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Abstract. Analytical and numerical results for fixed-end torsion of cylindrical specimen are 

presented. Finite-strain elastoplastic kinematics based on multiplicative split of deformation 

gradient tensor is adopted. The constitutive relations are a combination of an arbitrary 

hyperelastic model based on the first invariant of the left Cauchy–Green deformation tensor 

and the J2–plasticity model with an arbitrary isotropic strain hardening. The integral 

characteristics of the process, namely, torque and axial force (Swift effect), are compared with 

the known exact solution for a neo-Hookean hyperelastic material with Tresca yield 

condition. The axial force predicted by these models can differ markedly, but the torque is 

almost the same. For the materials with yield stress saturation, we find the limit in torque and 

axial force. 
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Introduction 

The torsion test is a wide-spread technique to identify the parameters of constitutive relations 

in elasticity, plasticity or creep. For metallic materials, elastic deformation is usually small, 

and for an analytical description of experiments, one can utilize the rigid-plastic analysis, the 

deformation theory of plasticity, or the Prandtl – Reuss theory. For many polymeric materials, 

the situation is different: these materials are capable to sustain a significant elastic and plastic 

deformation, and in the plastic flow regime they exhibit nonlinear and sometimes 

nonmonotonic behavior. For such materials, interpretation of experimental data can be based 

on FEM modeling [1] or analytical studies [2]. 

For elastic-plastic torsion of cylindrical specimens, some analytical results are known. 

In [3], free-end torsion is considered for the Mooney–Rivlin material with Tresca yield 

condition. For the same material model, a closed-form solution for fixed-end torsion was 

obtained in [4]; and a solution [5] takes into account the heating caused by plastic dissipation. 

An approximate analytical solution [6] takes into account the dependence of the yield strength 

on pressure. All the mentioned results utilize the multiplicative decomposition of the 

deformation gradient (or decomposition of the total strain tensor, which leads to similar 
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results) into elastic and plastic parts as the elastoplastic kinematics. The hypoelastic 

formulation was used in [7, 8]. 

The presented study provides analytical results for a class of isotropic incompressible 

hyperelastic materials whose elastic potential is a function (possibly nonlinear) of only the 

first invariant of the left Cauchy – Green deformation tensor, and plastic flow is described by 

von Mises yield condition with arbitrary isotropic hardening. The mentioned class of elastic 

materials includes the neo-Hookean solid, as well as Fung [9], Yeoh [10], Arruda–Boyce 

[11], Gent [12] models. 

 

Finite-strain elastoplastic kinematics 

We utilize the multiplicative decomposition of the deformation gradient tensor F  into elastic 
e

F  and plastic p
F  parts 

( )( )e p e e p p= =F F F V R R U .    (1) 

Here e
R  and p

R  are proper orthogonal rotation tensors (elastic and plastic, respectively); 

symmetric 
e

V  and p
U  are elastic left and plastic right stretch tensors. Following [13], it can 

be assumed that p =R I . 

In constitutive equations we utilize the elastic part 
e

c  of eulerian deformation tensor 
1 1 2T− − − −= = =c B F F V : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 2T T T

e e e e e e e e e e e
− − − − − − − − −

= = = = =c B F F V R R V V V V
. 

 

Here B  is the left Cauchy – Green deformation tensor; I  is unit tensor. 

From (1) by direct time differentiation, we can obtain the following evolution equation 

for the tensor 
e

c  [6]: 

( ) ( ) ( )
1 1

2e e T e e e p e

CRD
− −

 + + =c c l c c l V D V

 .
    (2) 

Here CRD
 denotes the Cotter – Rivlin derivative; ( ) 1T −=  =l v FF  is the spatial velocity 

gradient, ( )1 T− = − F I u  is the spatial deformation gradient; ( )t= =   + v u u v u  is the 

velocity vector, u  is the displacement vector in actual basis; 
p

D  is the plastic strain rate 

tensor, ( ) ( ) ( )
1 1

2
T

p e p p p p e
− − =

  
D R U U + U U R . The dot under symbols denotes the material 

time derivative. 

 

Material model 

We consider the class of nonlinear-elastic incompressible materials with free energy 

represented as a function of the first invariant of the tensor 
e

B  only. For an incompressible 

materials the invariants of the tensors 
e

B  and 
e

c  are related as 

( ) ( )
2

2

1 2tr 1 2 tr trB e c e eI I  = = = −
  

B c c  [14], so the elastic rule in this case can be write out in 

the form 

( )2 12 2e e с e

e

W
p p w I


= − − = − + −


σ I c I c I c

c
, ( )2 2 2

2

с

с

W
w w I

I


= =


.    (3) 

Here W  is the hyperelastic potential (the volumetric density of free energy), σ  is the Cauchy 

(true) stress tensor; the scalar function p  is introduced due to incompressibility constraints. 

For purely elastic deformation, 
e

c  coincides with the total deformation tensor c . In 
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undeformed state =c I , 
1 2 3с сI I= = , ( )24 3p w= −

 
hold. For the neo-Hookean solid with 

( ) ( )1 1 1 23 3B cW C I C I= − = −
, the function 2w  is constant, 2 1 2w С = = , where   has the 

same meaning as the shear modulus in linear elasticity. 

We utilize the von Mises ( 2J ) yield criterion for isotropic hardening material: 

2

2 0J  = − = ,    (4) 

where 2

22 tr devJ = σ , ( ) ( ) ( )dev tr 3= − I ; ( ) ( )0 1q H q  = = +    is hardening law for 

shear yield stress, ( )0 0H = ; q

 

is the accumulated plastic strain determined by the equation 

( ) ( )
2

2 3 tr pq = D . 

According to the associated flow rule, the plastic strain rate tensor satisfies the equality 

2

2

devp J

J

 
=  =  = 

  
D σ

σ σ
,    (5) 

where   is the plastic potential (4),   is the scalar plastic multiplier. 

Then ( ) ( )2

22 3 tr dev 2 3 2 3q J =  =  = σ . 

For an isotropic material described by potential relations (3) and (5), the tensors σ , c
D , 

e
c  and 

e
V  are coaxial, commute in product, therefore (2) takes the form 

( )

( ) ( )  ( )2 1

2 dev

2 3 dev

e e e T e e

e e с e e T e e

t

w q I

   =  −  + + = 

 = − −  + + 

c c σ v c l c c l

c c I c v c l c c l

  
 

   (6) 

 

Elastic stage 

Let a right-circular cylinder with diameter 2R  and height H

 

fixed so that one of its ends 

remains motionless, while the other can only experience the rotation around the axis of 

symmetry. Thus, the movement of material points along the axis of symmetry is excluded; the 

height of the cylinder is constant. The angle of rotation of the movable end is a known 

function of time ( )t . The lateral surface of the cylinder is stress-free. 

Let introduce a cylindrical coordinate system with basis vectors re , e , ze ; in the actual 

configuration, the displacement vector has the form [5,14] 

( ) ( )1 11 cos sinrr zH r zH  − − = − +
 

u e e

 
 

   (7) 

Under purely elastic deformation, the tensor 
e

c  coincides with the total deformation 

tensor 
1T− −=c F F  and has the following coordinate representation: 

0 0

0

0

e

rr

e e e

z

e e

z zz

c

c c

c c

 



 
 

=  
 
 

c

, 

   (8) 

1e

rrc =
, 

1ec = , 
e

zc r = −
, 

( )
2

1e

zzc r= +
.
 

   (9) 

We introduced here two dimensionless parameters: the radial coordinate r r R=  and 

the surface shear strain R H = . The latter is conveniently used as a time-like loading 

parameter. 
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The stress state of the cylinder is described by the well-known universal (i.e., valid for 

any elastic potential) Rivlin solution [15]. Taking into account the incompressibility condition 

det 1e =c , we have 1e e e e

z zz rrc c c c = − − . Then according to (3) 

( )

2

0 0

2 0 1

0 1

e e e

rr zz

e e e e e

rr rr z rr

e e e e e

z rr rr zz rr

c c c

p w c c c c c

c c c c c



 



 +
 

= − − + 
 

+ 
 

σ I   (10) 

and taking into account (9): 

( )

( )

2

2

2

2 0 0

2 0 2

0 2

r

p w r

r r





 

 +
 

= − − − 
  − + 

σ I , ( )2 2 2

cw w I= , ( )
2

2 3cI r= + .  

The non-vanished component of the equilibrium equation  =σ 0  is 

0
rrrr

r r

  −
+ =

 ; 
 

it serves to calculate the function p : 

( )2 22 1c

r R
p I w W W

=
= − − − +

, 
( )2

c

r R r R
W W I

= =
=

, 

2

2 3c

r R
I 

=
= +

 

 

Here we used the boundary condition 0rr r R


=
=

 
in determining the integration constant. For 

example, for neo-Hookean solid with 
( ) ( )( )2 22 3c cW I I= −

, 2 2w const= = , one can find 

( ) ( )2 22 4 3 1p r  = − + −
  . 

 

Plastic flow stage 

At a certain angle of rotation, the yield condition is satisfied for the first time on the lateral 

surface of the cylinder r R= . We assume that after the plastic flow starts, the expression (7) 

for the displacement vector remains valid. From this point on, two regions will be present in 

the cylinder: the elastic deformation region 0, epr r     and the plastic deformation region 

,epr r R    . These regions are separated by a moving elastic-plastic boundary ( )epr r t= ; on 

this interface the accumulated plastic strain q  is equal to zero and the yield condition is 

fulfilled in the form 2

2 0J = . In the elastic region, the elastic deformation tensor (8) satisfies 

the equalities (9). In the plastic region, 
e

c  does not satisfy (9); the evolution of its components 

is determined by equation (6), while the initial condition for 
e

c  components in the plastic 

region is the elastic solution (9). Equation (10) for stress tensor holds in the plastic flow 

region too; the function p  must be continuous on the elastic-plastic boundary. 

An elastic-plastic boundary is determined by the yield condition (4) 2

2 0
epr r

J 
=

= . Taking 

into account (9) and the following expression 

( ) ( ) 
( )

( )
2 2

22 22 2 2 2

2 2 1 2

21 1 1
tr dev 2 tr dev 2

2 2 3

e

ze с e e e e

z rr rre e

rr rr

cw
J w I c c c

c c





 
= = − = + + − + 

  
σ c I c , 

we have the following: 
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( )

2

2
0

2

3 4
1 1

2 3 2
ep

ep

r r

r
w




=

 
 

  = + −  
  
 

,

 
( )2 2 2

ep ep

c

r r r r
w w I

= =
= , ( )

2

2 3
ep

c

epr r
I r

=
= + .

 
 (11) 

This equation gives ( )epr   explicitly only for the neo-Hookean material.

 Let's make some preliminary remarks. The Hamiltonian operator in a cylindrical 

coordinate system is 

1
r z

r r z




  
 = + +

  
e e e .

 
 

Then we have ( )( )( )z R d dt  =  v ,
 
and taking into account the derivatives of 

basis vectors ( r   =e e , r   = −e e , all other vanish), we obtain 

d
zr

dt



=v e , ( )

0 0

0

0 0 0

T

z R
d

z R r
dt


− 

 
=  =  

 
 

l v
 

 

Now we can write the coordinate representation of the tensor 
( ) e T e e + +v c l c c l

 which 

appears on the right-hand side of equation (6): 

( )

0 0 0

0 0

0 2

e T e e e

e e

z

d
r c

dt
c c



 


 
 

 + + =  
 
 

v c l c c l

 

 (12) 

Further we have 

( ) 

( )

( ) ( )

( ) ( )

1

2

2

2

dev

2 0 0

1
0 3 1

3

0 1 3

e e с e

e e e

rr zz

e e

ze e e e e e e

rr zz rr zze e

rr rr

e e
z e e e e e e ezz

rr zz rr zz zze e

rr rr

I

c c c

c c
c c c c c c c

c c

c c
c c c c c c c

c c



 

  



 

− =

 
 − +
 
 

  = − − + − + +
  

 
  − + + − − +  
 

c c I c

.
 

 (13) 

Here it is taken into account that the incompressibility condition det 1e =c  is also 

fulfilled in the plastic region [6], therefore, 
2 1e e e e

z zz rrc c c c = − . It is easy to see that if 

e e

rrc c=
 then the components of tensor (13) satisfy the equality 

( ) ( ) ( ) ( )1 1dev deve e с e e e с e

rr

I I


− = −c c I c c c I c  and the corresponding components of 

tensor (12) are zero. This allows us to conclude that in this case 
e e

rrc t c t  =  
. But 

from (9) it follows that 
1e e

rrc c= =
 on the elastic-plastic boundary. Consequently, in the 

plastic region, the components 
e

rrc
 and 

ec  also coincide, although, in contrast to the elastic 

region, they change during loading. This interesting property, which is typical only for 

materials with 1

BI –based hyperelastic potentials, makes it possible (as for a viscoelastic 

material [16]) to obtain a simple analytical solution of the problem. 
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Thus, the system of differential equations (6) contains unknown functions 
e

rrc
, 

ec , 
e

zzc
, 

e

zc , q , which are also related by algebraic equations 
e e

rrc c =  and 
2 1e e e e

z zz rrc c c c = − , as 

well as the yield condition (4). 

Instead of the equation for component 
e

zzc
, it is more convenient to use the evolution 

equation for the second invariant of the elastic deformation tensor 

( ) ( )
2

2 2 2

2 1 2 tr tr 1c e e e e e e e e e e e e e

rr zz rr zz z rr rr zz rrI c c c c c c c c c c c  
 = − = + + − = + +
  

c c
, which can be 

obtained from (6): 

2

2

2 22 2
2 22

1
2

2 3 1 1
2 2 2

3

c e e
e e err zz
rr zz rre

rr

c
c e e c e e

rr rr rr rre e

rr rr

I c c
c c c

t c t t

w Iq d
I c r c I c c

t c c dt





   
= + − + = 

   

 
= − − − + + − − 

   .
 

 

Here it is taken into account that for the considered deformation pattern q q t=    
holds. 

Just as in [5,17], we assume that the components of the elastic deformation tensor are 

functions of the accumulated plastic strain q , which in turn is a function of the self-similar 

variable r . In what follows, it is convenient to consider as a parameter the elastic strain 

component 
e

rrc
. In this case, the system of governing differential equations (6) has the form 

1

2

2

1 1
1

2 33

c e

rre

rr

dq
I c

dc w


−

 
= − − 

 
 

(14a)
 

( )

3

2 2

2

2

2

2

11 1

2 3 1

2

c c e

rr

e e e e c

rr rr rr rr

e e c e e
rr rr rr rr

I dI c

d r c dc c c I

dc c I c c



−
− +

−
= −

− −

 

(14b) 

In the last of these equations, 2

c e

rrdI dc  is calculated according to the chain rule as the 

derivative of the composite function ( )2 2 ,c c e

rrI I c q= : 

1

2 2 2 2 2
2

2

1 1
1

2 33

c c c c c
c e

rre e e e

rr rr rr rr

dI I I I Idq
I c

dc c q dc c q w


−

     
= + = − − 
       

 

Equation (14a) contains the known functions ( )2 2 2 2

c cw W I w I=   =  and ( )q  

describing the elastic and plastic properties of the material. The invariant 2

cI  can be expressed 

in terms of e

rrc  and q  with yield condition (4) 

( )
2 2 22

2 2 2 2

1 1
2

3

c
c e

rre e

rr rr

I
J w I c

c c


 
= − − + = 

 
.
 

 (15) 

Then integration (14a) with the initial condition ( 1e

rrc =
 

when 0q = ) implicitly 

determines the function ( )e

rrc q . It is worth noting that expression ( )2 2 ,c c e

rrI I c q=  from (15) 

can be quite complex. 
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Given that the function ( )e

rrq q c=  is known from solution (14a), the right-hand side of 

equation (14b) is a function of e

rrc . This allows us to integrate (14b) directly, taking into 

account the initial condition (11) ( epr r =  when 1e

rrc = ), by finding r  as a function of e

rrc . 

 

Formulas for torque and axial force 

Using the found solution the torque can be expressed as 
1

2 3 3 3 2

2 2

0 0

1 33
3 3 22 2

2 23 2

20

2 4 4

14 1 1
4

2 3 1

ep

ep

ep

e
rr

r R

rR

e e

z z rr

r

r c c e
err
rre e e e c

rr rr rr rrc

M r dr R r w dr R r c c w dr

I dI cR
R r w dr G w dc

c dc c c I

     


 


=

= = − =

 −
= + − + 

− 

  

 
 

 (16) 

Here, the first term reflects the contribution of the elastic region, the second corresponds to 

the plastic one. In the first term ( )( )2

2 2 3w w r= + ; in the second term ( )2 2 2

cw w I= ; 

( )2 2 ,c c e

rrI I c q=  is the function known from (15); ( )e

rrq q c=  is the solution of (14a); the 

function G r=  is given by equation (14b): 

( )

3

2 2
1 2

2

2

2

11 1

2 3 1

2e
rr

c c e

rr

e e e e c
e err rr rr rr
rr ep rr

e c e e
c rr rr rr

I dI c

c dc c c I
G c r r dc

c I c c
 

−
− +

−
= = +

− −


 

 (17) 

The integration limit 
e

rr r R
c

=
 in (16) can be considered as a solution parameter, while the value 

of the loading parameter   corresponding to it can be expressed from (17) as 
( )e

rr r R
G c

=
=

. 

To calculate the axial force 
1

2

0
2 zzQ R rdr = −  , we represent the integral zzrdr  in 

the following form using expressions (10): 

( )2

22 1e e

zz rr rr rrrdr rdr c c rw dr = + −   . 

Next, we integrate by parts the first integral on the right-hand side of this expression and 

use the equilibrium equation 
2

2
2 2

1
2 2

e e e c e
rrrr rr zz rr rrc c c I c

w w
r r r r

  − + −
= − = − = −

 . 
 

We have: 

( ) ( )2 2 2 2 2

2 2 2

1 1 1
2 1 3

2 2 2

e e e crr
zz rr rr rr rr rr

d
rdr r r dr c c rw dr r c I rw dr

dr


  = − + − = + −    . 

This expression holds for both the elastic and plastic regions. Then, taking into account 

the continuity of the radial stress on the elastic-plastic boundary, as well as the fact that the 

lateral surface of the cylinder is stress-free, 
1

0rr r


=
= , we have: 

( ) ( )

( )

1 1 1

2 2 2 2 2

2 2 2 2

0 0 0

232
2 22 2 3 2 2

2 2 2 2
20 2

1
2 3 2 3

2

312 1 1
2

2 3 1 2

ep

r

e c c e

rr rr rr

r

r c e ec c e
rr rrrr

e e e e c e c e e
rr rr rr rr rr rr rr

Q R r c I rw dr R I c rw dr

I c Gw dcI dI cR
R r w dr

c dc c c I c I c c

  


 



=

=

   
= − + − = − =  

   

− −
= + − + 

− − − 

 


1

e
rr

r R
c

=



  (18) 
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Limit values for torque and axial force. If the strain hardening of the material is limited 

(meaning the saturation of the yield stress), then there are limit values of the torque and axial 

force, to which these quantities tend with an increase in the angle of rotation. There is also a 

limiting stress state, which corresponds to a certain value of the elastic deformation tensor. It 

follows from (14a) that 2 3c e

rrI c →
 with  → . Then (15) becomes 2 2e e

rr rrc c −

− = , where 

( )2lim 2
q

w 
→

= . The root of this equation, up to quadratic terms, is 21 3e

rrc = − . 

Applying L'Hopital's rule to formulas (16) and (18) taking into account (14b) we have: 
23 32 2

lim 1
3 3 3

R R
M



 
 
 

→

 
 −  

 
, 

2
2 23 3

lim 1
2 3 2

Q R R



     

   
→

 
 −  

 
  (19) 

Plastically non-hardening neo-Hookean solid. Let's illustrate the solution with a simple 

example of the neo-Hookean solid with 
( )( )22 3cW I= −

, 2 2 constw = = . If the material 

is non-hardening in the plastic range, then from (15) it follows that 

2

3 1

2

с

e

rr

S
I

c

+
= , 0

0





= , 

( ) ( )2 2

0

4 1

3 3

e e e

rr rr rrS c c c = + −

 

 (20) 

The integral of equation (14a) is 

( )

1

0

2

13 e
rrc

d
q

S





=

−

 

 

From (20) 

3

2 2

2

2 1 31

2

c c e

rr

e e e

rr rr rr

dI I c S

dc c Sc

 + −
= =


, then 

( ) ( ) ( )

( ) ( )

31

1 2
5 2 3

1 3 2 1 1 2 5 12

4 1 3 2 1e
rr

ep

c

S S S S
G r r d

S S S


  

 

+ − + − −  = = +
− − −



 

 (21) 

where from (11) we state 

( )
2

2

0

3 4
1 1

2 3
epr 

 
= + − 

 
.
 

 (22) 

The torque is 

( )
( ) ( ) ( )

( )

313
4

2

3 2

1 3 2 1 1 2 5 1

2 1e
rr

r R

ep

c

S S S SR
M r G d

S S


 

 
=

 + − + − −   = + 
−  

  
 

The axial force is 

( )
( ) ( ) ( )

( ) ( )

312 3
4

1 22 5 2 3

1 3 2 1 1 2 5 13 1 2

4 2 1 3 1 2e
rr

r R

ep

c

S S S SR S
Q r Gd

S S S

 
 

  
=

 + − + − −  + −  = + 
− − −  

  

The solution parameter 
e

rr r R
c

=
 defines by (21) the surface shear strain 

( )e

rr r R
G c

=
=

. 

 

Comparison with the exact solution for the Tresca yield condition 

The torque and axial force in the fixed-end elastic-plastic torsion for a neo-Hookean material 

with the Tresca yield condition have the following expressions [4,6]: 
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( ) ( )
3 2

2 22 2 2

3 2

0 0

1
2 4 1 2 1

2 1

R

z

R f
M r dr a a a d

f






   



 −
= = − + + 

+ 
   

( ) ( )
2

2
2

2 22
0 0

6
2 4 1 2 1 1

4 14

R

zz

R a f
Q rdr a a a d

fa




   


  
= − = − + − +  

+−   
   

( )
( )

( )

1 1 tanh2

2 1 1 tanh

aa
f

a a






+ −+
=

− + +
, ( )2 2

0min 4 , 2 1 1a  
 

= + + + 
 

, 
2

1
1

4 aa




 
= − 

− 
 

Under purely elastic deformation ( 24a = + , 0 = ), the formulas above take the 

well-known form ( ) 31 2M R= , ( ) 2 21 4Q R= . 

Figure 1 shows the plots of the dimensionless torque ( )32M M R=  and axial force 

( )24Q Q R=  for the Tresca and von Mises plasticity models combined with the 

hyperelastic neo-Hookean model. The expression for surface shear strain, at which plastic 

flow starts in the sample, in the Tresca model is ( )2

02 1 1y = + −  [4], for von Mises 

model according to (22) ( ) ( ) 2

03 2 1 4 3 1y  = + −
 

. Both of these quantities at 0 1   

are practically indistinguishable from the small-strain theory approximation 0y = . 

The torque is almost the same for von Mises model as for Tresca model, if the models 

are calibrated such that the pure shear yield strength is the same for both models. The Swift 

effect (the appearance of an axial force in fixed-end torsion) is more pronounced for the von 

Mises model, and the difference increases with increasing deformation of the sample. For an 

ideally plastic (non-hardening) neo-Hokean solid, both models predict that both the torque 

and the axial force reach their limiting stationary values at large angles of rotation. For the 

Tresca material 

30

2

0

2
lim

3 1
M R






→
=

+
, 

2 22
0 0

2

0

1 2 1
lim

2 1

R
Q



 

→

+ + −
=

+
. 

If 0 1 
 
then the first of these quantities differs little from the value ( ) 3

02 3M R = , 

which can be obtained by completely neglecting elastic effects and assuming that 0z = . 

The second represents a purely non-linear effect and it’s approximately equal to 

( ) ( )2

0 05 4 R   
 
at 0 1  . 

According to (19), for the von Mises material 
3

0

2
lim

3

R
M






→
 , 

2

0 03
lim

2

R
Q



  

→
   

The limit value of axial force for the von Mises model is 20% higher than for the Tresca 

model. 
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Fig. 1. Dimensionless axial force ( )24Q Q R=  (circles) and torque ( )32M M R=  

(triangles). The solid lines correspond to the presented solution for the von Mises yield 

condition, the dashed lines correspond to the solution [4] for the Tresca yield condition. The 

dashed rectangles mark the range of purely elastic torsion. The abscissa axis displays the 

loading parameter (surface shear strain R H = ). Neo-Hookean solid with 

0 0 0.2  = =  
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