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ABSTRACT  
This paper is primarily focused on exploring the morphological instability conditions inherent in nanostructured 
solid surfaces. Employing the constitutive equations of Gurtin–Murdoch model, we examine how surface 
elasticity and surface tension exert their influence on surface relief formation. Within this framework, we posit 
that the surface instability of the solid surface is instigated by surface diffusion processes propelled by the 
nuanced interplay of surface and bulk energy across the undulated surface. To distinguish the strain field along 
the undulated surface, we navigate the solution space of the plane elasticity problem, accounting for plane strain 
conditions. Our investigation tracks the linearized evolution of the surface, capturing the change in the amplitude 
of surface perturbations with time. Thus, the presented linear stability analysis sheds light on the precise 
conditions that initiate the early-stage increase in surface relief amplitude. This nuanced exploration provides 
not only a theoretical foundation, but also practical insights into the intricate mechanisms governing the 
morphological stability of nanostructured solid surfaces. 
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Introduction 

The study of nanostructured materials is important for the development of modern 

electronic and optoelectronic devices. The roughness of free surfaces and interfacial 

boundaries has a significant effect on optical properties [1,2]. It is also used to enhance the 

coupling between electronic circuit components when creating flexible electronics [3]. 

Additionally, the formation of the surface relief can be applied to produce quantum dots [4]. 

However, the created relief may be unstable and evolve during the manufacture and 

operation of devices. Morphological instability can lead to decreased reliability or 

functionality of the devices based on patterned structures, especially in applications 

where high levels of mechanical stress are present. Stress concentrations at valley regions 

of an undulated surface can aid the nucleation of defects [5,6]. Therefore, in addition to 

other processes [7–9], morphological instability is one of the key factors in the stress-

assisted degradation of materials. This highlights the significance of understanding the 

self-organization of solid surfaces. 

https://rscf.ru/en/project/22-11-00087/
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Mullins [10] conducted pioneering research on the morphological instability of free 

solid surfaces influenced by surface diffusion, particularly observing the formation of 

surface grooves at the grain boundaries of a heated polycrystal. Later studies revealed 

the morphological instability of the stressed solid bodies due to diffusion perturbations 

with wavelengths exceeding a critical value [11]. The determination of this critical 

wavelength is based on the ratio between the surface energy and the energy of elastic 

deformation calculated on the surface. 

A series of studies were conducted to analyze the stability of free and interfacial 

surfaces in solids with different topological defects [12–14]. However, in most works 

dedicated to studying surface/interface morphological instability, the influence of surface 

and interface elasticity was neglected, as it was considered to be small compared to bulk 

elastic behavior. Nevertheless, in nanostructured materials, the ratio of surface to volume 

increases, which leads to an increase in the influence of surface deformation [15]. So, to 

accurately predict the conditions under which morphological instability occurs, we need 

to take surface elasticity into account.  

In this paper, we examine the phenomenon of surface nanosized relief instability, 

considering its surface elastic properties and surface tension. Our study is based on the 

complete model of surface elasticity developed by Gurtin and Murdoch [16] and the 

Asaro–Tiller–Grinfeld model of morphological instability [11,17,18]. 

 

Problem formulation 

We consider film coating under plane strain loading (Fig. 1). It is assumed that the film 

thickness significantly exceeds the surface relief period. Therefore, we neglect the 

deformation of the substrate and the interfacial boundary and come to the 2D elastic 

problem for a homogeneous half-plane 𝐵 with a curvilinear boundary 𝑆, which profile is 

described by an arbitrary periodic function 𝑓: 
𝑆 = {𝑧: 𝑧 ≡ 𝜁 = 𝑥1 + 𝑖𝜀(𝜏)𝑓(𝑥1)},   𝐵 = {𝑧: 𝑥2 < 𝜀(𝜏)𝑓(𝑥1)},    𝑧 = 𝑥1 + 𝑖𝑥2,   𝑖2 = −1, 

𝑓(𝑥1) = 𝑓(𝑥1 + 𝑎),   max|𝑓(𝑥1)| = 𝑎,     𝜀(𝜏) =
𝐴(𝜏)

𝑎
∀ 𝜏,    𝐴(0) = 𝐴0.  (1) 

 

 
 

Fig. 1. The model of a solid with a slightly undulated surface 
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According to the principles of Gurtin–Murdoch surface elasticity theory, the surface 

domain is considered as an exceptionally thin layer that firmly adheres to the bulk 

without any slipping. The continuity of displacements across the surface region is 

provided by the following conditions: 

𝑢𝑠(𝜁) = 𝑢(𝜁),    𝜁 ∈ 𝑆, (2) 

where 𝑢𝑠 = 𝑢1
𝑠 + 𝑖𝑢2

𝑠, 𝑢 = 𝑢1 + 𝑖𝑢2; 𝑢1
𝑠, 𝑢2

𝑠   and 𝑢1, 𝑢2  are the displacements of the 

surface and bulk phases along Cartesian axes 𝑥1 and 𝑥2. 

The mechanical equilibrium conditions on a curved solid surface are captured by 

the generalized Young–Laplace equations [19]: 

𝜎(𝜁) = 𝛾0𝜅 + [𝑀𝜅Re
𝜕𝑢

𝜕𝜁
 + 𝛾0Im (

𝜕2𝑢

𝜕𝜁2 𝑒𝑖𝛼0)] + 𝑖 [𝑀Re (
𝜕2𝑢

𝜕𝜁2 𝑒𝑖𝛼0) − 𝛾0𝜅Im
𝜕𝑢

𝜕𝜁
], (3) 

where 𝜎(𝜁) = 𝜎𝑛𝑛(𝜁) + 𝑖𝜎𝑛𝑡(𝜁) is the complex stress vector, 𝜎𝑛𝑛 and 𝜎𝑛𝑡 are the 

components of bulk stress tensor, defined in the Cartesian coordinates (𝑛, 𝑡) (𝒏 is a normal 

to 𝑆), 𝛾0 is residual surface stress (surface tension), 𝑀 = 𝜆𝑠 + 2𝜇𝑠 is surface stiffness,  

𝜆𝑠  and 𝜇𝑠 are the Lame parameters for the surface domain, 𝜅 is the local curvature of 𝑆, 

𝛼0 is the angle between the tangent to 𝑆 and 𝑥1-axis at the point 𝜁. 

The boundary conditions at infinity are defined as  

lim
𝑥2→−∞

ω =  lim
𝑥2→−∞

σ22 = lim
𝑥2→−∞

σ12 = 0, lim
𝑥2→−∞

σ11 = 𝜎0,    (4) 

where 𝜔 is the rotation angle, 𝜎𝑖𝑗  (𝑖, 𝑗 = {1,2}) are components of stress tensor in 

Cartesian coordinates (𝑥1, 𝑥2) and the longitudinal stress 𝜎0 may means either misfit 

stress or mechanical loading.  

As it was mentioned in introduction, the surface profile of a stressed solid may 

change under the influence of surface diffusion due to nonuniform distribution of 

chemical potential. So, the surface atoms are moving from a region with high chemical 

potential to a region with a lower one, i.e. atomic flow along the surface is proportional 

to the gradient of chemical potential. According to [18], the chemical potential is defined 

as the sum of bulk strain elastic energy and surface energy. The mass conservation law 

leads to the following differential equation, which describes the change of surface profile 

𝑔(𝑥1, 𝜏) = 𝜀(𝜏)𝑓(𝑥1) over the time [18,20]:    
𝜕𝑔(𝑥1,𝜏)

𝜕𝜏
= 𝐾𝑠ℎ(𝑥1, 𝜏)

𝜕2

𝜕𝑠2
[𝑈(𝜁, 𝜏) − 𝜅(𝜁, 𝜏)𝑈𝑠(𝜁, 𝜏)],  𝐾𝑠 = 𝐷𝑠𝐶𝑠Ω2/(𝑘𝑏𝑇), (5) 

where 𝑈 is the strain elastic energy density and 𝑈𝑠 is the surface energy, ℎ is the metric 

coefficient, 𝐷𝑠 is the self-diffusivity coefficient; 𝐶𝑠 is the number of diffusing atoms per unit 

area; 𝑘𝑏 is the Boltzmann constant, 𝑇 is the absolute temperature; and 𝑠 is arc length along 𝑆. 

To prevent or minimize morphological instability in stressed films, it is crucial to 

consider various factors such as the elastic properties of bulk and surface phases, the 

stress levels, and the shape of the initial surface profile. In this paper, our attention was 

directed towards the examination of the conditions that facilitate the occurrence of 

morphological instability. 

 

Linear stability analysis 

To integrate the evolution equation (5) and establish the stability conditions for a stressed 

solid surface, we must first calculate the elastic strain energy 𝑈 and the surface energy 𝑈𝑠.  

It is important to note that the effect of surface elasticity was assumed to be insignificant 

in previous studies dedicated to investigating the morphological instability of the surface 
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microrelief. However, to accurately predict the instability conditions for a stressed surface 

with nanosized relief, it is essential to consider the effect of surface elasticity. 

The elastic strain energy 𝑈 and the surface energy 𝑈𝑠 can be expressed as follows [21]: 

𝑈 = (
1

2
𝜆 + 𝜇) ((𝜀𝑡𝑡)2 + (𝜀𝑛𝑛)2) + 𝜆𝜀𝑛𝑛𝜀𝑡𝑡 + 2𝜇(𝜀𝑛𝑡)2,                           (6) 

𝑈𝑠 = 𝛾0 + (
1

2
𝜆𝑠 + 𝜇𝑠) (𝜀𝑡𝑡

𝑠 )2, (7) 

where 𝜀𝑖𝑗 are the components of bulk and surface stress tensors, respectively, defined in 

the Cartesian coordinates (𝑛, 𝑡) (𝒏 is a normal to 𝑆), and 𝜆 and 𝜇 are the Lame constants 

of the solid 𝐵. 

Therefore, in order to integrate (5), we have to obtain the stress-strain state near 

the undulated surface. To achieve this, we solve the corresponding plane strain problem 

for a homogeneous elastic half-plane with a curved boundary (1) – (4), using the original 

approach suggested in [19,22]. 

Here we consider a weak undulation of the surface relief (𝜀 ≪ 1), and therefore we 

calculate components of the strain tensors of the bulk and surface phases as well as 

metric coefficient ℎ and the surface curvature 𝜅 using the linear approximation of the 

boundary perturbation method [19]: 

𝜀𝑖𝑗 = 𝜀𝑖𝑗(0) + 𝜀𝜀𝑖𝑗(1), 𝜀𝑡𝑡
𝑠 = 𝜀𝑡𝑡(0)

𝑠 + 𝜀𝜀𝑡𝑡(1)
𝑠 ,                        (8) 

𝜅(𝑥1, 𝜏) = 𝜀(𝜏)𝑓′′(𝑥1),    ℎ(𝑥1, 𝜏) = 1,                  (9) 

where a prime denotes the derivative with respect to the argument.  

Substituting Eqs. (6) – (9) into (5), and integrating over the interval [0; 𝑥0] (𝑥0 ∈ [0, 𝑎/2] 

and 𝑓(𝑥0) = 0), we receive an ordinary differential equation that reveals the variation of 

surface relief amplitude with time: 
𝑑𝐴(𝜏)

𝑑𝜏
∫ 𝑓(𝑥1)𝑑𝑥1

𝑥0

0
=

𝐴(𝜏)𝐾𝑠

2
∫

𝑑2

𝑑𝑥1
2 [𝜆 (𝜀𝑡𝑡(0)𝜀𝑛𝑛(1)(𝑥1) + 𝜀𝑡𝑡0

𝜀𝑛𝑛(1)(𝑥1)) +
𝑥0

0
  

+ (
1

2
𝜆 + 𝜇) (2𝜀𝑡𝑡(0)𝜀𝑡𝑡(1)(𝑥1) + 2𝜀𝑛𝑛(0)𝜀𝑛𝑛(1)(𝑥1)) + 4𝜇𝜀𝑛𝑡(0)𝜀𝑛𝑡(1)(𝑥1) −  (10) 

− 𝑓′′(𝑥1) (𝛾0 + (
1

2
𝜆𝑠 + 𝜇𝑠) (𝜀𝑡𝑡(0)

𝑠 𝜀𝑡𝑡(0)
𝑠 ))] 𝑑𝑥1.  

We seek the functions 𝜀𝑖𝑗(1), 𝜀𝑡𝑡(1)
𝑠  in the form of a Fourier series with unknown 

coefficients 𝑃 and 𝑄: 

𝜀𝑖𝑗(1) = ∑ [𝑃(𝜀𝑖𝑗)𝑘
⬚ sin(𝑏𝑘𝑥1) + 𝑄(𝜀𝑖𝑗)𝑘 cos(𝑏𝑘𝑥1)] ,∞

𝑘=1                         (11) 

𝜀𝑡𝑡(1)
𝑠 = ∑ [𝑃(𝜀𝑡𝑡

𝑠 )𝑘
⬚ sin(𝑏𝑘𝑥1) + 𝑄(𝜀𝑡𝑡

𝑠 )𝑘 cos(𝑏𝑘𝑥1)] ,∞
𝑘=1                         (12) 

where 𝑏𝑘 = 2𝜋𝑘/𝑎. 

In the present paper, we do not give explicit expressions for these functions due to 

their tremendous size, but they can be found using the original algorithm, presented in [19]. 

The Fourier series approximation is also utilized to represent the known function 

𝑓(𝑥1), which describes the surface profile: 

𝑓(𝑥1) =  ∑ 𝑅𝑘 cos(𝑏𝑘𝑥1) ,∞
𝑘=1     𝑅𝑘 =

2

𝑎
∫ 𝑓(𝑥1) cos(𝑏𝑘𝑥1) 𝑑𝑥1

𝑎/2

−𝑎/2 
.                (13) 

The solution of the elasticity problem gives the unknowns components of surface 

and bulk strain tensors required to determine the amplitude as a function of time. Due to 

the enormous size of the explicit solution of evolution equation, we write it in the 

following form: 

ln (
𝐴(𝜏)

𝐴0
) =

𝐾𝑠

𝐽𝑓
∑ 𝑉𝑘

∞
𝑘=1 𝑘−1 sin(𝑏𝑘𝑥0) 𝜏,  𝐽𝑓 = ∑ 𝑅𝑘𝑘−1 sin(𝑏𝑘𝑥0).∞

𝑘=1  (14) 
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where functions 𝑉𝑘 = 𝑉𝑘(𝑎, 𝜆, 𝜇, 𝜆𝑠, 𝜇𝑠, 𝛾0, 𝜎0, 𝑅𝑘) are known functions depending on the 

physical and geometrical parameters of the problem but are not presented here because 

of their cumbersomeness. 

 

Numerical results 

As per the findings of experimental research, it has been determined that the diverse 

relief configurations, encompassing a cusp-like relief and a smoothly undulated relief, 

may be occurred in the process of surface rearrangement because of morphological 

instability. The following function is used to investigate the impact of surface profiles on 

morphological instability: 

𝑓(𝑥1) = −
𝑎

𝑑
[Im ctg (

𝜋𝑥1

𝑎
− 𝑖𝑦) − 1  ] ,    𝑑 =  Im ctg (𝑖𝑦) + 1,  (15) 

where the parameter  𝑦 ∈ (0, +∞) defines the shape of surface profile. We take 𝑦 = 2  for 

the smoothly undulated surface, and y = 0.7 for cusp-like relief.  

For example, we use following bulk Lame parameters for isotropic solid: 

𝜆 =58.17 GPa, 𝜇 =26.13 GPa. Also, we set surface stiffness 𝑀 =  6.099 N/m and surface 

tension 𝛾0 = 1 N/m, which correspond to aluminum surface Lame parameters calculated 

in [23] using molecular dynamics. As the thin film systems are often subjected to large 

stress, typically in giga-Pascal range [5], we consider the values of 𝜎0 in the range from 

1  to 2 GPa.  

 

 
Fig. 2. The dependence of normalized amplitude changes 𝐴(𝜏)/𝐴0  on the perturbation wavelength 𝑎  

for surface profile parameters y = 2 (a) and y = 0.7 (b) 

  

Figure 2 shows the dependence of the normalized amplitude changes 𝐴(𝜏)/𝐴0 of the 

surface relief on the perturbation wavelength 𝑎 for 𝜎0 = 1 GPa, different surface stiffness 

values 𝑀 = {6.099, 60} N/m (red and blue lines, respectively) and surface profiles with 

y = 2 (a) and y = 0.7 (b). The abscissas of the intersections of the x-axis and each line lead to 

the determination of the critical undulation wavelengths 𝑎𝑐𝑟 corresponding to the 

thermodynamic equilibrium. If the wavelength of initial undulation 𝑎 ∈ (0, 𝑎𝑐𝑟), the surface 

relief amplitude will decrease with time, and vice versa, surface undulation will grow in the 
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case 𝑎 ∈ ( 𝑎𝑐𝑟, ∞). The critical perturbation wavelength 𝑎𝑐𝑟 for the considered parameters 

and for the case, when surface elasticity is neglected (𝑀 = 0), are presented in the Table 1. 

 
Table 1. The critical wavelength 𝑎𝑐𝑟 of considered system for various parameters 

Surface stiffness 𝑀, N/m 6.099  60 0 

Shape parameter 𝑎𝑐𝑟 , nm 

y = 2 253.3 261.6 252.3 

y = 0.7 72.8 76.5 72.2 

 

Figures 3–5 demonstrate the dependence of critical undulation wavelength 𝑎𝑐𝑟 on 

surface stiffness 𝑀, surface tension 𝛾0 and misfit stress 𝜎0. A succinct examination of the 

results is presented in the conclusions. It is noteworthy that these findings are in good 

agreement with the outcomes of previous studies where the simplified Gurtin-Murdoch 

model was considered omitting the normal component of the surface gradient of the 

displacement field [24,25]. From the results of current study, it follows that accounting 

of this term doesn't affect the critical value of perturbation wavelength found within the 

linear analysis of morphological stability. The main goal of linear stability analysis is to 

predict the conditions under which changes in morphology might occur. Nonetheless, it's 

worth noting that linear stability analysis is limited to minor changes in surface profile 

amplitude. To examine how the surface changes over longer periods, it’s essential to take 

into account the nonlinear terms in the surface evolution equation. By keeping terms up 

to a certain order in the perturbation expansion, we can grasp the behavior at higher 

amplitudes when cusp-like grooves appear. However, higher amplitudes of undulation 

profile may significantly amplify the misfit stresses and lead to the nucleation of 

dislocations [5,6]. The generation of dislocations lowers the local strain energy in the 

surface layer decreasing the driving force behind relief formation [26]. 

 

 
Fig. 3. The effect of surface stiffness 𝑀 on critical undulation wavelength 𝑎𝑐𝑟 

for surface profile parameters y = 2 (a) and y = 0.7 (b) 
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Fig. 4. The effect of surface tension 𝛾0 on critical undulation wavelength 𝑎𝑐𝑟  

for surface profile parameters y = 2 (a) and y = 0.7 (b) 

 

 
Fig. 5. The effect of longitudinal stress 𝜎0 on critical undulation wavelength 𝑎𝑐𝑟  

for surface profile parameters y = 2 (a) and y = 0.7 (b) 

 

Conclusions 

In this paper, we investigate the joint effect of surface elasticity, tension and shape on the 

morphological instability in nanopatterned solid films based on Gurtin – Murdoch theory 

of surface elasticity and the Asaro – Tiller – Grinfeld model of morphological instability. In 

line with [18], the morphological instability of the film surface results from surface diffusion 

driven by variations in surface and bulk energy along the undulated solid surface. 

Assuming that the film thickness is significantly greater than the initial surface relief 

wavelength, we defined the elastic strain energy and the surface energy from the solution 

of the elastic problem for a homogeneous elastic half-plane with curved boundary under 

plane strained conditions. The solution of the linearized evolution equation allowed us 
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to determine the amplitude of arbitrary periodic surface relief as a function of time. The 

critical conditions that correspond to surface morphological instability are determined 

through the analysis of this solution. 

We investigated the dependence of the critical undulation wavelength on the misfit 

stress, surface tension, surface stiffness and the shape of the initial surface relief, and 

based on the obtained data, we have come to the following conclusions: 

– an increase in the curvature radius of the initial surface profile, surface stiffness, surface 

tension, and a decrease in longitudinal stress result in an augmentation of the critical 

perturbation wavelength. 

– a decrease in the influence of surface stiffness is observed with an increase in surface 

tension as well as in curvature radius of the initial surface profile, and a decrease in 

longitudinal stress. 
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