13.6

8 

123.4

3 

14.0

9 
0.00 

0.4

9 

0.5

0 
0.56 0.91 

0.6

6 

0.2

6 
0.59 11 

5 710 83 2 
212.8

1 

11.5

6 

108.6

9 

12.7

3 
0.00 

0.7

1 

0.5

0 
0.62 0.66 

0.3

7 

0.1

6 
0.50 26 

6 710 108 2 
172.7

7 
5.78 

109.5
5 

10.5
2 

0.00 
1.0
0 

0.5
0 

0.00 0.00 
0.3
9 

0.0
0 

0.36 30 

7 710 22 1 
182.2

2 

12.8

4 
97.75 

22.2

3 
0.00 

0.0

0 

0.0

0 
0.14 0.81 

0.1

5 

0.8

6 
0.56 14 

8 710 29 1 
195.0

0 
9.50 

101.0

0 

15.8

5 
0.00 

0.0

8 

0.0

0 
0.34 0.43 

0.2

2 

0.3

9 
0.44 29 

9 710 83 3 
210.7

5 
11.1

2 
115.4

1 
13.8

6 
0.00 

0.7
1 

1.0
0 

0.59 0.61 
0.5
0 

0.2
5 

0.50 25 

10 710 108 3 
219.0

5 

12.9

6 

102.2

4 

15.4

6 
0.00 

1.0

0 

1.0

0 
0.72 0.82 

0.2

4 

0.3

6 
0.55 15 

11 900 22 2 
185.8

5 

13.2

8 
90.12 

22.4

7 
0.40 

0.0

0 

0.5

0 
0.20 0.86 

0.0

0 

0.8

8 
0.58 13 

12 900 29 2 
198.5

1 
12.0

3 
110.9

8 
18.9

5 
0.40 

0.0
8 

0.5
0 

0.40 0.72 
0.4
2 

0.6
2 

0.53 20 

13 900 49 2 
202.0

6 
9.84 95.07 

16.8

5 
0.40 

0.3

1 

0.5

0 
0.46 0.47 

0.1

0 

0.4

7 
0.45 28 

14 900 64 2 
213.2

2 

11.8

7 

117.0

6 

12.9

6 
0.40 

0.4

9 

0.5

0 
0.63 0.70 

0.5

4 

0.1

8 
0.52 22 

15 900 83 2 
217.3

6 
13.4

3 
128.4

9 
15.4

6 
0.40 

0.7
1 

0.5
0 

0.69 0.88 
0.7
7 

0.3
6 

0.64 6 

16 900 108 2 
237.0

5 

12.6

2 

140.0

0 

12.5

7 
0.40 

1.0

0 

0.5

0 
1.00 0.78 

0.9

9 

0.1

5 
0.76 1 

17 900 83 1 
219.9

2 

10.7

5 

136.4

6 

17.7

8 
0.40 

0.7

1 

0.0

0 
0.73 0.57 

0.9

2 

0.5

3 
0.64 5 

18 900 108 1 
232.1

2 
12.8

4 
130.0

0 
12.1

2 
0.40 

1.0
0 

0.0
0 

0.92 0.81 
0.8
0 

0.1
2 

0.67 2 

19 900 49 3 
199.0

7 

11.7

5 

110.7

6 

15.4

6 
0.40 

0.3

1 

1.0

0 
0.41 0.68 

0.4

1 

0.3

6 
0.49 27 

20 900 64 3 
210.3

6 

13.0

3 

125.4

1 

15.5

5 
0.40 

0.4

9 

1.0

0 
0.58 0.83 

0.7

0 

0.3

7 
0.59 12 

21 
118

0 
83 2 

218.2
8 

10.6
2 

129.0
6 

19.8
9 

1.00 
0.7
1 

0.5
0 

0.71 0.56 
0.7
8 

0.6
9 

0.62 9 

22 
118

0 
64 2 

208.3

3 

11.8

1 

121.3

5 

16.3

9 
1.00 

0.4

9 

0.5

0 
0.55 0.69 

0.6

2 

0.4

3 
0.55 17 

23 
118

0 
49 2 

204.5

8 

10.5

6 

115.2

8 

17.7

8 
1.00 

0.3

1 

0.5

0 
0.49 0.55 

0.5

0 

0.5

3 
0.51 24 

24 
118

0 
29 2 

196.1
9 

12.3
7 

111.8
1 

23.6
3 

1.00 
0.0
8 

0.5
0 

0.36 0.76 
0.4
3 

0.9
7 

0.63 7 

25 
118

0 
22 2 

188.1

2 

13.4

3 
97.89 

18.2

5 
1.00 

0.0

0 

0.5

0 
0.24 0.88 

0.1

6 

0.5

7 
0.53 21 

26 
118

0 
108 2 

222.5

2 

12.0

9 

138.0

0 

11.3

0 
1.00 

1.0

0 

0.5

0 
0.77 0.72 

0.9

5 

0.0

6 
0.65 4 

27 
118

0 
49 1 

207.1

6 

12.1

3 

106.3

0 

16.6

2 
1.00 

0.3

1 

0.0

0 
0.54 0.73 

0.3

2 

0.4

5 
0.52 23 

28 
118

0 
64 1 

206.4

8 

12.4

3 

114.8

3 

16.7

8 
1.00 

0.4

9 

0.0

0 
0.52 0.76 

0.4

9 

0.4

6 
0.54 19 

29 
118

0 
22 3 

188.9
3 

13.0
0 

91.23 
21.0

6 
1.00 

0.0
0 

1.0
0 

0.25 0.83 
0.0
2 

0.7
8 

0.54 18 

30 
118

0 
29 3 

198.5

4 

14.5

0 

117.6

9 

15.4

6 
1.00 

0.0

8 

1.0

0 
0.40 1.00 

0.5

5 

0.3

6 
0.61 10 

 

For metallographic investigation of welded specimens, a cross-section was taken as they 

were polished using various grids and etched using Tucker's reagent. Friction stir-welded 

specimens were polished with emery sheets of various grades. These samples were then 

etched for 20 seconds with Keller's reagent. EBSD and optical microscopy (OM) were used to 
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examine these etched specimens. EBSD is a scanning electron microscopy-based 

microstructural-crystallographic characterization technique used frequently to study 

crystalline or polycrystalline materials. All the microstructure samples were polished to 

different grades of emery paper followed by a diamond paste of 1 µm particle size to evolve 

different zones of the welded specimen SZ, TMAZ, HAZ, and base material. Microhardness 

testing was carried out on the Vickers Microhardness taster of (Economet make) VH-1MD. 

The middle of the weld zone (transverse to weld direction) was considered a testing area with 

a 1mm interval using a 100g indentation load. The sub-size specimen was considered for the 

Charpy impact test as per ASTM E23 standards. 

 

  

(a) (b) 

Fig. 2. Underwater friction stir welded specimen 

 

 
Fig. 3. Tensile test specimens as per E-8M-08 [ASTM-2008] guidelines 

 

Grey relation analysis. Grey relation analysis is a multi-criteria decision-making 

technique founded by Chinese professor Julong Deng in the 1980s. GRA is an effective tool 

for solving inter-relationships among multiple responses and criteria. In GRA, multiple 

responses are converted into a single grey relation grade, which is convenient for decision-

making. GRA gives the appropriate, good solution instead of the best solution for complex 

real-life problems. Normalization, generation of grey relation coefficient (GRC), and 

generation of grey relation grade (GRG) are three critical steps in GRA. In normalization, 

responses are normalized between values 0 to 1 according to three different performance 
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characteristics – the "larger the better," "smaller the better," and the "nominal the better." In 

this research, all the response variables, ultimate tensile strength, yield strength, impact 

strength, and percent elongation, should be at their maximum. Hence, all the variables were 

normalized with larger performance characteristics (Ref. Eq. 1). Then, the normalized data 

were turned into a grey relation coefficient (Ref. Eq.2) to show the relationship between the 

actual data and the data that was wanted. In the last step (Ref. Eq.3), an overall grey relation 

grade is calculated by averaging weighed grey relation coefficients.  

The steps followed in the GRA are shown below: 

Step 1. Normalization [18-20] 

𝑥𝑖
∗(𝑘) =

𝑥𝑖
0(𝑘)− 𝑥𝑖

0(𝑘) 

𝑚𝑎𝑥 𝑥𝑖
0(𝑘)−𝑥𝑖

0(𝑘) 
,      (1) 

where 𝑥𝑖
∗(𝑘) is the sequence after the data preprocessing, 𝑥𝑖

0(𝑘) is the reference sequence, 

𝑥𝑖
0(𝑘)  is the smallest value in the reference sequence, 𝑚𝑎𝑥 𝑥𝑖

0(𝑘) is the largest value in the 

reference sequence, 𝑖 = 1, 2,…, 𝑚; 𝑘 = 1, 2,…,𝑛; 𝑚 is the number of experiments, and 𝑛 is 

the number of experimental data. 

Step 2. Grey relation coefficient [18-20] 

𝜉(𝑥0
∗(𝑘), 𝑥𝑖

∗(𝑘)) =
∆𝑚𝑖𝑛(𝑘)+𝜁∆𝑚𝑖𝑛(𝑘)

∆0𝑖(𝑘)+𝜁∆𝑚𝑎𝑥(𝑘)
  , (Table 5. C16-C19) (2) 

∆0𝑖
. (𝑘) = ‖𝑥0

∗(𝑘) − 𝑥𝑖
∗(𝑘)‖ ,    (2.1) 

∆𝑚𝑖𝑛(𝑘) = 𝑚𝑖𝑛∀𝑗∈𝑖𝑚𝑖𝑛∀𝑘‖𝑥0
∗(𝑘) − 𝑥𝑗

∗(𝑘)‖, 

∆𝑚𝑎𝑥(𝑘) = 𝑚𝑎𝑥∀𝑗∈𝑖𝑚𝑎𝑥∀𝑘‖𝑥0
∗(𝑘) − 𝑥𝑗

∗(𝑘)‖ , 

where ∆0𝑖
. (𝑘) is the deviation sequence of the comparability sequence 𝑥𝑖

∗(𝑘) and reference 

sequence 𝑥0
∗(𝑘)=1, ζ is the distinguishing coefficient, having a value between 0-1. The value 

of 0.5 is generally used. 

Step 3. Grey relation grade [18-20] 

𝛾𝑖(𝑥0
∗(𝑘), 𝑥𝑖

∗(𝑘)) =
1

𝑛
∑ 𝑤𝑖

𝑛
𝑖=1 𝜉(𝑥0

∗(𝑘), 𝑥𝑖
∗(𝑘)),    (3) 

where 𝑤𝑖 is the weighting value of the 𝑖th performance characteristic, and here 0.25 is the 

weight considered for each response variable, 𝛾𝑖(𝑥0
∗(𝑘), 𝑥𝑖

∗(𝑘)) is the GRG for an 𝑖th 

experiment, and 𝑛 is the number of performance characteristics. 

First, using Eq. (1), the experimental data consisting of process parameters and 

responses have been normalized. Tensile strength, yield strength, elongation percentage, and 

impact strength were evaluated using the largest-the-better (LB) criterion. Based on Eq. (2), 

grey relational coefficients are calculated for each performance characteristic with weights of 

w1 = 0.5 and w2 = 0.5 [13]. Eq. 3 has been used to calculate the grey relational coefficients 

for each response. FSW quality is measured by the grey relational grade, a comprehensive 

measure. GRA transforms the multi-response optimization problem into a single optimization 

problem with equivalent objective functions. The GRG is the relationship between the 

reference sequence values and comparability sequence values. 

Table 10 indicates the optimal factor combination with a high GRG value. A tool 

rotation of 900 rpm, a tilt angle of 2 degrees, and a welding speed of 108 mm/min are the 

optimal conditions for the FSW of aluminum alloy. Table 5 shows the network topology and 

training parameters of the ANN to GRG, and Table 6 shows each level's mean grey relational 

grade ratio according to the process parameters. Table 7 shows the absolute error values for 

different neural networks. 

An artificial neural network (ANN). An artificial neural network (ANN) is a 

computational network inspired by biological processes. ANNs are optimization techniques 

that use data analysis and simulation to model the human brain or neural system. The main 

benefits of ANNs are that they can access more data and remove noise and insufficient data. 

ANNs are advantageous because of their calculation speed, ability to learn from examples and 
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simplicity. Due to these characteristics, ANNs can be applied to materials science. FSW 

responses have been modeled and predicted by several researchers using ANNs. Manvatkar 

et al. [36] used a feed-forward network and the backpropagation algorithm for various 

combinations of welding variables to generate tool durability maps to study tool strength. 

Networks are multi-layered, with an input layer for parameters, an output layer for the 

response, and a hidden layer for processing input using a training function. Four input neurons 

were used to develop neural networks. In each hidden layer, 1-10 neurons were used to train 

the data, and one neuron predicted the mechanical properties of welded joints. Input layer 

nodes represent tool rotation speed, transverse tool speed, and tool tilt angle, which are used 

to predict response. After training several networks, the number of hidden layers and neurons 

in each layer was determined. In this study, back propagation neural network with three 

neurons for the input parameters and one neuron for the response of FSW in terms of grey 

relation grade.  

The training functions "logsig" and "tansig" are used in the first and second hidden 

layers, respectively. An ANN model was trained with 70% of the readings, validated with 

15%, and tested with 15%. A linear regression analysis was also performed between the ANN 

outputs (predictions) and the corresponding targets (experiments) to evaluate the ANN-based 

model response. After several trials, the model was developed with two hidden layers 

containing 1-10 neurons each. A network with minimum absolute relative error and maximum 

correlation coefficient criteria was used to select the required neural network by training and 

validating several neural networks. The absolute relative error was calculated with the root to 

mean square (RSM) error shown in Eq. 4 and the correlation coefficient shown in Eq 5. 

Neurons in hidden layers one and two were validated with "logsig" and "tagsig" activation 

functions. 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 = |𝑅𝑀𝑆𝐸𝑇𝑟𝑎𝑖𝑛 − 𝑅𝑀𝑆𝐸𝑉𝑎𝑙| , (4) 

where 𝑅𝑀𝑆𝐸𝑇𝑟𝑎𝑖𝑛 = [(
1

𝑝
) ∑ |𝑡𝑗 − 𝑜𝑗|

2
𝑗 ]

1

2
;  𝑅𝑀𝑆𝐸𝑉𝑎𝑙 = [(

1

𝑝
) ∑ |𝑡𝑗 − 𝑜𝑗|

2
𝑗 ]

1

2
. 

𝑅2 = 1 − [
∑ (𝑡𝑗−𝑜𝑗)

2
𝑗

∑ (𝑜𝑗)
2

𝑗

]

1

2

. (5) 

Network parameters used to train and validate the networks as shown in Table 5. 

 

Table 5. Network topology and training parameters of the ANN to GRG 

Network parameter Content 

Number of input nodes  3 

Number of hidden layers 2 

Number of output nodes  1 

Number of neurons for each hidden layer Layer1=9, Layer 2=7 

Network type Feed forward back propagation 

Training function Levenberg–Marquardt 

Transfer functions for hidden layers logsig, tansig 

Transfer functions for the output layer Linear 

Performance function MSE 

Training epoch 300 

Goal  0.0001 

 

One hundred neural networks were tested with varying neurons in two hidden layers to 

select the optimal neuron sets in hidden layers. Tables 6 and 7 show that the network with 

nine neurons in hidden layer 1 and 7 neurons in hidden layer 2 shows the highest correlation 
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coefficient (𝑹𝟐) is 0.9937, and the slightest absolute error of 0.0021. Hence to train the neural 

networks, 3-9-7-1 architecture was chosen to predict the grey relation grade. 

 

Table 6. Correlation coefficient (𝑅2) for different neural networks  
Layer 2 

L
a

y
er

1
 

Neurons 1 2 3 4 5 6 7 8 9 10 

1 0.6892 0.6636 0.7017 0.4764 0.5315 0.3679 0.6266 0.5031 0.4530 0.6986 

2 0.6760 0.8289 0.6192 0.5921 0.4645 0.6688 0.9691 0.3169 0.5352 0.8687 

3 0.6336 0.7232 0.6495 0.5406 0.9110 0.9875 0.6857 0.6252 0.7901 0.8351 

4 0.9159 0.7816 0.7183 0.5610 0.4624 0.8267 0.6953 0.6191 0.1319 0.5056 

5 0.5753 0.7340 0.6174 0.8097 0.5934 0.6564 0.9065 0.6930 0.6009 0.5936 

6 0.7000 0.8581 0.5812 0.6299 0.9627 0.8522 0.9475 0.6644 0.4279 0.7815 

7 0.7254 0.5310 0.9679 0.6704 0.6573 0.5874 0.9704 0.7635 0.8179 0.5863 

8 0.9436 0.6040 0.5583 0.9227 0.1089 0.8556 0.9184 0.8283 0.7068 0.8041 

9 0.6561 0.8712 0.6353 0.9200 0.6328 0.6823 0.9909 0.9229 0.6204 0.8194 

10 0.8391 0.5643 0.8690 0.9664 0.7029 0.7514 0.9739 0.9806 0.8580 0.8990 

 

Table 7. Absolute error values for different neural networks 
  Layer 2 
 

Neurons 1 2 3 4 5 6 7 8 9 10 

L
a

y
er

1
 

1 0.0919 0.0448 0.1190 0.0270 0.1665 0.0578 0.1156 0.0027 0.1484 0.0208 

2 0.1063 0.1749 0.0695 0.1246 0.0651 0.0365 0.0045 0.0319 0.2044 0.1449 

3 0.1275 0.1495 0.0238 0.1930 0.0949 0.0068 0.0499 0.0390 0.2084 0.0310 

4 0.1157 0.0546 0.0417 0.0105 0.1068 0.1738 0.0186 0.0106 0.1169 0.0634 

5 0.0879 0.1094 0.0643 0.1512 0.1244 0.1236 0.0283 0.0403 0.0051 0.0219 

6 0.0834 0.0791 0.0424 0.1089 0.1388 0.1687 0.0640 0.0774 0.2137 0.0062 

7 0.1249 0.0500 0.0131 0.1532 0.1820 0.1360 0.1810 0.0912 0.0024 0.0849 

8 0.1581 0.1281 0.1286 0.1541 0.1032 0.1588 0.2424 0.2220 0.0438 0.1972 

9 0.1207 0.2402 0.1194 0.0733 0.0999 0.1003 0.0021 0.0445 0.2045 0.2543 

10 0.0739 0.0097 0.0481 0.1634 0.0511 0.1650 0.0753 0.2281 0.0588 0.0960 

 

The experimental results and neural network predictions of the process parameters 

follow each other very closely shown in Table 8, so the developed ANN can accurately 

predict the grey relation grade. Consequently, it is possible to achieve overall performance 

without performing any experiments. A neural network model could forecast outcomes better 

if its mean squared error is lower. 

For the GRG, the correlation coefficients were 0.9833, 0.9884, and 0.9938 at the 

training, validation, and testing stages, respectively shown in Fig. 4. The percentage relative 

error between the trained and the predicted value by ANN were closely matched, and the 

maximum percentage of errors was about 3.7% which is within the acceptable level. The low 

relative error values and average absolute relative error in FSW, as well as the strong 

correlation coefficients between predicted and experimental results, demonstrate the 

outstanding capability of artificial neural networks to model mechanical properties without 

requiring a priori knowledge of thermal and material flow, microstructural and mechanical 

analysis.  
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Table 8. ANN predictions 

Sr. No 1 2 3 4 5 6 7 8 9 10 

GRG 0.6268 0.6531 0.5526 0.5944 0.4960 0.3624 0.5623 0.4350 0.5035 0.5544 

ANN Pred 0.6492 0.6289 0.5458 0.6073 0.4871 0.3579 0.5566 0.4424 0.4870 0.5609 

Error 0.0223 0.0241 0.0067 0.0130 0.0089 0.0044 0.0057 0.0074 0.0166 0.0065 

% Error 3.6% 3.7% 1.2% 2.2% 1.8% 1.2% 1.0% 1.7% 3.3% 1.2% 

Sr. No 11 12 13 14 15 16 17 18 19 20 

GRG 0.5766 0.5308 0.4507 0.5240 0.6359 0.7647 0.6440 0.6656 0.4928 0.5912 

ANN Pred 0.5785 0.5248 0.4523 0.5102 0.6503 0.7654 0.6408 0.6665 0.4839 0.5963 

Error 0.0019 0.0060 0.0017 0.0138 0.0144 0.0006 0.0032 0.0008 0.0088 0.0051 

% Error 0.3% 1.1% 0.4% 2.6% 2.3% 0.1% 0.5% 0.1% 1.8% 0.9% 

Sr. No 21 22 23 24 25 26 27 28 29 30 

GRG 0.6172 0.5462 0.5104 0.6291 0.5271 0.6491 0.5166 0.5421 0.5434 0.6053 

ANN Pred 0.6276 0.5456 0.5183 0.6179 0.5313 0.6504 0.5231 0.5492 0.5518 0.5954 

Error 0.0104 0.0005 0.0079 0.0112 0.0042 0.0013 0.0065 0.0071 0.0084 0.0099 

% Error 1.7% 0.1% 1.5% 1.8% 0.8% 0.2% 1.3% 1.3% 1.5% 1.6% 

 

 
Fig. 4. ANN regression values 
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Prediction of optimum process parameters. To predict the optimum process 

parameters, trained ANN (3-9-7-1) was used. From the grey relation analysis, it was observed 

that 900 rpm, tool rotation speed, 108 mm/min tool traverse speed, and Tilt angle 2° show the 

highest value of grey relation grade of 0.7647 (sr. no 16 of Table 4). The same set of 

parameters was used to obtain the optimum process parameter by varying each parameter by 

keeping two parameters constant to simulate the neural network. As shown in Fig 5 (a), the 

effect of tool rotation speed on grey relation grade is predicted using a trained neural network 

by keeping 108 mm/min of TTS and tilt angle 2° constant. Results show that GRG value 

increases with an increase in tool rotation speed up to 975 rpm, then decreases.  

Also, for the tool traverse speed, the grey GRG value increases with an increase in TTS 

for TRS 900 rpm and TTA of 2°, as shown in Fig. 5 (b). Maximum grey relation grade 

obtained at 108 mm/min. Figure 5 (c) shows GRG value increases with an increase in tool tilt 

angle from 1-2° and then decreases. Maximum grey relation grade obtained at 2°. 

 

 

 
Fig. 5. Prediction of GRG using ANN 

 

After simulating the results, optimum parameters predicted by the ANN are Tool 

rotation speed of 975 rpm, tool transverse speed of 108mm/min, and tool tilt angle of 2°, as 

shown in Table 9. The grey relation grade obtained using the proposed GRA-ANN approach 

was 0.8440 with revised optimum parameters tool rotation 975 rpm, tilt angle 2°, and welding 

speed 108 mm/min, a 9.32% improvement over the 0.7647 obtained experimentally at 

900 rpm and 108 mm/min. The results show that the adoption of the GRA-ANN hybrid 

(a) (b) 

(c) 
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optimization method leads to a significant improvement of mechanical properties in friction 

stir welding. 

As the milling machine has limited settings of the tool rotation speed, 975 rpm was not 

possible with the machine. Hence closed match speed setting of 900 rpm was considered the 

optimum speed with a transverse tool speed of 108mm/min and tool tilt angle of 2°. The same 

parameters were used for the conventional in-air friction stir welding experiment after the 

optimal process parameters were determined for underwater friction stir welding. Mechanical 

and microscopic investigations were conducted to compare underwater and in-air FSW 

performance. 

 

Table 9. Results of welding performance using the GRA and ANN 

Method 

Optimum process 

conditions GRG 

% 

Improveme

nt in GRG TRS TTS TA 

GRA 900 108 2° 0.7647  --- 

GRA-ANN(Pred) 900 108 2° 0.7653 -- 

TAGUCHI-GRA-ANN (optimized 

parameters) 
975 108 2° 0.8440 9.32% 

 

Result and discussion 

ANOVA analysis. The grey relation grade obtained using the proposed GRA-ANN approach 

was 0.8440 with revised optimum parameters tool rotation 975 rpm, tilt angle 2°, and welding 

speed 108 mm/min, a 9.32% improvement over the 0.7647 obtained experimentally at 

900 rpm and 108 mm/min. [42]. The results of the ANOVA test are shown in Table 10. In 

addition, a percentage contribution is calculated. In the 1920s, statistician and geneticist 

R.A. Fisher developed Fisher's F-distribution to test for statistical significance. In this paper, 

ANOVA analysis was carried out to find the % contribution of each process parameter to the 

mechanical properties of the welded joint. From Table 10, in ANOVA analysis, it is observed 

that input parameter tool rotation speed is having highest % contribution of 39.89%, followed 

by 29.87% and 19.59% of Tool traverse speed and Tool tilt angle, respectively on mechanical 

properties of underwater friction stir welding of AA 6061-T6. 

 

Table 10. ANOVA analysis 

Parameters SS Value DOF MS Value F-Value  P-value % Contribution 

TRS 0.0672 2 0.0336 3.743941 0.041456. 39.89% 

TTS 0.1258 5 0.02516 2.803499 0.046358. 29.87% 

TTA 0.033 2 0.0165 1.838543 0.188142 19.59% 

Error 0.17949 20 0.008975  10.65% 

Total 0.40549 29   

  

Increasing the rotational tool speed improves the grey relation grade to a maximum for 

a given TTS and TTA. The material is mixed and stirred around the pin due to frictional 

heating and plastic deformation caused by tool rotation speed. Insufficient tensile strength and 

yield strength might be caused by low heat generation and plastic deformation at low 

rotational speeds. On the other hand, a high rotational speed is characterized by turbulent 

material flow and localized softening due to the abundance of heat created. The presence of 

strengthening precipitates, dissolution, and coarsening, decreases the strength of the welded 

joint. Welds produced with tool speeds close to 900 rpm have better mechanical properties 

because sufficient heat is generated for effective softening and mixing of the deformed 

material. The strength of the joint tends to increase as welding speed increases.  
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Characterization of welded joint. Macroscopic images of all 30 samples are free from 

any volumetric defect except flash over the top surface of the weld. Figure 6 shows a 

macroscopic image of an underwater friction stir welding sample welded with optimum 

process parameters obtained with ANN-GRA analysis. For the micro and macrostructural 

investigations, specimens were processed with the optimum process, and parameters were 

used. For the comparative study, for the same optimum parameters, a new specimen was 

welded with the conventional in-air friction stir welding process. A macrograph of underwater 

FSW shows distinct HAZ, TMAZ, and SZ zones, whereas, for in-air FSW, the HAZ and 

TMAZ are separated by a thin boundary. The macrograph of the weld sample shows well-

defined onion rings consisting of bright and dark field regions, which denote uniform material 

flow in the nugget zone shown in Fig. 6. Exposure to water in UFSW makes the weld 

smoother compared with FSW.  

 

 
(a) 

 
(b) 

Fig. 6. Macroscopic image of an underwater friction stir welding sample welded with 

optimum process parameters 

 

The plastic deformation generated by the FSW process severely compresses the pre-

deformed coarse grains, resulting in the creation of extremely fine recrystallized equiaxed 

grains within the weld nugget. In addition, the dynamic recrystallisation (DRX) phenomenon, 

which is theoretical to have been induced by the adsorption of dislocations by sub-grain 

boundaries, may have also aided in the nucleation and development of ultrafine grains in the 

FSW weld nugget. As grain refinement takes place, which precedes to increase of 

microhardness ultimately increases the tensile strength of the joint due to water as a cooling 

medium carrying out heat from the weld specimens rapidly. This rapid cooling is responsible 

for restricting grain growth, which leads to refined grains in the weld nugget zone. Slight 

variation in the grain size of FSW welded samples of both the condition shows that the 

cooling effect due to water dominates the development of tool pin profiles with the same 

process parameters. Further, the microstructure analysis the specimen welded in water 

analysed using EBSD techniques.  

Figure 7 shows the EBSD grain maps of base metal compared with the weld nugget 

zone of UFSW and CFSW analysed using the ATEX software tool [23]. Figure 7 (a) shows 

the EBSD maps of base material and which shows elongated grains with an average 84 µm 
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grain size. Figures 7 (b) and 7 (c) shows the components and grains map of TMAZ prepared 

under water and in air. Where, slightly more refined grains of size 2.56 µm were observed for 

water as compared with the air. It was because of effective heat distribution and plastic 

deformation that occurred due to water which refine grains in the welding zone compared 

with the air.  

In FSW, the base material of 84 µm grain size undergoes severe plastic deformation, 

and grain refinements provide an equiaxed grain size. The average grain size in UFSW is 

2.65 µm, and the CFSW is 4.91 µm. The water environment in UFSW restricted grain growth 

in the nugget zone after processing, providing finer grain UFSW compared with CFSW. Due 

to the shear deformation generated by the rotating tool, the parent grains tend to be reoriented 

along the flow pattern around the pin, which is a characteristic of TMAZ. Observation of 

newly-formed equiaxed grains indicates the presence of dynamic recrystallization (DRX). 

From the exterior to the interior of the TMAZ, there is a trend for more equiaxed grains to 

develop. With closer proximity to the core of the weld, higher temperatures and more 

locational deformation are obtained, resulting in an increase in DRX. The texture transition 

happens on the TMAZ border. The alterations are concentrated in a small area. This region 

also has significant diversity in grain size. 

 

 
(a) Grain structure of base material 

 
(i) EBSD maps of FSW specimen prepared underwater  
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(ii) EBSD maps showing grain boundaries for underwater FSW 

 
(iii) Pole maps of underwater FSW 

(b) (i, ii and iii) EBSD maps of FSW specimens prepared underwater  

 
 (i) EBSD maps of FSW specimen prepared in air 
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(ii) EBSD maps showing grain boundaries for FSW specimen prepared in air 

 
 (iii) Pole figures for FSW specimen prepared in air 

(c) (i, ii, and iii) EBSD maps of FSW specimens prepared in air 

Fig. 7. EBSD Maps of a) base metal, b) Underwater FSW, c) In air FSW 

 

In FSW, due to intense recrystallization because of stir action, grain refinement occurs 

which is responsible for changing mechanical properties in a welded joint. Underwater 

friction stir welding reduces the thermal exposure in nugget zone, which restricts grain growth 

due to natural aging during the cooling of the joint, which adds extra benefit to improve the 

mechanical properties of the joint. The grain refining process is driven by grain subdivision at 

the cooler perimeter of the tool's deformation zone and the geometric effects of strain, which 

reduce the overall high-angle border spacing with increasing deformation. Nevertheless, it 

also involves thermally induced high-angle grain boundary migration, which increases as the 

temperature approaches the tool. The later, higher-temperature stages of the refining process 

resemble geometric dynamic recrystallisation. As a result of static annealing in the thermal 

wake of the tool, the nugget grain structure becomes more equiaxed and coarsens slightly, as 

well. As indicated previously, sites with relatively large deformation stresses exhibit 

discontinuous recrystallization; yet, continuous recrystallization is also accompanied by 

grains refining. In the SZ, a steady change from low-angle borders to high-angle boundaries 

can be detected, according to studies of grains distribution in the literature [21,22].  

The low angle boundaries for the specimen prepared in water are nearly 28.5 % as seen 

in Fig. 7 (b-ii) whereas high angle boundaries are 71.5 % with an average grain size of 

3.21 μm and texture intensity of 5.01 as observed in pole Fig. 7 (b-iii). On the other side, the 
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low angle boundaries for the specimen prepared in the air are nearly 25.4% as seen in 

Fig. Fig. 7 (c-ii) whereas, high angle boundaries are 74.6 % with an average grain size of 

8.1 μm and texture intensity of 7.32 as observed in pole Fig. 7 (c-iii). 

The high temperatures and intense deformation experienced during FSW/UFSW result 

in different textures, precipitates dissolving, and coarsening. The macrostructure has three 

distinct zones: the stir zone (SZ), the TMAZ, and the HAZ. There is a distinct boundary 

between TMAZ/HAZ and SZ. The grains of BM are non-deformed and elongated. Typically, 

the SZ exhibits equiaxed and refined grains that have been dynamically recrystallized. New 

grains are formed in the SZ due to intensive plastic deformation caused by tool stirring and 

heat generated by tool rubbing. Figure 8 shows Vickers microhardness profiles measured 

along the midsections of base material, CFSW, and UFSW specimens. The base material has 

an average hardness value of 107 HV. The weld regions of HTAAs usually become soft as a 

result of FSW. The UFSW joints of AA6061 soften due to coarsening and dissolution of 

strengthening precipitates during FSW/UFSW [43]. 

 It was observed that precipitation-hardened AAs typically have 'W' type hardness 

profiles (Fig. 8). The advancing side undergoes severe plastic deformation in friction stir 

welding compared with the retreating side. Due to this, the advancing side undergoes higher 

temperatures than the retreating side, reducing the region's microhardness. AS in UFSW, with 

low-temperature exposure in the welding region, the hardness value increases, as shown in 

Fig. 8. The retreating side in UFSW shows a minimum hardness of 70.2 Hv on the interface 

of TMAZ /HAZ. For the CFSW minimum hardness value observed in the HAZ zone of the 

Advancing side.  

 

 
Fig. 8. Microhardness profile of UFSW sample 

 

For CFSW samples, due to high heat input on AS, microhardness in AS (64-86 HV) 

was lower than that in RS (66-87HV). A maximum microhardness of 85 HV was found in the 

SZ of RS, which was lower than the average microhardness of 107 HV found in the BM. 

Compared to SZ, TMAZ/HAZ exhibited a noticeable decrease in microhardness. 

Microstructure analysis revealed that SZ contains fine grains and precipitates. Refined grains 

with many grain boundaries resist dislocation motion when indented or loaded. As a result, 

the SZ exhibits a higher microhardness than the TMAZ. There was grain growth (coarsening) 

in the TMAZ and HAZ. Due to a coarse boundary, there is less resistance to dislocation 

motion, which makes grain boundaries less available. TMAZ and HAZ have low grain 

boundary strengthening, contributing to their low hardness. As reported, it was found that in 

UFSW, TMAZ and HAZ were narrowing, which reduced softening regions in the nugget 
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zone [7]. TMAZ/HAZ might also have a lower hardness due to the dissolution of 

strengthening precipitates, Lin et al. [44] observed similar results.  

The tensile test results for the base metal, underwater friction stir welding, and 

conventional in-air fraction stir welding (CFSW) samples are shown in Fig 9. Figure 9 shows 

that welding speed increases from 29-108 mm/min improves mechanical properties. As a 

result of welding at lower speeds, high heat levels are generated, compromising the growth 

and dissolution of strengthening precipitates. With higher welding speeds, thermal cycles are 

reduced, which improves tensile strength and inhibits grain growth and precipitate 

dissolution. According to Liu et al. [45], the tensile strength first increases with welding speed 

and then dramatically decreases at 200 mm/min due to the groove defect, which is present at a 

fixed rotation speed of 800 rpm.  

The optimal process parameters used to process both CFSW and UFSW samples are 

TRS 900 rpm, WS 108 mm/min, with TA =2°. Friction stir welding undergoes thermal 

heating, which reduces mechanical properties compared to a base metal, which results in 

tensile strength of 303.5 MPa and a 20% elongation. Results show underwater samples show 

a tensile strength of 237.25 MPa (78.17% of BM) with an elongation of 13.44% (76.08% of 

BM). FSW samples processed in the air (CFSW) show a tensile strength of 216.88 MPa 

(71.45% of BM) with an elongation of 12.5% (63.2%) of BM).  

 

 
Fig. 9. Stress-Strain curves for BM, CFSW, and UFSW 

 

Tensile strength was increased by 10.7% when the welding medium was changed from 

air to water [46]. The peak temperature in the UFSW is lower than in the FSW due to water's 

higher heat absorption capacity. In addition, UFSW results in a shorter dwell time above a 

given temperature and a lower peak temperature due to more significant heating and cooling 

rates [46]. Water cooling limits the coarsening and dissolution of strengthening precipitates 

due to reduced temperatures and less thermal gradient. As a result, an optimal underwater 

FSW joint may be more substantial than a conventional FSW joint. 

The hardness minimum is a potential fracture location during transverse tensile loading 

of heat-treatable Al alloys since the hardening precipitates dominate the strength [46]. In 

FSW, zones with low hardness distribution are prone to fracture initiation. Figure 10 (a) 

shows tensile test specimens' fracture surface locations. Based on current research, CFSW 

tensile test fracture occurs on the AS in the HAZ adjacent to the TMAZ, which has the lowest 

hardness [43]. Microfractographs (Fig. 10 (b)) show some equiaxed dimples, indicating 

ductile fracture modes. Dawood et al. [47] attribute small dimples to homogeneous 

microstructures at the failure site.  
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Fig. 10. The tensile fracture surfaces of weld joints welded a) CFSW b) UFSW 

 

Typically, the advancing side achieves higher temperatures, causing grain growth, and 

resulting in the lowest hardness region. The fracture position shifts from advancing to 

retreating when the cooling medium changes from air to water shown in Fig. 10 (b) for 

UFSW, fracture occurs in the low hardness zone of the interface of TMAZ and HAZ on the 

retreating side [48,49]. Several large dimples are evident on the fracture surface of 

Figs. 10 (a) and (b), indicating significant plastic deformation during tensile testing. Joints 

welded in air exhibit larger and deeper dimples than joints welded in water; the fracture 

surfaces of the joints welded in air exhibit ductile characteristics with large dimples. In some 

positions on the fracture surface of the joint welded in water, there are small dimples with 

secondary cracks, and quasi-cleavage planes are visible [49].  

 

Conclusions 

In the present investigations, multiobjective optimization was performed using ANN-GRA for 

UFSW of AA 6061-T6 aluminium alloy using a conical tool. The ultimate tensile strength, 

yield strength, elongation percentage, and impact strength, optimal process parameters were 

determined and optimized for tool rotation speed, welding speed, and tilt angle. Based on the 

results of this study, the following conclusions were drawn: 

1. For UFSW the ANN multilayer network 3-9-7-1 shows optimum results in terms of 

grey relation grade with a correlation coefficient of 0.9909 and an absolute minimum error of 

0.0021. In a model trained with an ANN, a grey relation grade increases with tool rotation 

speed as it increases from 700 to 910 rpm, then decreases. In addition, the grey relation grade 

increases with an increase in tool traverse speed from 22 to 108 mm/min. 

2. Based on GRA-ANN, 0.8440 grey relation grades were predicted with new optimum 

parameters of 900 rpm, 2° tilt angle, and 108 mm/min welding speed, compared to 0.7647 

obtained experimentally at 900 rpm, 2° tilt angle, and 108 mm/min. 

3. ANOVA analysis revealed that tool rotation speed contributes 39.89% to the 

mechanical properties of underwater friction stir welding of AA 6061-T6, followed by tool 

traverse speed and tool tilt angle, respectively, by 29.87% and 19.59%. 

4. Underwater FSW samples show the highest strength of 237.25 MPa (78.17% of BM) 

compared with the air (CFSW) sample of 216.88 MPa (71.45% of BM).  

5. The UFSW produces refined grains in the nugget zone and thus improves the 

microhardness and tensile strength of the joints compared with in-air friction stir welding. 
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