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Abstract. The problem of stresses in a rectangular bar is considered in three statements: 1) 

with assignment on all boundaries of displacements, 2) stresses and 3) with mixed boundary 

conditions. The solution is represented by a fast expansion whose coefficients were 

determined by fast trigonometric interpolation. The solution of the boundary value problem 

with Dirichlet conditions is the most accurate of the three considered boundary value 

problems. Compared with this problem, the accuracy of determining the components of the 

stress tensor and the residual of the Lamé equations in the other two boundary value problems 

drops by an order of magnitude. The largest residual of the Lamé equilibrium equations is 

observed in the boundary value problem with given stresses on all sides of the rectangle. 

Computational experiments showed that the aspect ratio of the rectangle affects the qualitative 

form of the stress intensity distribution and the location of points with the maximum stress 

intensity. Among all rectangular sections with different overall dimensions, but the same 

sectional area, the smallest value of  max  is observed in a bar with a square section. 
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Introduction 

A rectangular region is one of the simplest two-dimensional regions for which it is convenient 

to model the stress-deformed state of a material and consider its properties [1–10]. 

Approximate solutions for similar object shapes are obtained by various numerical and 

analytical methods. Thus, in [1], an approximate analytical solution in the form of 

trigonometric polynomials is constructed by the superposition method from two solutions 

obtained by the method of initial functions. In [2,9], solutions are presented as series in 

Papkovich–Fadle eigenfunctions. In [4], the solution is sought as the sum of a trigonometric 

series and a power function with a root singularity. The superposition method in the form of 

Fourier series satisfying the differential equation and boundary conditions is used in [5]. 

Finite difference and finite element methods were used in [3,8], respectively. Unknown 

displacements in [11] are represented by power series. In [12], the integral Fourier transform 

with respect to a variable running through an infinite interval was used. For problems of rigid 
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body mechanics, the nodal integration method for meshfree radial point interpolation is 

presented in [13]. In the proposed method, radial basis functions supplemented by 

polynomials are used to construct shape functions that have the delta function property. 

In [14], a grid method is presented using a special trigonometric basis; the completeness of 

the trigonometric basis is not discussed. The grid method of collocations and least squares for 

the residual, applicable in solving multidimensional nonlinear problems of elliptic type, was 

proposed in [15]. Interpolation methods were used to process the experimental data [16] and 

to determine the plasticity and creep characteristics of the material [17]. The exact solutions 

presented in [18] were obtained using group analysis for an elastic model written in Euler 

variables at finite strains, and in [10], the exact solutions for deflections of a rectangular 

membrane under the action of a variable load were obtained by the method of fast expansions. 

The method of fast expansions was developed in [19]. It is based on the fact that the desired 

solution of the problem is represented as the sum of a special boundary function and a Fourier 

series. Such a sum is called a fast expansion. Unknown coefficients of fast expansion are 

found using the operator of fast expansions [20] or fast trigonometric interpolation [21]. The 

use of classical trigonometric interpolation to determine the coefficients of fast expansion is 

problematic due to the impossibility of its differentiation in the general case and the large 

error between interpolation points. Therefore, classical trigonometric interpolation is usually 

used to solve problems not related to integro-differential equations, for example, to improve 

the quality of image processing [22] and restore periodic discrete signals of finite 

duration [23]. 

In this paper, we present the solution of the problem of stresses in a bar by the method 

of fast expansions in three statements. They differ from each other in the type of boundary 

conditions. The coefficients of fast expansions will be determined using fast trigonometric 

interpolation. In this regard, it is of interest to study the influence of the type of boundary 

conditions on the accuracy of solving the problem using fast trigonometric interpolation. 

 

Methods 

Under conditions of plane deformation, the projections of the displacements vector of the bar 

material points depend only on the coordinates x, y: 

( , ),  ( , ),  0U U x y V V x y W= = = .                                                                  (1) 

The stress tensor components will have the following form: 

( ) ( )2 ,  2 ,  

, , 0.

xx yy

xy zz xz yz

U V V U

x y y x

U V U V

y x x y

   
 =  +  +  =  +  +

   

      
 =  +  =  +  =  =   

      

                                    (2) 

Let us write the Lamé equilibrium equations for displacements taking into account mass 

forces   

( ) ( ) ( )
2 2 2

2 2
2 , 0,  

U V U
X x y

x x y y

  
 +  +  + + + =

   
                                                              (3) 

( ) ( ) ( )
2 2 2

2 2
2 , 0.

V U V
Y x y

y x y x

  
 +  +  + + + =

   
                                                                  (4) 

We add boundary conditions to equations (3), (4). We assume that the elastic bar has a 

rectangular cross-section ( )0 , 0x a y b   = . On the sides of the bar, we set three 

different types of boundary conditions, corresponding to three boundary value problems.  

1. Displacements are given on all sides 

( ) ( ) ( ) ( )1 3 1 30 0
, , , .

x x a x x a
U f y U f y V y V y

= = = =
= = =  =                                                  (5) 
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( ) ( ) ( ) ( )2 4 2 40 0
, , , .

y y b y y b
U f x U f x V x V x

= = = =
= = =  =                                                    (6) 

2. Stresses are set on all sides 

( ) ( ) ( )1 1

0 0

2 , ,
x x

U V U V
F y y

x y y x
= =

    
 +  + =  + = 

    
                                    (7) 

( ) ( ) ( )2 22 , .
x a x a

U V U V
F y y

x y y x
= =

    
 +  + =  + = 

    
                                               (8) 

( ) ( ) ( )3 32 , ,
y b y b

V U U V
F x x

y x y x
= =

    
 +  + =  + =  

    
                                                 (9) 

( ) ( ) ( )4 4

0 0

2 , .
y y

V U U V
F x x

y x y x
= =

    
 +  + =  + =  

    
                                               (10) 

3. Mixed boundary conditions are on the sides 0x = , x a=  and y b= . We set the 

stresses in the form (7), (8) and (9), respectively, and on the side we set the displacements 

( ) ( )1 20 0
, .

y y
U g x V g x

= =
= =                                                                                                (11) 

The functions included in the boundary conditions (5) – (10) should be selected taking 

into account the matching conditions. So, for the case of specifying displacements on all 

boundaries of the rectangle, the matching conditions have the form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 2 3 4 4 1

1 2 3 2 3 4 4 1

0 0 , 0 , , 0 ,

0 0 , 0 , , 0 .

f f f f a f b f a f f b

a b a b

= = = =

 =   =   =   = 
                                      (12) 

In the case of specifying stresses at all boundaries, we write the matching conditions for 

shear stresses as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 1 3 1 3 2 4 20 0 , 0 , , 0 .b a b a =  =  =  =                                  (13) 

For the mixed boundary conditions specified in the third paragraph, the matching 

conditions are as follows 

( ) ( ) ( ) ( )3 1 3 20 , .b a b =  =                                                                                          (14) 

Compliance with the matching conditions will allow finding a continuous solution to 

three problems: 1. (3) – (6); 2. (3), (4), (7) – (10); 3. (3), (4), (7) – (9), (11). 

As an example of the function from (5) – (11), we set as follows 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4

1 2 3 4

0, 0, sin1.2 , sin1.2 ,

0, 0, sin sin , sin sin .

f y f x f y K ay f x K bx

y x x K a y x K x b

= = =  = 

 =  =  = −  = −
                                 (15) 

 

( ) ( )1 2 0.g x g x= =  

( ) ( )1 1.2 2 cos1.2 ,F y K y ay=  +      ( )1 sin ,y K y = −  

( ) ( )2 1.2 2 cos1.2 sin cos ,F y K y ay K a y=  +   −  

( ) ( )2 cos sin 1.2 cos1.2 ,y K a y Ka ay = − +                                                                       (16) 

( ) ( )3 2 sin cos 1.2 cos1.2 ,F y K x b Kb xb= − +  +    

( ) ( )3 cos sin 1.2 cos1.2 ,y K x b Kx xb = − +   

( ) ( )4 2 sin ,F y K x= −  +  ( )4 1.2 ,y Kx =   

We write the mass forces in (3), (4) by the expressions 
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( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )( )

2

2

2

, 1.2 2 sin1.2

cos cos 1.2 sin1.2 ,

, 2 sin sin sin sin

1.2 sin1.2 1.2 cos1.2 .

X x y y K xy

K x y x K xy

xY y K x y K x y

xyK xy K xy

=   +   +

+  + +   

= −  +  − +

+  +   −  

                                                           (17) 

Dependencies (15) – (17) are chosen so that each of the three boundary value problems 

(1. (3) – (6); 2. (3), (4), (7) – (10); 3. (3), (4), (7) – (9), (11)) had the exact solution 

( ) ( )sin1.2 , sin s, i, nU x y V x yK xy K x y= −=  ,                                                                (18) 

where K is a constant that controls the amount of displacement. 

The exact solution (18) will allow us to study the error in solving three boundary value 

problems by comparing it with an approximate analytical solution obtained by the fast 

expansion method. In the comparison, the following will be calculated: the relative error of 

the stress tensor components (2), the residual of the Lamé equilibrium equations (3), (4) and 

the residual of the boundary conditions (5) – (11). 

Let us show in detail the solution of one of the three boundary value problems, for 

example, for the case of specifying displacements on all sides of a rectangle. For the other two 

boundary value problems, we note the distinctive features in the process of the solution. 

For the solution, we will use the approximate analytical method of fast sine expansions 

[1], according to which we represent ( , )U U x y=  and ( , )V V x y=  as the sum of the 6th order 

boundary functions ( ) ( )6 6; , ;U VM x y M x y  and the Fourier series in sines 

( ) ( )

( ) ( )    

1

1

6

1

6

1

; sin ,

; sin , 0; , 0; .

N
U

m

m

N
V

m

m

y
U M x y u x m

b

y
V M x y x m x a y b

b

=

=

= + 

= +    





                                                     (19) 

Here, 1N  – is the number of terms taken into account in the Fourier series. The 

boundary functions ( )6 ;UM x y  and ( )6 ;VM x y  of the sixth order are defined by the equalities  

( ) ( ) ( )
8

6

1

; ,U

i i

i

M x y A x P y
=

=  ( ) ( ) ( )
8

6

1

; ,V

i i

i

M x y B x P y
=

=                                                      (20) 

where ( )iA x  и ( )iB x , 1 8i =   are the coefficients of boundary functions, ( )iP y , 1 8i =   ‒ 

fast polynomials [1]. 

Fast polynomials ( )iP y  and coefficients ( ) ( ),i iA x B x  are defined by the equalities: 

( ) ( ) ( ) ( )

( ) ( )

( )

( )

2 3 3

1 2 3 4

4 5 3 3 5 3 3

5 6

6 7 5 3 3 5

7

7 5 3 3

8

1 , , , ,
2 6 3 6 6

7
, ,

24 120 18 45 120 36 360

2
,

720 5040 360 270 945

7

5040 720

y y y y by y by
P y P y P y P x

b b b b

y y by b y y by b y
P y P y

b b

y y by b y b y
P y

b

y by b y
P y

b

    
= − = = − − = −    
     

   
= − − + = − +   
   

 
= − − + − 
 

= − +
531

.
2160 15120

b y 
− 

 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

1 2 3 42 20

0

4 4 6 6

5 6 7 84 4 6 6

0 0

2 2

1 2 3 42 20

0

4 4 6 6

5 6 7 84 4 6 6

0 0

, , , ,

, , , ,

, , , ,

, , ,

y y a

y y a

y y a y y a

y y a

y y a

y y a y

U U
A x U A x U A x A x

y y

U U U U
A x A x A x A x

y y y y

V V
B x V B x V B x B x

y y

V V V V
B x B x B x B x

y y y y

= =

= =

= = = =

= =

= =

= = =

 
= = = =

 

   
= = = =
   

 
= = = =

 

   
= = = =
   

.

y a=

                           (21) 

To be able to execute expressions (21), it is necessary that ( , )U U x y=  and ( , )V V x y=  

satisfy the smoothness condition ( ) ( ) ( )6
,U V C  . 

The unknowns in (19) are functions that depend on only one variable х: 

( ) ( ) ( ) ( ) ( ) ( )1 8 1 8 1, , , , 1...m mA x A x B x B x u x x m N   = .                                                  (22) 

We represent the functions from (22) by fast expansions in х. Moreover, in these 

repeated expansions, boundary functions of the same orders are used as in fast expansions 

(19) in the variable у: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

2 2

6 8 6 8

1 1

6 8 6 8

1 1

1

sin , sin ,

sin , sin ,

1...8, 1... .

N N
A i i B i i

i n i n

n n

N N
u m m m m

m n m n

n n

x x
A x M x a n B x M x b n

a a

x x
u x M x u n x M x n

a a

i m N

+ +

= =



+ +

= =

= +  = + 

= +   = +  

= =

 

                          (23) 

In (23), 2N  – denotes the number of terms taken into account in the Fourier series. 

Boundary functions
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )6 6 6 6, , ,

A i B i u m m
M x M x M x M x


 are defined by equalities 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

8 8

6 6

1 1

8 8

6 6

1 1

, ,

, ,

A i i B i i

k k k k

k k

u m m m m

k k k k

k k

M x a P x M x b P x

M x u P x M x P x

= =



= =

= =

= = 

 

 
                                                             (24) 

where 
( )i
ka , 

( )i
kb , 

( )m

ku  and 
( )m

k , 11...8, 1i m N= =   ‒ coefficients of boundary functions of 

secondary expansions; ( )kP x , 1 8k =   ‒ fast polynomials [1].  

Expressions for coefficients of boundary functions 
( )i
ka , 

( )i
kb , 

( )m

ku , 
( )m

k  and fast 

polynomials ( )kP x  look like 

( ) ( ) ( ) ( )

( ) ( )

( )

( )

2 3 3

1 2 3 4

4 5 3 3 5 3 3

5 6

6 7 5 3 3 5

7

7 5 3 3

8

1 , , , ,
2 6 3 6 6

7
, ,

24 120 18 45 120 36 360

2
,

720 5040 360 270 945

7

5040 720

x x x x ax x ax
P x P x P x P x

a a a a

x x ax a x x ax a x
P x P x

a a

x x ax a x a x
P x

a

x ax a x
P x

a

    
= − = = − − = −    
     

   
= − − + = − +   
   

 
= − − + − 
 

= − +
531

,
2160 15120

a x 
− 

 

                          (25) 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

(4)

1 2 3 4 50 0 0

(4) (6) (6)

6 7 80

, , , , ,

, , , 1..8,

i i i i i

i i i i iх х а х х а х

i i i

i i iх а х х а

a A a A a A a A a A

a A a A a A i

= = = = =

= = =

 = = = = =

= = = =
                                    (26) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

(4)

1 2 3 4 50 0 0

(4) (6) (6)

6 7 80

, , , , ,

, , , 1..8,

i i i i i

i i i i iх х а х х а х

i i i

i i iх а х х а

b B b B b B b B b B

b B b B b B i

= = = = =

= = =

 = = = = =

= = = =
                                     (27) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

(4)

1 2 3 4 50 0 0

(4) (6) (6)

6 7 8 10

, , , , ,

, , , 1... .

m m m m m

m m m m mx x a x x a x

m m m

m m mx a x x a

u u u u u u u u u u

u u u u u u m N

= = = = =

= = =

 = = = = =

= = = =
                            (28) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

(4)

1 2 3 4 50 0 0

(4) (6) (6)

6 7 8 10

, , , , ,

, , , 1... .

m m m m m

m m m m mx x a x x a x

m m m

m m mx a x x a
m N

= = = = =

= = =

  =   =   =   =   = 

 =   =   =  =
                           (29) 

Thus, the boundary value problem (3) – (6) is reduced to the definition 

( )( )1 22 8 8N N+ +  of unknown coefficients 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 8 8 8 8 2, , , , 1...8, 1...8 1... , , , , , 1., .. .

i i m m i i m m

k k k k n n n na b u i k m N a b u n N+ + + + = = =  =             (30) 

Values of eight coefficients  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2

1 1 2 2 1 1 2 2, , , , , , ,a b a b a b a b ,                                                                                     (31) 

included in (30) are found using the values of the displacement components ( , )U U x y=  and 

( , )V V x y=  at the corner points of the rectangular region (see formulas (21), (26), (27)). 

Considering the approval condition (12), the coefficients (31) are determined by the equalities  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2

1 1 2 2 1 1 2 20, sin1.2 , sin sina b a b a b a K ab b K a b= = = = = = =  = − . 

To find the rest ( )( )( )1 22 8 8 8N N+ + −  of the coefficients from (30) we use fast 

trigonometric interpolation, tested in [3–7]. To do this, we substitute ( , )U U x y=  and 

( , )V V x y=  from (19) into differential equations (3), (4) and boundary conditions (5), (6). 

The expressions obtained in this way are not presented in the article because of their 

cumbersomeness.  

From the boundary conditions (5), (6), we obtain linear algebraic equations as follows. 

We divide the interval  0, b  uniformly by points ( )1 17 , 0,1,.., 7sy y sb N s N= = + = +  into 

1 7N +  segments and write down the equations obtained from the boundary conditions (5) by 

substituting ( , )U U x y=  and ( , )V V x y=  from (19) at each internal calculation point 

1, 1,.., 6sy y s N= = + . We will have ( )14 6N +  linear algebraic equations. Similarly, we 

divide the interval  0, a  uniformly by points ( )2 27 , 0,1,.., 7sx x sa N s N= = + = +  into 

2 7N +  segments and write down the equations obtained from the boundary conditions (6) by 

substituting ( , )U U x y=  and ( , )V V x y=  from (19) at each internal calculation point 

2, 1,.., 6sx x s N= = + . Thus, we will also have ( )24 6N +  linear algebraic equations. 

From differential equations (3), (4) we write linear algebraic equations as follows.  

On the area of the rectangle,    0; , 0;x a y b   we evenly apply a grid  

at 2 8N +  points ( )2 27 , 0,1,.., 7sx x sa N s N= = + = +  and at 1 8N +  points 

( )1 17 , 0,1,.., 7sy y sb N s N= = + = + . To compose a system of linear algebraic equations, 

only internal points are used, which form a grid of ( )( )1 26 6N N+ +  internal points ( ),s sx y . 

Then, when substituting ( , )U U x y=  and ( , )V V x y=  from (19) into equations (3), (4), we 
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write at each calculated point ( ),s sx y . So, we obtain ( )( )1 22 6 6N N+ +  linear algebraic 

equations. As a result, we arrive at a closed system of 

( )( ) ( ) ( )1 2 1 22 6 6 4 6 4 6N N N N+ + + + + +  linear algebraic equations with respect to the 

remaining ( )( )( )1 22 8 8 8N N+ + −  unknowns from (30). This system of equations is solved in 

the Maple environment. After that, the found unknowns (30) are substituted into fast 

expansions (19). Thus, we constructed an approximate analytical solution of the boundary 

value problem (3) – (6).  

The solution of boundary value problems (3), (4), (7) – (10) and (3), (4), (7) – (9), (11) 

differs from the solution described above only by obtaining linear algebraic equations from 

the boundary conditions (7) – (10) and (7) – (9), (11). So, when solving a boundary value 

problem with boundary conditions (7) – (10), coefficients (31) cannot be found in the same 

way as in a problem with conditions (5), (6). Therefore, to determine them, eight additional 

calculation points are required (compared to the solution of the above case). Therefore, we 

divide the interval  0, b  uniformly by points ( )1 18 , 0,1,.., 8sy y sb N s N= = + = +  into 

1 8N +  segments and write down the equations obtained from the boundary conditions (7), (8) 

by substituting ( , )U U x y=  and ( , )V V x y=  from (19) at each internal calculation point 

1, 1,.., 7sy y s N= = + . Thus, we have ( )14 7N +  linear algebraic equations. Similarly, we 

divide the interval  0, a  evenly by points ( )2 28 , 0,1,.., 8sx x sa N s N= = + = +  into 2 8N +  

segments and write down the equations obtained from the boundary conditions (9), (10) by 

substituting ( , )U U x y=  and ( , )V V x y=  from (19) at each internal calculation point 

2, 1,.., 7sx x s N= = + . We will also have ( )24 7N +  linear algebraic equations. If mixed 

boundary conditions (7) – (9), (11) are given, then we find the values of four coefficients from 

(31) 
( ) ( ) ( ) ( )1 1 1 1

1 1 2 2, , ,a b a b  using the values of the displacement components ( , )U U x y=  and 

( , )V V x y=  at the corner points (0,0)  and ( ,0)a : 
( ) ( ) ( ) ( )1 1 1 1

1 1 2 2 0a b a b= = = = , which allows the 

interval  0, a  to be uniformly divided into 2 7N +  segments by points 

( )2 27 , 0,1,.., 7sx x sa N s N= = + = +  (as in the case of boundary conditions (6)). Thus, to 

find the remaining four unknowns from (31) 
( ) ( ) ( ) ( )2 2 2 2

1 1 2 2, , ,a b a b , we need to divide the interval 

 0, b  (as in the case of boundary conditions (7), (8)) evenly into 1 8N +  segments by points 

( )1 18 , 0,1,.., 8sy y sb N s N= = + = + .  

 

Results and Discussion 

In computational experiments, the number of terms in the Fourier series of the first (19) and 

second (23) fast expansions is assumed to be the same, i.e. 1 2 3N N N= = = . As the material 

of the bar, we choose heavy concrete B30 with the characteristics [24] 
932.5 10 Pа, 0.2E v=  = . Then the Lamé coefficients will be equal to 
9 109.03 10 Pа, 1.35 10 Pа =   =  , and the size of the section will be taken equal to 

610 , 1m, 1 mK a b−= = = . 

The approximate analytical solution (19) is compared with the exact one (18). The 

relative error of the stress tensor (2), the residual between the Lamé equilibrium equations (3), 

(4) and boundary conditions (5) – (11) was calculated by the formula max 100%f =   , 

where  is the absolute error, maxf  is the maximum value of the object under study.  
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Let us show the residual   of the Lamé equilibrium equations (3) and (4) using 

different boundary conditions in Figs. 1–3. 

 

       
(а)                                                              (b) 

Fig. 1. Residual   of the Lamé equilibrium equations under boundary conditions (5), (6):  

(a) (3), (b) (4) 

 

 
(a)                                                              (b) 

Fig. 2. Residual   of the Lamé equilibrium equations under boundary conditions (7) – (10):  

(a) (3), (b) (4) 

 

         
(а)                                                            (b) 

Fig. 3. Residual   of the Lamé equilibrium equations  

under boundary conditions (7) – (9), (11): а) (3), b) (4) 
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It can be seen from the figures that when boundary conditions (7) – (10) and (7) – (9), 

(11) are specified, the maximum residual max  of the differential equations will be at the point 

( )1; 1 . When boundary conditions (5), (6) are specified, the residual max  of the differential 

equation (3) is also located at the point ( )1; 1 , and max  of the differential equation (4) is in its 

neighborhood on the side 1у = .  

 

Table 1. Relative error max , %  

Object under study 
Used boundary conditions 

(5), (6) (7) – (10) (7) – (9), (11) 

Tensor Components 

stresses 

x x  44.14 10−  
49.87 10−  

31.57 10−  

yy  44.18 10−  
32.19 10−  

35.39 10−  

zz  43.67 10−  
31.05 10−  

46.42 10−  

x y  43.67 10−  
31.53 10−  

46.42 10−  

Residual DE 
(3) 36.34 10−  

21.94 10−  
21.81 10−  

(4) 33.82 10−  
22.93 10−  

21.96 10−  

Residual BC 

x a
U

=
, 

y b
U

=
 52.58 10−  --- --- 

x a
V

=
, y bV =  105.59 10−  --- --- 

0x
U

=
, 

0x
V

=
  0 --- --- 

0y
U

=
, 0yV =  0 --- 0 

x x x a=
  --- 31.53 10−  

31.74 10−  

0x x x=
  --- 43.28 10−  

41.80 10−  

x y x a=
  --- 31.17 10−  

47.05 10−  

0x y x=
  --- 31.35 10−  

31.78 10−  

yy y b=
  --- 31.17 10−  

35.50 10−  

0yy y=
  --- 31.38 10−  --- 

x y y b=
  --- 31.29 10−  

46.91 10−  

0x y y=
  --- 42.50 10−  --- 

 

Table 1 lists the values of the maximum relative error max  of the stress tensor 

components, residuals of differential equations (DE), and residuals of boundary conditions 

(BC). It can be seen from the table that when using the boundary conditions of three types  

(1. (5), (6), 2. (7) – (10), 3. (7) – (9), (11)), the solution to the boundary value problem with 

the Dirichlet conditions is found most accurately. Compared with this problem, the accuracy 

of determining the components of the stress tensor and the residual of differential equations in 

two other boundary value problems drops by an order of magnitude. The residual between 

boundary conditions (7) – (10) and (7) – (9), (11) is inferior in accuracy to the residual 

between boundary conditions (5), (6) by more than an order of magnitude. It can also be noted 

that when using any kind of boundary conditions, the components of the stress tensor xx , 



169   A.D. Chernyshov, V.V. Goryainov. E.N. Kovaleva 

yy , zz , xy  are determined by an order of magnitude more accurately than the residuals of 

the Lamé equilibrium equations (3), (4). 

When studying the properties of the stress field in a bar, it is of interest to locate the 

point with the highest value of stress intensity   [25]:  

𝜎̃ = √((𝜎𝑥𝑥−𝜎𝑦𝑦)
2
+(𝜎𝑦𝑦−𝜎𝑧𝑧)

2
+(𝜎𝑧𝑧−𝜎𝑥𝑥)2+6(𝜏𝑥𝑦)

2
)

2
. 

 

  
(a)                                                            (b) 

 
(c) 

Fig 4. Stress intensity  : (a) 1a b= = , (b) 3, 1 3a b= = , (c) 8, 1 8a b= =  

 

Let us carry out calculations for three boundary value problems. The stress intensity 

profiles   will be the same for all types of boundary conditions. In computational 

experiments, the aspect ratio of the rectangle was chosen in such a way that the cross-

sectional area of the bar remained constant. The stress intensity distribution   is shown in 

Fig. 4. It illustrates that the location of the point with the maximum stress intensity max  is 

affected by the aspect ratio of the rectangle. So, for a square section, the point with the 

maximum stress intensity max  is located on the side 1у =  near the corner point ( );a b   

(Fig. 4(a)), and for a rectangular section max  it is located either at one point or at two points, 

depending on the aspect ratio a b . Thus, at 1 25a b   the maximum stress intensity max  is 

located at one point ( );0a  (Fig. 4(b)), and at 25a b   ‒ at two points (Fig. 4(c)) with 



Simulation of the stress-strain state of a rectangular bar using fast trigonometric interpolation  170 

in various statements of boundary value problems 

coordinates ( );0a  and ( );0.8a b . The minimum value of min 0 =  is at point ( )0;0  regardless 

of the aspect ratio of the rectangle. It can also be concluded from Fig. 4 that among all 

rectangular sections with different overall dimensions (but the same sectional area), the 

smallest value of max  is observed in a bar with a square section. 

 

Conclusions 

In conclusion, we note that the solution of the boundary value problem with the Dirichlet 

conditions is the most accurate of the three considered boundary value problems. Compared 

with this problem, the accuracy of determining the components of the stress tensor and the 

residual of differential equations in two other boundary value problems drops by an order of 

magnitude. The largest residual in the Lamé equilibrium equations is observed in the 

boundary value problem with given stresses on all sides of the rectangle.  

Computational experiments showed that the aspect ratio of the rectangle affects the 

qualitative form of the stress intensity distribution  and, as a result, the location of points 

with the maximum stress intensity max  and their number. At 1a b =  the point with max  is 

located on the side 1у =  near the corner point ( );a b . For 1 25a b   max  it is at one point 

( );0a , and for 25a b   it is at two points with coordinates ( );0a  and ( );0.8a b . The 

minimum value of min 0 =  is at ( )0;0  regardless of the aspect ratio of the rectangle. Among 

all rectangular sections with different overall dimensions, but the same sectional area, the 

smallest value of max  is observed in a bar with a square section. 
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