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ABSTRACT  
The possible ways of generation and growing the fullerenes having six-fold symmetry have been studied. 
Beginning with cyclohexane C6H12, benzol C6H6 and clusters C6C6, we obtained elementary fullerenes C12 
and mini-fullerenes C24, which produce the fullerenes from C24 to C84; perfect (basic), as well as nanotubes. 
The basic fullerenes C24, C36, C48, C60, C72 and C84 have the ordinary six-fold symmetry. We have calculated 
their energies and discussed possible reasons for their dependence on a fullerene size and shape in the 
framework of the periodic system of fullerenes.  
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Introduction 
Up to now an origin and growth of fullerenes and nanotubes is hotly debated [1–34]. The 
appearance of the periodic table of fullerenes [35,36] allowed change the strategy of 
investigation: phenomenological approach to fullerenes was replaced by task-oriented 
activity. The periodic table of fullerenes consists of horizontal series and vertical columns; 
they include fullerenes from C14 to C108. The horizontal series form the Δn periodicities, 
Δn=2, 4, 6, 8, 10, 12, 14, 16, 18, where the fullerene structure changes from three-fold 
symmetry to six-fold through four and five ones. The vertical columns include the 
fullerenes of one and the same symmetry, the mass difference Δm for each column being 
equal to a double degree of symmetry, i.e. Δm=6, 8, 10, 12. We declare that the periodic 
system must be taken as a base for rigorous fullerene classification.  

At first we have studied isomers of fullerenes from C4 to C60 [37–41]. In parallel we 
have investigated nucleation and growth of the fullerenes referring to the columns of 
three-fold [42], four-fold [43] and five-fold symmetry [44]. In this contribution we present 
the results obtained for the fullerenes referring to the column of six-fold symmetry.  
 
Nucleation and growth of embryos 
We assume that the embryos of fullerenes of six-fold symmetry are similar to cyclic 
hydrocarbons of the same symmetry: cyclohexane (C6H12) or benzol (C6H6). 
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Cyclohexane 

At first, cyclohexane was depicted as a molecule having a plane carbon ring. Later it was 
established that it has highly symmetric ‘chair’ configuration which belongs to the 
symmetry group D3d (Fig. 1(a)). Here [45] four carbon atoms lie in one plane, two others 
are disposed bilaterally along the plane, all the valence angles CCC are tetrahedral, and 
all the C-H bonds of neighboring methylene groups are disposed in chess order with 
respect to each other. From twelve C-H bonds, six bonds are axial and parallel to the 
symmetry axis of the third order; other six bonds are equatorial. Geometric parameters of 
the molecule are as follows: r(C-C)=1.54 Å, r(C-H) = 1.09 Å. The chair is a stable 
conformation of cyclohexane. Another conformation is a boat (a bath) which belongs to 
the symmetry group C2v and is shown in Fig. 1(b). It is unstable and at room temperature 
only one molecule from a thousand has a boat conformation. Chemical and physical 
methods are unable to fix each conformation separately; they see only an average picture. 
We have calculated their frozen structures and energy through the use of Avogadro 
package [46]. 
 

 
Fig. 1. Structure of a cyclohexane molecule: (a) chair conformation, (b) boat conformation. 

Large spheres are carbon atoms, small spheres are hydrogen atoms: E is energy, kJ/mol 
 

Benzol 

Another embryo of fullerenes of six-fold symmetry is similar to benzol (C6H6). For benzol 
it is customary to assume that the benzol molecule is a regular hexagon with D6h 
symmetry [45,47] and not a system of alternating long and short bonds. It is believed that 
in this case there appear delocalized electrons which create bonds. This question is 
beyond the scope of our study. Nevertheless, it should be mentioned the following. As 
noted above, chemical and physical methods are unable to fix each electronic 
conformation separately; they see only an average picture. However, an electronic 
conformation can be fixed if the system is frozen. Such situation takes place in fullerenes, 
where the benzol hexagon is rigidly incorporated into a fullerene molecule. Here for 
fullerene C60 atomic force microscopy picture of one of the symmetry equivalent 
hexagons clearly shows the two different types of bonds [48]. The measured bond lengths 
are rhh = 1.38 Å and rhp = 1.4654 Å. For this reason, we take in consideration the bond-
order discrimination in our study. We have calculated the frozen structure and energy of 
benzol through the use of Avogadro package [46]. The result is shown in Fig. 2. 

     E=55.5       E=854  

(a) (b) 
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Fig. 2. Benzol: carbon ring and six hydrogen atoms on its periphery, E is energy, kJ/mol 

 

Clusters 

Suppose that we have removed hydrogen atoms from cyclohexane and added carbon 
atoms instead. In doing so we obtain clusters C6C6 with several types of carbon atoms. 
The carbon atoms of cyclohexane remain in the initial electronic state. The new added 
ones are reactive carbon atoms; they are connected with the initial carbon atoms by 
single or double bonds, being ionized to a different degree. Similar to cyclohexane, we 
can remove hydrogen atoms from benzol and add carbon atoms instead. In doing so we 
obtain also cluster C6C6 with several types of carbon atoms. We have calculated the 
optimized structures and energy of these compounds through the use of Avogadro 
package [46]. The results are presented in Fig. 3. 
 

 
Fig. 3. Carbon clusters C6C6 obtained from cyclohexane and benzol, E is energy, kJ/mol 

 
Folding and elementary fullerenes 

One of the ways of further cluster evolution is folding and forming a hexa-angular prism 
(Fig. 4). Here and below, we use area-colored graphs because they gain a better 
understanding of the structures. In our case, six areas of the prisms are tetragons and 
they are grey painted, two areas are hexagons; they are yellow painted. 

Consider cluster folding more closely. The folding produces a hexagonal prism of 
six-fold symmetry which may be thought over as an elementary fullerene. Several 
electronic configurations are presented in Fig. 4.   

E=8.02 

Benzol 
C6H6  

E= - 1.95 E =0.70 E =33.4 
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Fig. 4. Folding clusters into hexagonal prisms: structure and graphs; E is energy, kJ/mol 
 

Fusion of prisms 

From this point we will consider the prisms as elementary fullerenes. The fusion of two 
prisms with conserving their symmetry produces a fullerene which shape resembles a six-
cornered barrel. The structure of several electronic isomers is shown in Fig. 5. To gain a 
better understanding of the fullerene structure, the graph areas are also painted in 
different colors: pentagons in goldish and hexagons in yellow as before. 
 

 

 
 

Fig. 5. Six-cornered barrel-shaped fullerene C24 as a result of prisms fusion;  
its graphs and energy E, kJ/mol 

 
In its turn this barrel-shaped fullerene can continue the symmetry-conserving 

growth through the use of the above mentioned mechanism, i.e. joining with another 
hexagonal prism according to reaction C24+C12 (Fig. 6). The reaction is possible since the 
reacting structures have six-fold symmetry and therefore they are compatible with each 

E=1207  E=2738   E=2738 E=2738 

E=697 E=1778  E=1478 
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other. The subsequent-fusion growth of the fullerene, C36+C12 or C24+C24, is presented in 
Fig. 7. However further fusions create nanotubes. 
 

 

 
 

Fig. 6. Joining barrel-shaped fullerene C24 with prism C12; structure, graphs; E is energy, kJ/mol 
 

 
 

Fig. 7. Nanotube as joining two fullerenes C24; structure and graphs; E is energy, kJ/mol 
 

Cluster growth 
Another way of looking at the gradual evolution of the clusters is the growth of initial 
clusters by joining single carbon atoms or carbon dimers. The complexes formed then 
transform into half-fullerenes (cupolas) conserving the symmetry of clusters [36]. 
   

C36 

E=1884 E=1022 E=1884 

C48 
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Graphite  

One additional comment is necessary for the six-fold-symmetry clusters. “Carbon atoms 
in graphite are arranged in plane paralleled layers which are slightly connected with each 
other. In each layer each carbon atom is bounded with three others by one double and 
two single bonds. A plane configuration of these bonds defines a plane structure of the 
entire layer. In reality all the three bonds are equivalent and valent angles are equal to 
120○, since a double bond can occupy any of three possible positions around a carbon 
atom. This leads to indefinitely high number of different resonant structures of the layer 
(Fig. 8). Such description is equivalent to another, when an electron pair of each double 
bond displaces into a delocalized orbital enveloping the entire layer [49]. However, this 
does not influence on the geometry of a molecule which is dictated by the plane 
arrangement of three localized single bonds; the bonds being around each carbon atom”. 
We assume that this phenomenon is referred to fullerenes too. In the following, we will 
use this fact in producing input data for calculations. 

 

 
 

Fig. 8. One of possible resonant structures for a carbon-layer fragment in graphite. Based on [49] 
 

Gaudi cupolas 

They can be obtained by joining single carbon atoms to clusters C6C6 shown in Fig. 3. The 
result is presented in Fig. 9. From the figure it is seen that the cupolas have one and the 
same base of six atoms; they can combine with each other creating a new fullerene of 
six-fold symmetry. Reaction C18+C18 is equivalent to reaction C24+C12 considered above 
and has just the same result. The fullerene obtained is shown in Fig. 6.  
 

 
Fig. 9. Gaudi cupolas of six-fold symmetry: structure, E is energy, kJ/mol 

E=280 E=396 

C18 

E=298 
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Graphene fragments  

Another way of looking at gradual evolution of the clusters C6C6 is the growth of initial 
clusters by joining carbon dimers, with producing graphene fragments conserving six-
fold symmetry (Fig. 10).  

 

 
 

 
 

Fig. 10. Graphene fragments of six-fold symmetry: structure, E is energy, kJ/mol 
 

Fuller cupolas  

Beginning with C36 the graphene fragments contain pentagons. As a result of further 
growth transforms the plane surface into a curved one and the graphene fragments begin 
to grow as Fuller cupola (Fig. 11). From the figure it is seen that all the cupolas have one 
and the same base of twelve atoms; therefore, they can combine with each other creating 
new fullerenes. 
 
Basic perfect and intermediate imperfect fullerenes 
According to the periodic system of fullerenes [35,36], there are two main types of 
fullerenes; the basic perfect ones and intermediate imperfect ones. The basic perfect 
fullerenes have ideal structure and common symmetry. The intermediate imperfect 
fullerenes have extra carbon dimers. By analogy with crystal physics, we have assumed 
that these extra dimers play the role of defects which violate the common symmetry and 
create local imperfections. However, for defect crystals the long-range-order is observed 
experimentally. In order to underline this peculiarity, such long-range order is referred to 

E=12 E=683 

C24 

E=44 

E=553 

C36 

E=1078 E=995 
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as the topological long-range one [50]. Using analogous terminology, we have defined 
the imperfect fullerenes, which conserve the main axis of common symmetry, as having 
topological symmetry.  
 

 
 

 
 

Fig. 11. Fuller cupolas of six-fold symmetry: structure, E is energy, kJ/mol 
 

Perfect fullerenes 
According to the first issue of periodic system of fullerenes in 2017 [36] there are the 
following basic perfect fullerenes and nanotubes of six-fold common symmetry: C36, C48, 
C60, C72, C84, C96 and C108. In 2018, we enlarged the system from above adding series Δn=2 
and 4 [36]. Series Δn=2 contains the elementary fullerenes of similar shape (prisms) but 
having different symmetries. Series Δn=4 contains the barrel-shape fullerenes of different 
symmetries. As a result, the column of six-fold-symmetry fullerenes incorporated two new 
perfect fullerenes, C12 and C24. Consider all these fullerenes in more detail. 

Elementary fullerene C12. It is a hexahedral right–angle prism (Fig. 4). Its generation 
was discussed above. 

Barrel-shaped fullerene C24. It is a barrel-shaped fullerene (Fig. 5). Other features are 
considered above, 

Fullerene C36. The fullerene was obtained by fusion barrel-shaped fullerene C24 with 
prism C12 (Fig. 6). There are other ways of producing this fullerene (Fig. 12), e.g. fusion of 
two cupolas C18, or fusion of two graphene fragments C12 and C24. 

At first two molecules C18, or C12 and C24, are moving towards each other 
(Fig. 12(a,d)). Then the boundary atoms (dark-red) interact with each other producing a 
compound (Fig. 12(b,e)). During this process new covalent bonds (heavy red lines) are 

C48 
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E=1142 E=1229 

C60 
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generated, distorted polyhedrons are formed; they relaxing into perfect polyhedrons 
(Figs. 12(c,f)). 

 
 

 
 

Fig. 12. C36 as joining two cupolas C18 (a,d) and two graphene fragments C12 (b,e) and C24 (c,f) 
 

In the first case one obtains just the same fullerene as is shown in Fig. 6, having the 
same energy. In the second case we have an isomer of this fullerene (Fig. 13). The isomer 
obtained consists of six tetragons and fourteen hexagons; it contains twenty four faces. 
One may name this perfect isomer, having six-fold symmetry, a truncated six-angular 
bipyramid. 
 

 
Fig. 13. Truncated six-angular bipyramid C36 and its graphs; E is energy, kJ/mol  

(a) (c) (b) 

(d) (e) (f) 

E=3618 

E=2023 

E=3430 
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Fig. 14. Fullerene C48 as a result of joining two cupolas C24 of six-fold symmetry: the mirror symmetry 

fusion, structure and graphs; E is energy, kJ/mol 

 

 

 
Fig. 15. Fullerene C48 as a result of fusion of two cupolas C24 having six-fold symmetry: rotation-reflection 

symmetry joining: structure, graphs, E is energy, kJ/mol 

C48-ms 

E=1926 
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C48-rrs 
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Fullerene C48. One can design two isomers of six-fold-symmetry fullerene by two 
different ways of joining two cupolas C24. It should be emphasized that there are two 
modes of cupola joining: mirror symmetry and rotation-reflection one. In the first case 
the lower cupola is a mirror copy of the upper one. The fullerene obtained consists of six 
tetragons and twenty hexagons (Fig. 14); it has twenty-six faces. It is a tetra6-hexa20 
polyhedron. In the second case the lower cupola is a rotatory reflection of the upper one. 
The fullerene obtained contains twelve pentagons and ten hexagons, the number of faces 
being the same (Fig. 15). It is a penta12-hexa14 polyhedron. Its energy is less than that of 
the first fullerene. 

Fullerene C60. We have designed this fullerene of six-fold symmetry by fusion of a 
graphene fragment C24 and a cupola C36 (Fig. 16). The fullerene obtained contains six pairs 
of two adjacent pentagons and twenty hexagons (Fig. 17). It is a penta12-hexa20 
polyhedron of six-fold symmetry. 

 

 
Fig. 16. Scheme of joining graphene fragment C24 and cupola C36: (a) separate carbon components;  

(b) intermediate compounds; (c) polyhedron obtained 
 

 

 
Fig. 17. Structure, energy and graphs of fullerene C60 with single and double bonds 

(b) (c) (a) 

E=1253 

C60  
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Fullerene C72. One can design this fullerene of six-fold symmetry by fusion of two 
cupolas C36 what is shown in Figs. 18–20. It should be emphasized that one of the graphs 
is reverse.  
 

 
 

Fig. 18. Scheme of joining two half-fullerenes C36:  
(a) separate carbon cupolas; (b) intermediate compound; (c) polyhedron C72 obtained 

 

 
Fig. 19. Structure and energy E (kJ/mol) of fullerene C72 

 

 
 

 
Fig. 20. Fusion reactions of cupolas C36 as graph embedding: (a) graph of cupola C36; (b) reciprocal graph 

of cupola C36; (c) graph embedding; (d) graph of fullerene C72 

(a) (b) (c) 

C72  
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C36 
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Fullerene C84. In a similar manner it is possible to construct this fullerene of six-fold 
symmetry by fusion of cupolas C36 and C48 what is shown in Figs. 21–23. 

 

 
Fig. 21. Joining two half-fullerenes C36 and C48, and fullerene C84 obtained: (a) separate carbon cupolas;  

(b) intermediate compound; (c) polyhedron after relaxation  
 

 
Fig. 22. Structure and energy E (kJ/mol) of fullerene C84  

 

 
 

 
 

Fig. 23. Fusion reactions of cupolas C36 and C48 as graph embedding: (a) graph of cupola C48;  
(b) reciprocal graph of cupola C36; (c) graph embedding; (d) graph of fullerene C84 

(c) (b) (a) 

C84 
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Nanotube C96. The next perfect fullerene is a nanotube. One can design this nanotube 
of six-fold symmetry by fusion of two cupolas C48 what is shown in Figs. 24–26. Let’s 
analyze these figures. The question arises: what we have obtained, fullerenes or 
nanotubes? Where is the boundary between fullerenes and nanotubes? An intuitive idea 
says that a fullerene is a spheroid, whereas a nanotube with open ends is a cylinder and 
a nanotube with closed ends is a cylinder with two hemispheres. Each spheroid can be 
divided into three parts; two hemispheres. If the height of cylinder is less than the height 
of two hemispheres, we assume that it is a fullerene. On the contrary we have a nanotube. 
In its turn the cylinder height is defined by the number of adjacent hexagons. To form a 
cylinder one needs to have along its height at least one hexagon which is not connected 
with pentagons. Referring to the graphs shown, we admit that the nanotubes begin with 
the structure C96.  

It is worth noting that both fullerenes and a nanotube have one and the same 
number of pentagons, namely twelve, being equal to a double degree of symmetry. 
 

 
 

Fig. 24. Rotation-reflection-symmetry joining of two cupolas C48: (a) separate cupolas C48;  
(b) intermediate compound; (c) nanotube C96 obtained 

 

 
 

Fig. 25. Structure and energy E (kJ/mol) of nanotube C96 
 

(c) (b) (a) 

E=2555 E=1957 

C96 
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Fig. 26. Fusion reactions of cupolas C48 as graph embedding: (a) graph of cupola C48;  
(b) reciprocal graph of cupola C48; (c) graph embedding; (d) graph of nanotube C96 

 

Summary and Discussion  
We have studied possible ways of generation and growing the fullerenes having six-fold 
symmetry. Beginning with cyclohexane C6H12, benzol C6H6 and clusters C6C6, we obtained 
at first elementary fullerenes C12 and mini-fullerenes C24, and then the fullerenes from C36 
to C96, including a nanotube. We have calculated the energies of the possible fullerenes. 
 

 
Fig. 27. Energy E of fullerenes in kJ/mol as a function of fullerene size and shape 
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In Table 1, the energies of fullerenes are presented, for fullerenes with single bonds 
only (above) and single and double bonds (below). The energies are also shown in Fig. 27.  
 
Table 1. Energy of fullerenes in kJ/mol as a function of fullerene size and shape 

C12 C24 C36 C36graph
 C48 rrs C48 ms  C48tube  C60  C72  C84  C96tube  

1207  697 1022 (2023)  991 (1926) (1240) 1253 1656 1557 1957 
2738 1478 1844 (3430) 2582 (3854) (2201) 2329 2210 2255 2555 

 
Continuity and discontinuity 

These notions are connected with the Ionic and Pythagorean schools of philosophy (VI-
IV century B.C.) [51]. Plato of Athens (Πλατων, 427 B.C.) has tried to combine both notions, 
putting five forms of matter (fire, air, earth, water, ether) into consistency to five regular 
polyhedra (tetrahedron, octahedron, cube, icosahedron, dodecahedron). According to 
Aristotle every thing is the unity of matter and form (η ϋλη καί τό είδος); the form being 
an active element produces movement [51]. 

In mathematics there are such notions as curvature, tensor of curvature [52]. The 
curvature is defined as the quantity which characterizes a deviation of a surface from a 
plane at a given point. The latter is defined in the following manner. Through the normal 
at a given point of surface all the possible planes are drawn. The sections of surface by 
these planes are called normal sections, the curvatures of normal sections being normal 
curvatures of the surface at a given point. Maximum and minimum curvatures are called 
principal curvatures. Their combinations give Gauss and average curvatures which are 
used for analysis of the surface curvature. 
 

 
Fig. 28. Curvature fragments of fullerenes 

 
Curvature of fullerenes 

We will follow to Aristotle trying finding the forms of fullerenes, which define its surface 
curvature. In other words, we will search first of all “fragments of curvature”, but not a 
curvature value. Further we will use the following notions: curvature as continuity 
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property and curvature fragments as discontinuity. Analysis of the fullerene structures 
shown before allows us to separate the following curvature fragments (Fig. 28). It should 
be emphasized that an isolated fragment CF-6 does not creates curvature; it becomes a 
curvature fragment under the influence of surroundings.  

Different curvature fragments have their own symmetry. We name a center of 
symmetry “curvature concentration center”. The study of its arrangement in different 
fullerenes has given the following picture (Fig. 29). The figures resemble rings (C12, C48ms), 
zig-zag ring (C48rrs), prisms (C60, C84), Archimedes antiprisms (C24, C72) and a biantiprism 
(C36). 

 

 
 

 

 
 

Fig. 29. Geometry of curvature concentration centers (CCC) 
 

Curvature, strain and stress concentration  

In mathematics [52], the surface is introduced as a bit of a plane subjected to continuous 
deformations (tension, compression, bending). In its turn, curvature is defined as the 
quantity which characterizes a deviation of a surface from a plane at a given point. In 
mechanics [53] for characteristics of deformation one introduces tensor of strain, which 
diagonal elements characterize volume change; non-diagonal elements show the change 
of a form. If stress is a function of strain in each point of continuum, such continuum is 

C12 
C24 

C36 

C48 ms C48 rrs 

C60  
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said to be an elastic body. In a simple case, the function which connects strain and stress 
is Hooke’s law. 

In mechanical engineering [54], the problem of weakening stress concentration is 
very important. Unloading local stress can be obtained through the use of a correct 
construction, in particular, a construction which consists of frames. Frame bridges were 
already used by Romans. An advance of the network of railway lines has led to widespread 
use of frame bridges and, as a consequence, to development of the methods of their 
designing. The first three farms are shown in Figs. 30–32. The problem was to design a 
farm in which the stress in farm rods would be minimum when a bridge is in work; the 
knots of systems being the centers of stress concentration. 
 

 
 

Fig. 30. Triangle lattice of Warren’s frame (UK, 1846). Based on [54] 
 

 
 

Fig. 31. Whipple’s frame (USA, 1852). Based on [54] 
 

 
 

Fig. 32. Zhuravskiy’s frame (Russia, 1850). Based on [54] 
 

Studying cyclic molecules [36], we developed a procedure which shows their side 
view. It can be named the method of cutting and unrolling. The procedure allowed us to 
discover a new phenomenon: hidden symmetry of molecules. It is interesting to note that 
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if to act in a similar manner, i.e. to cut the prisms shown in Fig. 29 along a vertical line 
going through one of its curvature concentration points, we obtain the figures resembling 
farm bridges. 

Based on this similarity, we assume that in fullerenes the curvature concentration 
centers are strain centers and since strain is connected with stress, they are centers of 
stress concentration. Therefore, the energy of a fullerene consists of two parts: chemical 
energy of formation and strain energy of construction.  

Now we are able to understand and explain the dependence of fullerene energy on 
size and form (Fig. 27). Fullerenes with single bonds relax through the transformation of 
plane hexagons into chair conformation and so their energy has incorporated only a small 
part of strain energy. As a result, the dependence of fullerene energy on size and shape 
is almost monotonic. Fullerenes with single and double bonds are rigid constructions, 
and here the contribution of strain energy is high. The fullerene shape is a result of self-
organization and here there are possible several types of curvature. The most stress state 
is characteristic for fullerenes which curvature concentration centers (CCC) are plane 
hexagons, the least refers to CCC in the form of antiprisms which highly resemble farm 
bridges. The other fullerenes have intermediate strain energy. 
 
Future investigations 
We assume that first of all it is necessary to find the curvature concentration centers. In 
doing so, we gain the arrangement of stress concentration, can apply the elasticity theory 
not only to the fullerenes (this task is very cumbersome) but to the polyhedrons of 
curvature centers (the task is easier). Moreover, the energy of fullerenes can be considered 
not only as a global quantity, but as a surface distribution. Since the CCC polyhedrons 
resemble crystals, and the crystals are studied for years, we can use this knowledge for 
understanding such processes as, e.g. sublimation, fracture of fullerenes. As a result, we 
would be able to gain more profound insight into their nature.  
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