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Abstract. The paper is concerned with the calculation of the effective diffusivity of 
transversely isotropic material with spheroidal pores by means of effective field methods. The 
segregation effect that is the main difference between conductivity and diffusivity problems is 
taken into account. Wiener's and Hashin-Shtrikman's bounds are modified to account for the 
segregation. Orientational scatter of pores about a preferential orientation is considered. Mori-
Tanaka, Kanaun-Levin, and Maxwell homogenization schemes in terms of property 
contribution tensors are used. The calculated diffusion coefficients depend on the volume 
fraction, the shape of pores, their distribution over orientations in a three-dimensional solid, 
and the segregation factor. 
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1. Introduction  
The microstructure of the host material can affect significantly the mass transport process 
inside it. Grain boundaries in metals provide high diffusivity paths [1]; phases in composites 
are characterized by different diffusivity [2]; vacancies, voids, and microcracks are known to 
be traps for impurities [3-6]. Accurate measurement of diffusion coefficients of materials with 
a complex microstructure faces difficulties. Thus, theoretical estimation of the effective 
diffusivity of composites is of great importance. In particular, the study of materials with 
discontinuities is of practical interest.  

Hart [7] suggested using  the mixture rule to estimate the role of dislocations in bulk 
diffusion. On the basis of similarity between governing equations in the diffusivity and 
conductivity problems, Barrer [8] rewrote a number of micromechanical schemes accounting 
for the interactions between inhomogeneities to estimate the effective diffusivity of material. 
Zhang and Liu [9] noticed a principal difference between diffusivity and conductivity 
problems: temperature is a continuous function across the phase boundaries, while 
concentration is usually not. To account for the jump in concentration, the segregation factor 
equal to the ratio of the impurity concentration in the matrix to the impurity concentration 
inside the inhomogeneities can be introduced [10,11]. Belova and Murch [12,13] introduced 
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the segregation factor in Hart and Maxwell–Garnett equations to calculate effective properties 
of material consisting of grain boundaries and spherical grains. Knyazeva et al. [14] rewrote 
non-interaction approximation, Mori-Tanaka effective field method, and Maxwell 
homogenization scheme in terms of contribution tensors and calculated the effective diffusion 
coefficient of isotropic material consisting of spheroidal grains representing inhomogeneities 
and grain boundaries representing the matrix. Note that in the absence of the segregation 
effect, the results obtained in [14] coincide with the ones obtained under consideration of the 
conductivity problem. The last one was solved by means of various micromechanical schemes 
in a number of works considering materials with ellipsoidal and, in particular, spheroidal 
inhomogeneities (see, for example, [15-17]).   

The present paper generalizes the results obtained by Knyazeva et al. [14] for isotropic 
material to the case of transversely isotropic material. The overall anisotropy is assumed to be 
induced by the shape and preferential orientation of inhomogeneities, whereas the host matrix 
is assumed to be isotropic.  

We should note that paper [14] did not account for the jump in concentration at the 
matrix/inhomogeneity interface at every step of modeling. This led to incorrect estimations of 
the effective diffusivity when concentration is not a continuous function. The present paper 
provides correct expressions for effective diffusivity. Additionally, in contrast to [14], where 
they considered the grain boundaries processing high diffusivity as the matrix, we consider 
pores with high diffusivity as embedded inhomogeneities. Transversely isotropic materials 
consisting of matrix and spheroidal pores can model layered metals with intergranular 
microcracks, which have a preferential orientation. For example, metals with defects created 
during formation or metals with hydrogen-induced microcracks along grain boundaries.  

The paper investigates the influence of the segregation effect on the effective diffusion 
coefficients calculated by means of micromechanical methods accounting for interactions 
between inhomogeneities. Mori-Tanaka, Kanaun-Levin, and Maxwell homogenization 
methods are used. These methods belong to the class of effective field methods, which can be 
used to calculate the effective properties of the material in the case of its anisotropy induced 
by the shape and preferential orientation of inhomogeneities. We have already obtained the 
results on the basis of the Maxwell homogenization scheme in [18], whereas the results 
obtained within the two other effective field methods are presented the first time.  

Results obtained within various homogenization schemes must be in agreement with 
Wiener's and Hashin-Shtrikman's bounds. Within the frame of the present paper, we purpose a 
modification of these bounds to account for the segregation effect. Additionally, we discuss 
the mathematical restriction on the application of the Maxwell scheme due to singularity at a 
certain volume fraction of inhomogeneities. To avoid this non-physical effect in the elasticity 
problem, linearization of the Maxwell scheme with respect to interaction effect was proposed 
in [19]. Following [19], we propose a linearization of the Maxwell scheme for diffusivity.  
 
2. Property contribution tensors 
One can express the effect of a given inhomogeneity on the properties of interest in terms of 
property contribution tensors [20,21]. Sums of the property contribution tensors are proper 
microstructural parameters that reflect contributions of individual inhomogeneities to the 
overall properties. We focus on the influence of an isolated inhomogeneity on the diffusion 
process and introduce the second-rank diffusivity contribution tensor, HD, and resistance 
contribution tensor, HDR.  

We start with consideration a reference volume V of an infinite three-dimensional solid 
with the isotropic diffusivity tensor D0=D0I containing inhomogeneity of volume V1<<V 
with the isotropic diffusivity tensor D1=D1I. The main difference between conductivity and 
diffusivity problems is a segregation effect specific to the last problem. To account for this 

938 K.P. Frolova, E.N. Vilchevskaya



effect it is necessary to consider a discontinuous concentration field (a specific case of non-
ideal contacts at the matrix/inhomogeneity interface). Following [13,22], the boundary 
conditions at the matrix (denoted by "+")/inhomogeneity (denoted by "-") interface are taken 
as 
𝐷𝐷0

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

�
𝑥𝑥→𝜕𝜕𝜕𝜕1+

= 𝐷𝐷1
𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

�
𝑥𝑥→𝜕𝜕𝜕𝜕1−

, (1) 
𝑐𝑐(𝑥𝑥)|𝑥𝑥→𝜕𝜕𝜕𝜕1+ = 𝑠𝑠𝑐𝑐(𝑥𝑥)|𝑥𝑥→𝜕𝜕𝜕𝜕1−, (2) 
where c is concentration, s is the segregation factor. The last one describes a constant jump in 
impurity concentration.  

When there is no segregation effect, s = 1. In the cases when impurity can be partially 
trapped at the interface or inside inhomogeneities, s > 1 or s < 1, respectively. Grain 
boundaries, microcracks, pores, and other discontinuities are known to be traps for diffusing 
particles. Hence, a correct choice of the value of the segregation factor depends on the 
micromechanical model of a composite material, namely, which phase represents matrix, and 
which phase represents inhomogeneities. Knyazeva et al. [14] modeled grain boundaries 
through the matrix, and grains were considered as inhomogeneities. In this case, impurity is 
trapped in the matrix, so the authors considered s > 1. If grain boundaries represent 
inhomogeneities, impurity is trapped inside it, and s < 1. Similarly, when pores are introduced 
as embedded inhomogeneities, s < 1. Hereafter we focus on cases s ≤ 1. 

If the concentration is prescribed on the boundary 𝜕𝜕𝜕𝜕 (𝑐𝑐(𝑥𝑥)|𝜕𝜕𝜕𝜕 = 𝐆𝐆0 ∙ 𝒙𝒙), whatever the 
composition and microstructure of the reference volume, the volume average of the 
concentration gradient at the absence of body sources is completely determined by its 
boundary values 
〈∇𝑐𝑐〉𝜕𝜕 = 1

𝜕𝜕 ∫ 𝐧𝐧𝜕𝜕𝑐𝑐0𝜕𝜕𝜕𝜕 d𝜕𝜕𝜕𝜕 = 𝐆𝐆0, (3) 
where nV is the outer unit normal vector on 𝜕𝜕𝜕𝜕. Introducing the inner boundary 𝜕𝜕𝜕𝜕1 and 
taking into account that concentration is a discontinuous function, an application of the Gauss 
theorem yields 
〈∇𝑐𝑐〉𝜕𝜕 = �1 − 𝜕𝜕1

𝜕𝜕
� 〈∇𝑐𝑐〉𝜕𝜕0 + 𝜕𝜕1

𝜕𝜕
〈∇𝑐𝑐〉𝜕𝜕1 + 1

𝜕𝜕 ∫ 𝐧𝐧(𝑐𝑐0 − 𝑐𝑐1)d𝜕𝜕𝜕𝜕1𝜕𝜕𝜕𝜕1
, (4) 

where 〈∙〉𝜕𝜕0 = ∫ ∙ d𝜕𝜕0𝜕𝜕0
, 〈∙〉𝜕𝜕1 = ∫ ∙ d𝜕𝜕1𝜕𝜕1

 denote spatial averaging over the matrix and 
inhomogeneity, respectively; n is the unit normal vector on the interface surface, pointing 
from the inhomogeneity to the matrix. The last term vanishes in the case of ideal contact. 
Note that paper [14] did not introduce the last term even in the case of non-ideal contact. 

Taking into account the boundary condition (2), equation (4) results in 
〈∇𝑐𝑐〉𝜕𝜕 = �1 − 𝜕𝜕1

𝜕𝜕
� 〈∇𝑐𝑐〉𝜕𝜕0 + s 𝜕𝜕1

𝜕𝜕
〈∇𝑐𝑐〉𝜕𝜕1 . (5) 

The average concentration gradient can be alternatively found through the spatial 
averaging  
〈∇𝑐𝑐〉𝜕𝜕 = 1

𝜕𝜕 ∫ ∇𝑐𝑐𝜕𝜕 d𝜕𝜕 = 1
𝜕𝜕 ∫ ∇𝑐𝑐𝜕𝜕0

d𝜕𝜕0 + 1
𝜕𝜕 ∫ ∇𝑐𝑐𝜕𝜕1

d𝜕𝜕1. (6) 
An application of the Gauss theorem, consideration of the boundary condition 

𝑐𝑐(𝑥𝑥)|𝜕𝜕𝜕𝜕 = 𝐆𝐆0 ∙ 𝒙𝒙 and accounting for the presence of the inner boundary yields  
𝐆𝐆0 = �1 − 𝜕𝜕1

𝜕𝜕
� 〈∇𝑐𝑐〉𝜕𝜕0 + s 𝜕𝜕1

𝜕𝜕
〈∇𝑐𝑐〉𝜕𝜕1 (7) 

that coincides with equality (5). 
The molar flux averaged over a reference volume depends on the microstructure of the 

material. It is a continuous function across the matrix/inhomogeneity interface, so  
〈𝐉𝐉〉𝜕𝜕 = �1 − 𝜕𝜕1

𝜕𝜕
� 〈𝐉𝐉〉𝜕𝜕0 + 𝜕𝜕1

𝜕𝜕
〈𝐉𝐉〉𝜕𝜕1 . (8) 

Assuming inhomogeneity and the surrounding material to satisfy the linear Fick's law, 
we obtain 
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〈𝐉𝐉〉𝜕𝜕 = −�1 − 𝜕𝜕1
𝜕𝜕
�𝐃𝐃0 ∙ 〈∇𝑐𝑐〉𝜕𝜕0 −

𝜕𝜕1
𝜕𝜕
𝐃𝐃1 ∙ 〈∇𝑐𝑐〉𝜕𝜕1 = −𝐃𝐃0 ∙ 𝐆𝐆0 −

𝜕𝜕1
𝜕𝜕

(𝐃𝐃1 − 𝑠𝑠𝐃𝐃0) ∙ 〈∇𝑐𝑐〉𝜕𝜕1 . (9) 
Introducing the concentration tensor 𝚲𝚲𝜕𝜕 that expresses the concentration gradient 

averaged over inhomogeneity in terms of G0 as 〈∇𝑐𝑐〉𝜕𝜕1 = 𝚲𝚲𝜕𝜕 ∙ 𝐆𝐆0, formula (9) reduces to 
〈𝐉𝐉〉𝜕𝜕 = − �𝐃𝐃0 + 𝜕𝜕1

𝜕𝜕
(𝐃𝐃1 − 𝑠𝑠𝐃𝐃0) ∙ 𝚲𝚲𝜕𝜕� ∙ 𝐆𝐆0 = −�𝐃𝐃0 + 𝜕𝜕1

𝜕𝜕
𝐇𝐇𝐷𝐷� ∙ 𝐆𝐆0.      (10) 

The second term in the brackets represents the contribution of the inhomogeneity into 
overall diffusivity.  

In the case when the molar flux J0 is prescribed at the boundary of V instead of the 
concentration, 〈𝐉𝐉〉𝜕𝜕 =  𝐉𝐉0, and the concentration gradient depends on the microstructure of the 
material. Hence, 
〈∇𝑐𝑐〉𝜕𝜕 = −𝑫𝑫0

−1 ∙  𝐉𝐉0 − 𝜕𝜕1
𝜕𝜕

(s𝑫𝑫1
−1 − 𝑫𝑫0

−1) ∙ 〈𝐉𝐉〉𝜕𝜕1 .           (11) 
Introducing tensor 𝚲𝚲𝑗𝑗 that expresses the molar flux averaged over inhomogeneity in 

terms of J0 as 〈𝐉𝐉〉𝜕𝜕1 = 𝚲𝚲𝑗𝑗 ∙ 𝐉𝐉0, formula (11) reduces to 
〈∇𝑐𝑐〉𝜕𝜕 = − �𝑫𝑫0

−1 + 𝜕𝜕1
𝜕𝜕

(s𝑫𝑫1
−1 − 𝑫𝑫0

−1) ∙ 𝚲𝚲𝑗𝑗� ∙ 𝐉𝐉0 = − �𝑫𝑫0
−1 + 𝜕𝜕1

𝜕𝜕
𝐇𝐇𝐷𝐷𝐷𝐷� ∙ 𝐉𝐉0.               (12) 

Tensors 𝚲𝚲𝑗𝑗 and 𝚲𝚲𝜕𝜕  are related as 𝚲𝚲𝑗𝑗 = 𝐃𝐃1 ∙ 𝚲𝚲𝜕𝜕 ∙ 𝑫𝑫0
−1, so we finally obtain  

𝐇𝐇𝐷𝐷𝐷𝐷 = −(1 𝐷𝐷02⁄ )𝐇𝐇𝐷𝐷. 
Explicit analytical expressions for the concentration tensor can be obtained in the case 

of ellipsoidal inhomogeneity only. Following Fricke [23] for electrical conductivity (where 
the potential is a continuous function across the matrix/inhomogeneity interface) and using 
boundary conditions (1)-(2) instead of the ones considered in [23], the expression for the 
concentration tensor of spheroidal inhomogeneity with the symmetry axis along a unit vector 
n takes the form [14] 
𝚲𝚲𝜕𝜕 = 𝐷𝐷0

𝑠𝑠𝐷𝐷0+(𝐷𝐷1−𝑠𝑠𝐷𝐷0)𝑓𝑓0
𝛉𝛉 + 𝐷𝐷0

𝐷𝐷1−2(𝐷𝐷1−𝑠𝑠𝐷𝐷0)𝑓𝑓0
𝐧𝐧𝐧𝐧,                       (13) 

where 𝛉𝛉 = 𝐈𝐈 − 𝐧𝐧𝐧𝐧. The shape function 𝑓𝑓0 depends on the aspect ratio of the spheroidal 
inhomogeneity γ (γ < 1, γ = 1, and γ > 1 correspond respectively to an oblate spheroid, 
sphere, and prolate spheroid) in the following way 
𝑓𝑓0(𝛾𝛾) = 1−𝑔𝑔

2(1−𝛾𝛾−2),   
where 

𝑔𝑔(𝛾𝛾) =

⎩
⎪
⎨

⎪
⎧ 1

𝛾𝛾�1 − 𝛾𝛾2
arctan

�1 − 𝛾𝛾2

𝛾𝛾
, 𝛾𝛾 ≤ 1

1

2𝛾𝛾�𝛾𝛾2 − 1
ln�

𝛾𝛾 + �𝛾𝛾2 − 1

𝛾𝛾 − �𝛾𝛾2 − 1
� , 𝛾𝛾 ≥ 1.

 

The diffusivity contribution tensors take the form 
𝐇𝐇𝐷𝐷 = −𝐷𝐷02𝐇𝐇𝐷𝐷𝐷𝐷 = 𝐷𝐷0[𝐵𝐵1𝛉𝛉 + 𝐵𝐵2𝐧𝐧𝐧𝐧],                              (14) 
where introducing 𝛼𝛼 = 𝐷𝐷0 𝐷𝐷1⁄ , 
𝐵𝐵1 = 1−𝑠𝑠𝑠𝑠

𝑠𝑠𝑠𝑠+(1−𝑠𝑠𝑠𝑠)𝑓𝑓0
,𝐵𝐵2 = 1−𝑠𝑠𝑠𝑠

1−2(1−𝑠𝑠𝑠𝑠)𝑓𝑓0
.   

Note that coefficients B1 and B2 and, therefore, the contribution tensors, do not depend 
on the segregation factor at α = 0 (that corresponds to 𝐷𝐷1 → ∞).  

The concentration tensor can be alternatively written in terms of first Hill's tensor 

𝐏𝐏 = �∇∫ ∇′𝐺𝐺(𝑥𝑥 − 𝑥𝑥′)𝑑𝑑𝑥𝑥′𝜕𝜕1
�
𝑆𝑆
 (G is the Green's function for concentration). Hill's tensor for 

spheroidal inhomogeneity is as follows [20] 
𝐏𝐏 = 1

𝐷𝐷0
[𝑓𝑓0𝛉𝛉 + (1 − 2𝑓𝑓0)𝐧𝐧𝐧𝐧].                        (15) 
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To account for a jump in concentration at the matrix/inhomogeneity interface, a double 
layer potential must be introduced in a classical approach that considers inhomogeneity with 
ideal contacts. The result is as follows  
𝚲𝚲𝜕𝜕 = [s𝐈𝐈 + (𝐃𝐃1 − s𝐃𝐃0) ∙ 𝐏𝐏]−1.                                    (16) 

Then, the diffusivity contribution tensor can be expressed in terms of P as  

𝐇𝐇𝐷𝐷 = ��1
𝑠𝑠
𝐃𝐃1 − 𝐃𝐃0�

−1
+ 𝐏𝐏�

−1
,                                          (17) 

and resistance contribution tensor can be expressed in terms of second Hill's tensor 𝐐𝐐 = 𝐃𝐃0 ∙
(𝐈𝐈 − 𝐏𝐏 ∙ 𝐃𝐃0) as 

𝐇𝐇𝐷𝐷𝐷𝐷 = ���1
𝑠𝑠
𝐃𝐃1�

−1
− 𝑫𝑫0

−1�
−1

+ 𝐐𝐐�
−1

.                                 (18) 

It is seen that the obtained contribution tensors coincide with the contribution tensors 
used in the problem with ideal contacts if 𝐷𝐷�1 = 𝐷𝐷1 𝑠𝑠⁄  being diffusivity of inhomogeneity. 
Thus, inhomogeneity with non-ideal contacts can be replaced by the "effective 
inhomogeneity" with ideal contacts.  
 
3. Homogenization methods 
Effective properties of the material with multiple inhomogeneities can be calculated using 
approximate homogenization methods. A detailed historical review of micromechanical 
methods can be found in [24], whereas the current state of knowledge of the problem is 
described in [20].  

The class of effective field methods simulates the effect of interaction between isolated 
inhomogeneities by placing them in a certain effective field that generally differs from the 
applied one [25]. The scheme, proposed by Mori and Tanaka [26] and clarified by Benveniste 
[27], assumes that each inhomogeneity is placed into a uniform field that is equal to its 
average over the matrix. Following [20] for conductivity, we rewrite the Mori-Tanaka scheme 
in terms of property contribution tensors. The effective diffusivity accounting for the 
segregation effect then takes the form 

𝐃𝐃eff = 𝐃𝐃0 + 1
𝜕𝜕
∑ 𝜕𝜕𝑖𝑖𝐇𝐇𝑖𝑖

𝐷𝐷
𝑖𝑖 ∙ ��1

𝑠𝑠
𝐃𝐃1 − 𝐃𝐃0�

−1
∙ 1
𝜕𝜕
∑ 𝜕𝜕𝑖𝑖𝐇𝐇𝑖𝑖

𝐷𝐷
𝑖𝑖 + (1 − 𝜙𝜙)𝐈𝐈�

−1
= �𝐃𝐃0

−1 + 1
𝜕𝜕
∑ 𝜕𝜕𝑖𝑖𝐇𝐇𝑖𝑖

𝐷𝐷𝐷𝐷
𝑖𝑖 ∙

���1
𝑠𝑠
𝐃𝐃1�

−1
− 𝑫𝑫0

−1�
−1
∙ 1
𝜕𝜕
∑ 𝜕𝜕𝑖𝑖𝐇𝐇𝑖𝑖

𝐷𝐷𝐷𝐷
𝑖𝑖 + (1 − 𝜙𝜙)𝐈𝐈�

−1

�
−1

,                (19) 

where 𝜙𝜙 is the volume fraction of inhomogeneities, and contribution tensors are defined by 
equations (14).   

Maxwell scheme can be considered as a version of the effective field method [20]. 
According to Maxwell's idea [28], calculation of the effective properties is based on the 
evaluation of far-field perturbations due to inhomogeneities in two different ways and 
subsequent equation the results. The first way is to evaluate this field as the one generated by 
some homogenized region that can be considered as an effective inhomogeneity possessing 
(yet) unknown effective properties. The second way is based on consideration of the sum of 
far fields generated by all the individual inhomogeneities within this domain (treated as non-
interacting ones). Maxwell's scheme for elasticity and conductivity problems was rewritten in 
terms of property contribution tensors in [29,30,31]. In a similar way, for diffusivity the 
equating of two results yields 
V∗

𝜕𝜕
𝐇𝐇eff
𝐷𝐷 = 1

𝜕𝜕
∑ 𝜕𝜕𝑖𝑖𝐇𝐇𝑖𝑖

𝐷𝐷
𝑖𝑖   or  V

∗

𝜕𝜕
𝐇𝐇eff
𝐷𝐷𝐷𝐷 = 1

𝜕𝜕
∑ 𝜕𝜕𝑖𝑖𝐇𝐇𝑖𝑖

𝐷𝐷𝐷𝐷 ,𝑖𝑖                     (20)  
where 𝐇𝐇eff

𝐷𝐷 ,𝐇𝐇eff
𝐷𝐷𝐷𝐷 are contribution tensors of the effective inhomogeneity denoted by *. The 

contribution tensors depend on the shape of the effective inhomogeneity. Explicit analytical 
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expressions for 𝐇𝐇eff
𝐷𝐷 ,𝐇𝐇eff

𝐷𝐷𝐷𝐷 are available for the ellipsoidal shapes only, and in this case, 
equation (20) can be explicitly solved. Recommendations regarding the choice of the shape of 
the effective inhomogeneity are given in [29]. In the case of transversely isotropic 
microstructure, the domain is spheroidal with the aspect ratio 

𝛾𝛾∗ =
1
𝑉𝑉
∑ 𝜕𝜕𝑖𝑖𝑃𝑃11𝑖𝑖

1
𝑉𝑉
∑ 𝜕𝜕𝑖𝑖𝑃𝑃33𝑖𝑖

.                                  (21) 

Assuming a constant jump in concentration at the matrix/effective inhomogeneity 
interface defined by the segregation factor 𝑠𝑠∗, we deal with 𝐇𝐇eff

𝐷𝐷 = 𝐇𝐇eff
𝐷𝐷 (𝑠𝑠∗, … ),𝐇𝐇eff

𝐷𝐷𝐷𝐷 =
𝐇𝐇eff
𝐷𝐷𝐷𝐷(𝑠𝑠∗, … ).  In this case, expression of the left-hand sides in equations (20) by formulas (17), 

(18) taking = 𝑠𝑠∗,  𝐃𝐃1 = 𝐃𝐃eff, and 𝐏𝐏 = 𝐏𝐏∗,𝐐𝐐 = 𝐐𝐐∗ results in 

𝐃𝐃eff = 𝑠𝑠∗ �𝐃𝐃0 + ��1
𝜕𝜕
∑ 𝜕𝜕𝑖𝑖𝐇𝐇𝑖𝑖

𝐷𝐷
𝑖𝑖 �

−1
− 𝐏𝐏∗�

−1
� = 𝑠𝑠∗ �𝐃𝐃0

−1 + ��1
𝜕𝜕
∑ 𝜕𝜕𝑖𝑖𝐇𝐇𝑖𝑖

𝐷𝐷𝐷𝐷
𝑖𝑖 �

−1
− 𝐐𝐐∗�

−1
�
−1

.  (22) 

Formula (22) can be alternatively obtained by considering of effective homogenized 
region with 𝐃𝐃∗

eff = 𝐃𝐃eff 𝑠𝑠∗⁄  in a Maxwell scheme written for material with ideal contacts at 
the matrix/effective inhomogeneity interface.  

According to formulas (22), effective properties are strongly dependent on the 
segregation factor 𝑠𝑠∗ that defines a jump in concentration on a fictive boundary 𝜕𝜕𝜕𝜕∗ and can 
not be measured. In particular, when 𝑠𝑠∗ = 0, the composite material becomes impenetrable. 
This seems to be non-reasonable, so hereafter we take 𝑠𝑠∗ = 1.  

Kanaun-Levin effective field method [32,33] places each inhomogeneity into a certain 
effective field dependent on the spatial statistics of inhomogeneities' centers.  The statistical 
information is described in terms of characteristic functions of the domains occupied by 
inhomogeneities. Each inhomogeneity is surrounded by a certain prohibition zone, which 
neighbor inhomogeneities cannot enter. The prohibition zone is assumed to have an 
ellipsoidal shape described by some tensor α.  

Following [20], where the Kanaun-Levin method was rewritten in the context of 
conductivity in terms of property contribution tensors, we can obtain the following 
expressions for the problem in the context of diffusivity: 

𝐃𝐃eff = 𝐃𝐃0 + ��1
𝜕𝜕
∑ 𝜕𝜕𝑖𝑖𝐇𝐇𝑖𝑖

𝐷𝐷
𝑖𝑖 �

−1
− 𝐏𝐏(𝛂𝛂)�

−1
,            (23) 

where tensor 𝐏𝐏(𝛂𝛂) is the Hill's tensor reflecting the shape of the ellipsoidal prohibition zone. 
When the prohibition zone is spheroidal, 𝐏𝐏(𝛂𝛂) is given by equation (15) at 𝛾𝛾 = 𝛾𝛾𝜶𝜶 

being the aspect ratio of the spheroidal prohibition zone and 𝐧𝐧 being a unit vector along its 
symmetry axis. Within the frame of the present paper, we consider three shapes of the 
prohibition zone in Kanaun-Levin scheme, namely, 

1. Shape of the prohibition zone coincides with the shape of an individual 
inhomogeneity; 

2. Shape of the prohibition zone is spherical (the case of random distribution of 
inhomogeneities' centers); 

3. Shape of the prohibition zone coincides with the shape of some effective 
inhomogeneity. This shape can be determined similarly to the homogenization 
area in the Maxwell scheme. In this case, Kanaun-Levin scheme gives the same 
results as the Maxwell scheme.  

According to formulas (19), (22), (23), the effective diffusivity can be alternatively 
calculated by replacing inhomogeneities with non-ideal contacts by effective inhomogeneities 
with ideal contacts characterized by 𝐷𝐷�1 = 𝐷𝐷1 𝑠𝑠⁄ . The results obtained within the three 
effective field methods coincide at the same conditions as in the conductivity problem (the 
last one are listed in [20]).  
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Note that the Mori-Tanaka scheme gives a physically consistent result at any value of 
the volume fraction of inhomogeneities. In particular, at 𝜙𝜙 = 1 this scheme results in  
𝐃𝐃eff = 𝐃𝐃�1 that means that the properties of composite material are fully determined by 
properties of inhomogeneity. If 𝐃𝐃�1  = 𝐃𝐃1 𝑠𝑠⁄ , the overall diffusivity depends on the 
segregation factor. Maxwell and Kanaun-Levin's homogenization methods give appropriate 
results at 𝜙𝜙 = 1 only in the case of parallel spheroids when the prohibition zone coincides with 
the shape of individual inhomogeneity. 

In addition, in the general case of distribution of inhomogeneities over orientations, 
there is a mathematical restriction on the use of Maxwell and Kanaun-Levin homogenization 
schemes, namely, expressions in the square brackets in equations (22) and (23) must not be 
equal to zero (if they equal to zero, the second terms go to infinity due to inversion).  

To avoid the artificial effect due to singularity that does not have a physical meaning, 
linearization of the Maxwell scheme with respect to the interaction effect can be done. 
Following [19], where the linearization was proposed for the elasticity problem, we can 
rewrite equation (22) in the form 

𝐃𝐃eff = 𝐃𝐃0 + 1
𝜕𝜕
∑ 𝜕𝜕𝑖𝑖𝐇𝐇𝑖𝑖

𝐷𝐷
𝑖𝑖 ∙ �𝐈𝐈 − 𝐏𝐏∗ ∙ 1

𝜕𝜕
∑ 𝜕𝜕𝑖𝑖𝐇𝐇𝑖𝑖

𝐷𝐷
𝑖𝑖 �

−1
        (24)   

that may be linearized as 
𝐃𝐃eff ≈ 𝐃𝐃0 + 1

𝜕𝜕
∑ 𝜕𝜕𝑖𝑖𝐇𝐇𝑖𝑖

𝐷𝐷
𝑖𝑖 + 1

𝜕𝜕
∑ 𝜕𝜕𝑖𝑖𝐇𝐇𝑖𝑖

𝐷𝐷 ∙ 𝐏𝐏∗ ∙ 1
𝜕𝜕
∑ 𝜕𝜕𝑖𝑖𝐇𝐇𝑖𝑖

𝐷𝐷
𝑖𝑖𝑖𝑖 .                   (25)   

Note that here we calculate the effective diffusivity in terms of diffusivity contribution 
tensor to avoid singularity occurring if we use resistance contribution tensors. 

The effective diffusivity calculated using homogenization schemes must be in 
agreement with Wiener's bounds (analogs of the Voigt–Reuss bounds in elasticity) and 
Hashin–Shtrikman's bounds. Violation of the bounds constitutes a serious drawback. 
Following [20] for conductivity and introducing the diffusion coefficient of inhomogeneity 
with ideal contacts 𝐷𝐷�1 ≥ 𝐷𝐷0, we rewrite the Wiener's bounds as   

𝐷𝐷0𝐷𝐷�1
𝐷𝐷0𝜙𝜙+𝐷𝐷�1(1−𝜙𝜙) ≤ Deff ≤ 𝐷𝐷0(1 − 𝜙𝜙) + 𝐷𝐷�1𝜙𝜙,            (26)  
and Hashin–Shtrikman's bounds as 
𝐷𝐷0 + 𝜙𝜙

(1−𝜙𝜙)
3𝐷𝐷0

+ 1
𝐷𝐷�1−𝐷𝐷0

≤ Deff ≤ 𝐷𝐷�1 + 1−𝜙𝜙
𝜙𝜙
3𝐷𝐷�1

+ 1
𝐷𝐷0−𝐷𝐷�1

.               (27)  

Assuming 𝐷𝐷�1 = 𝐷𝐷1 𝑠𝑠⁄  and 𝛼𝛼 = 𝐷𝐷0 𝐷𝐷1⁄ , restrictions (26) result in 
1

 𝑠𝑠𝜙𝜙𝑠𝑠+(1−𝜙𝜙) ≤
Deff

𝐷𝐷0
≤ (1 − 𝜙𝜙) + 𝜙𝜙 1

𝑠𝑠𝑠𝑠
                           (28)   

and Hashin–Shtrikman's bounds (27) yield 

1 + 3𝜙𝜙(1−𝑠𝑠𝑠𝑠)
(1−𝜙𝜙)(1−𝑠𝑠𝑠𝑠)+3𝑠𝑠𝑠𝑠

≤ Deff

𝐷𝐷0
≤ 1

𝑠𝑠𝑠𝑠
+ 1

𝑠𝑠𝑠𝑠
3(1−𝜙𝜙)(𝑠𝑠𝑠𝑠−1)
𝜙𝜙(𝑠𝑠𝑠𝑠−1)+3

  (29)   
The Hashin-Shtrikman's bounds are more accurate than Wiener's ones. When 𝛼𝛼 = 0 

(𝐷𝐷1 → ∞), restrictions (28), (29) reduce respectively to  
1

1−𝜙𝜙
≤ Deff

𝐷𝐷0
< ∞,     1+2𝜙𝜙

1−𝜙𝜙
≤ Deff

𝐷𝐷0
< ∞.         

As in conductivity, results obtained within the frame of Maxwell scheme coincide with 
Hashin–Shtrikman's lower bound in the case of spherical inhomogeneities.  

Effective properties of transversely isotropic material. The summation over identical 
inhomogeneities can be replaced by multiplication of the volume fraction by tensors averaged 
over orientations (denoted by < >). Within the frame of the present research, we consider 
transversely isotropic material, so taking m to be the unit vector along the symmetry axis, the 
averaged contribution tensors can be rewritten in the following way: 
〈𝐇𝐇𝐷𝐷〉 = 𝐷𝐷0[𝑎𝑎𝛉𝛉 + 𝑏𝑏𝐦𝐦𝐦𝐦].     (30) 
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The coefficients a and b depend on the distribution of inhomogeneities over 
orientations. In the present research, we account for orientational scatter of pores about a 
preferential orientation that is described by means of the probability density function defined 
on the upper semisphere of unit radius (0 ≤ θ ≤ 𝜋𝜋 2⁄ ) [29]: 
𝜓𝜓𝜆𝜆(𝜃𝜃) = 1

2𝜋𝜋
�(𝜆𝜆2 + 1)𝑒𝑒−𝜆𝜆𝜆𝜆 + 𝜆𝜆𝑒𝑒−𝜆𝜆𝜋𝜋 2⁄ �.            (31) 

The scatter parameter λ varies in the range from zero to infinity that corresponds to fully 
random and strictly parallel orientations of inhomogeneities, respectively.  

According to formulas (14), averaging of the property contribution tensors is equivalent 
to averaging of dyads nn. As a result,  
𝑎𝑎 = 𝐵𝐵1(1 − 𝑔𝑔1) + 𝐵𝐵2𝑔𝑔1,𝑏𝑏 = 𝐵𝐵1(1 − 𝑔𝑔2) + 𝐵𝐵2𝑔𝑔2,        (32) 
where 𝑔𝑔1 and 𝑔𝑔2 are functions of the scatter parameter: 

𝑔𝑔1(𝜆𝜆) = 18−𝑒𝑒−
𝜆𝜆𝜆𝜆
2 𝜆𝜆�3+𝜆𝜆2�

6(9+𝜆𝜆2) , 𝑔𝑔2(𝜆𝜆) =
�3+𝑒𝑒−

𝜆𝜆𝜆𝜆
2 𝜆𝜆��3+𝜆𝜆2�

3(9+𝜆𝜆2) . 
In the limit case of fully random orientations of pores,  

𝑎𝑎 = 𝑏𝑏 = 2𝐵𝐵1
3

+ 𝐵𝐵2
3

= 𝜂𝜂(𝑠𝑠, 𝛾𝛾,𝛼𝛼),                          (33) 
whereas in the case of perfectly parallel orientation distribution of pores,  
𝑎𝑎 = 𝐵𝐵1(𝑠𝑠, 𝛾𝛾,𝛼𝛼), 𝑏𝑏 = 𝐵𝐵2(𝑠𝑠, 𝛾𝛾,𝛼𝛼).                                (34) 

Hence, taking 𝐦𝐦 = 𝐞𝐞3 equation (19) obtained within the frame of Mori-Tanaka 
effective field method reduces to 
𝐃𝐃eff = 𝐷𝐷0 �1 + 𝜙𝜙(1−𝑠𝑠𝑠𝑠)𝑎𝑎

𝜙𝜙𝑎𝑎𝑠𝑠𝑠𝑠+(1−𝜙𝜙)(1−𝑠𝑠𝑠𝑠)�𝛉𝛉 + 𝐷𝐷0 �1 + 𝜙𝜙(1−𝑠𝑠𝑠𝑠)𝑏𝑏
𝜙𝜙𝑏𝑏𝑠𝑠𝑠𝑠+(1−𝜙𝜙)(1−𝑠𝑠𝑠𝑠)�𝐦𝐦𝐦𝐦,       (35) 

equation (22) obtained by means of Maxwell scheme can be rewritten as 
𝐃𝐃eff = 𝐷𝐷0 �1 + 𝜙𝜙𝑎𝑎

1−𝜙𝜙𝑎𝑎𝐷𝐷0𝑃𝑃11∗
� 𝛉𝛉 + 𝐷𝐷0 �1 + 𝜙𝜙𝑏𝑏

1−𝜙𝜙𝑏𝑏𝐷𝐷0𝑃𝑃33∗
�𝐦𝐦𝐦𝐦,                  (36) 

and equation (23) obtained on the base of the Kanaun-Levin scheme takes the form  
𝐃𝐃eff = 𝐷𝐷0 �1 + 𝜙𝜙𝑎𝑎

1−𝜙𝜙𝑎𝑎𝐷𝐷0𝑃𝑃11(𝜶𝜶)�𝛉𝛉 + 𝐷𝐷0 �1 + 𝜙𝜙𝑏𝑏
1−𝜙𝜙𝑏𝑏𝐷𝐷0𝑃𝑃33(𝜶𝜶)�𝐦𝐦𝐦𝐦.                 (37) 

The mathematical restrictions due to singularity according to equations (36), (37) are as 
follows  

�
𝜙𝜙 < 1

𝑎𝑎(𝑠𝑠,𝛾𝛾,𝑠𝑠)𝐷𝐷0𝑃𝑃11(𝐷𝐷0,𝛾𝛾�) ,

𝜙𝜙 < 1
𝑏𝑏(𝑠𝑠,𝛾𝛾,𝑠𝑠)𝐷𝐷0𝑃𝑃33(𝐷𝐷0,𝛾𝛾�) ,

                            (38) 

where, 𝛾𝛾� = 𝛾𝛾𝛂𝛂 in the case of the Kanaun-Levin scheme and, 𝛾𝛾� = 𝛾𝛾∗ in the case of Maxwell 
scheme. 

According to restrictions (38), the limit value of the volume fraction of strictly parallel 
inhomogeneities is equal or greater than one (that can be considered as a "physical limit"). In 
the cases of non-parallel orientation distribution, this limit value can be less than one. In 
particular, in the case of random distribution of pores over orientations,  
𝜙𝜙 < 3

𝜂𝜂(𝑠𝑠,𝛾𝛾,𝑠𝑠) . 
The linearized Maxwell scheme (25) results in 

𝐃𝐃eff ≈
𝐷𝐷0{(1 + 𝜙𝜙𝑎𝑎(𝑠𝑠, 𝛾𝛾,𝛼𝛼) + 𝜙𝜙2𝑎𝑎2(𝑠𝑠, 𝛾𝛾,𝛼𝛼)𝐷𝐷0𝑃𝑃11∗ )𝛉𝛉 +
(1 + 𝜙𝜙𝑏𝑏(𝑠𝑠, 𝛾𝛾,𝛼𝛼) + 𝜙𝜙2𝑏𝑏2(𝑠𝑠, 𝛾𝛾,𝛼𝛼)𝐷𝐷0𝑃𝑃33∗ )𝐦𝐦𝐦𝐦}.               (39) 

 
4. Results and Discussion 
To be specific, we consider the material with the ratio of the diffusion coefficient of 
background matrix consisting of grains and grain boundaries to the diffusion coefficient of 
pores α = 0.05 (see [18] for details). The shape of the oblate spheroidal pores is characterized 
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by 𝛾𝛾 = 0.1, whereas the shape of prolate spheroidal pores is characterized by 𝛾𝛾 = 10 (in the 
case of spherical pores, 𝛾𝛾 = 1).  

Let us first check whether the results obtained by classical and linearized Maxwell 
scheme, Mori-Tanaka (M-T), and Kanaun-Levin (K-L) effective field methods are in 
agreement with the Wiener's and Hashin-Shtrikman's (H-S) bounds in the case of non-unit 
segregation factor. To be specific, we consider s = 0.5 and restrict ourselves to the 
investigation of the material with random orientation distribution of pores. We additionally 
assume a random distribution of inhomogeneities' centers to deal with isotropic material. In 
this case, 𝛾𝛾𝜶𝜶 = 𝛾𝛾∗ = 1, so the Kanaun-Levin scheme coincides with the Maxwell scheme. 
The results are presented in Fig. 1. As it has been already mentioned, Hashin-Shtrikman's 
bounds are narrower than Wiener's bounds, and the last ones are not shown for the sake of 
brevity.  

Figure 1(a) confirms that the Maxwell scheme, Kanaun-Levin scheme, and Mori-
Tanaka scheme coincide with the Hashin-Shtrikman lower bound in the case of spherical 
pores. In the cases of oblate and prolate spheroidal pores, Maxwell and Kanaun-Lavin's 
schemes violate the upper bound due to non-physical singularity. The linearized Maxwell 
scheme does not have such a problem; however, it violates the lower bound at some value of 
the volume fraction of pores. At the same time, this value is greater than the value at which 
singularity takes place.  

 

 
Fig. 1. Agreement of the homogenization schemes with H-S bounds in the cases of material 
with spherical pores (a), randomly oriented oblate pores (b), and randomly oriented prolate 

pores (c); s = 0.5 
 

We now compare the results obtained by the Mori-Tanaka and Kanaun-Levin effective 
field method, and the Maxwell homogenization scheme in the context of the segregation 
effect. The accuracy of the Kanaun-Levin and Maxwell scheme is determined by the volume 
fraction of pores, so we compare the results at 𝜙𝜙 = 0.1 because this value can be used when 
considering oblate, prolate and spherical pores. In this case, there is no need to consider the 
linearized Maxwell scheme, since it coincides with the general one at a low volume fraction 
of inhomogeneities.   
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Figure 2 shows the dependences of the normalized effective diffusion coefficient of the 
isotropic material on the segregation factor. Increasing a constant jump in concentration (i.e. 
decreasing the segregation factor) increases the effective diffusion coefficient and, therefore, 
mass permeability of the host material. From this point of view, segregation of particles inside 
pores produces an effect similar to increasing diffusivity of an inhomogeneity. This means 
that under a continuous flux more impurity enters the material (note that segregation in the 
model does not explain trapping, and the impurity is distributed uniformly across the 
reference volume). At the same time, segregation of impurity inside spherical pores does not 
increase the effective diffusion coefficient significantly. From this point of view, segregation 
inside pores increases the effect of the shape of the inhomogeneities on the overall diffusion 
coefficient. Hereafter we consider only oblate and prolate spheroidal pores. Decreasing the 
segregation factor increases the difference between the results obtained on the basis of various 
schemes. The segregation is seen to have a greater influence on the results obtained within the 
Maxwell and Kanaun-Levin homogenization schemes.  

 

 
Fig. 2. Dependencies of the effective diffusion coefficient on the segregation factor for 

material with spherical pores (a), randomly oriented oblate pores (b), and randomly oriented 
prolate pores (c) 

 
A comparison of dependencies of the diffusion coefficient on the segregation factor for 

material with pores that have certain preferential orientation accompanied by random scatter 
(λ = 3) is shown in Fig. 3. The three shapes of the prohibition zone in Kanaun-Levin 
discussed in section 3 are considered.  

Again, decreasing the segregation factor increases the difference between models. The 
segregation is seen to have a greater influence on the results obtained within the Maxwell 
homogenization scheme. Kanaun-Levin scheme is close to the Mori-Tanaka scheme in the 
case when the shape of the prohibition zone coincides with the shape of individual 
inhomogeneity. Note that introduction of the spherical prohibition zone in the Kanaun-Levin 
scheme for material with prolate spheroidal pores yields physically incorrect results at low 
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values of the segregation factor, since in this case, 𝜙𝜙 = 0.1 is close to the "mathematical limit" 
discussed in the previous section.  

 

 
Fig. 3. Dependencies of the effective diffusion coefficient on the segregation factor for 

material with oblate pores (𝐷𝐷11eff, left) and prolate pores (𝐷𝐷33eff, right) that have certain 
preferential orientation accompanied by random scatter (λ = 3) 

 
Since the volume fraction cannot take all values from 0 to 1 in the cases of Kanaun-

Levin and Maxwell homogenization methods due to the "mathematical limit", let us 
investigate the dependencies of the effective diffusion coefficient on the volume fraction of 
pores calculated on the base of Mori-Tanaka scheme. Figure 4 compares the effective 
diffusivity at various orientational scatters at s = 0.5. At low concentrations, the oblate 
spheroidal pores affect diffusivity within the plane of isotropy more than diffusivity along the 
axis of symmetry (the last one is close to 𝐷𝐷0). The situation is the opposite in the case of 
prolate spheroids. For the sake of brevity, we do not provide dependencies corresponding to 
the microstructures that have a lower influence on the overall diffusivity. 

 

 
Fig. 4. Dependencies of the effective diffusion coefficient on the volume fraction of oblate 
pores (𝐷𝐷11eff, left) and prolate pores (𝐷𝐷33eff, right) at different values of the scatter parameter;  

s = 0.5 
 

According to Fig. 4, left, orientational scatter does not affect significantly the overall 
diffusivity in the plane of isotropy in the case of oblate spheroidal pores. Thus, the 
orientational scatter identifies the direction of the maximum effective diffusivity, whereas the 
effective properties in this direction can be calculated on the basis of formulas for isotropic 
material. In the case of prolate spheroidal pores (Fig. 4, right), the orientation scatter plays a 
more significant role. It must be accounted for in estimations of the overall diffusivity. Also, 

Effective diffusivity of transversely isotropic material with embedded pores 947



the comparison of black lines in Fig. 4 allows concluding that in the case of isotropic material, 
consideration of oblate spheroidal pores with 𝛾𝛾 = 0.1 is equivalent to consideration of prolate 
spheroidal pores with 𝛾𝛾 = 10.  

In this section, it is shown that the presence of pores can increase the diffusion 
coefficient. In some cases, even a slight increase in concentration can change the material 
behavior, so quantitative characteristics of the mass transport process must be accounted for 
in diffusion problems. In particular, an increase in the diffusion coefficient by several times 
can be important in problems related to hydrogen degradation of metals. Hydrogen is known 
to have a big influence on the physical properties of the host material even at small 
concentrations. It is believed that hydrogen diffuses through metals lattice and leads to 
cracking along grain boundaries that, in turn, change the overall concentration directly during 
the mass transport process, since hydrogen can be trapped inside the new microcracks 
[5,6,34,35]. The results of the present paper can be used in modeling this process.  

 
5. Conclusion 
The paper calculates the effective diffusion coefficients of transversely isotropic material. The 
overall anisotropy is assumed to be induced by the shape and preferential orientation of 
spheroidal inhomogeneities, whereas the host matrix is assumed to be isotropic. The focus is 
on the segregation effect that is the main difference between diffusivity and conductivity 
problems. Mori-Tanaka, Kanaun-Levin, Maxwell general, and Maxwell linearized 
homogenization methods are used. Wiener's and Hashin-Shtrikman's bounds are modified to 
account for the segregation effect in the diffusivity problem. The effective properties 
calculated by means of various homogenization methods are checked to satisfy the modified 
bounds.  

It is shown that accounting for the constant jump in concentration at the 
matrix/inhomogeneity interface increases the effective diffusivity. In the cases of non-
spherical pores, such an increase may change the result significantly. In general, the 
segregation effect is more pronounced when applying Maxwell and Kanaun-Levin 
homogenization schemes that introduce some kind of effective inhomogeneity. Introduction 
of the segregation factor smaller than one increases the difference in the results obtained 
within Mori-Tanaka, Maxwell, and Kanaun-Levin methods. 

The presented methodology of determining the effective diffusivity accounting for the 
segregation effect can be directly extended to orthotropic materials with isotropic matrix and 
overall anisotropy induced by inhomogeneities. To this end, one should consider ellipsoidal 
inhomogeneities instead of spheroidal ones. An extension to the case of ellipsoidal 
inhomogeneities arbitrarily oriented in an anisotropic matrix also can be made following [20] 
for conductivity. 
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