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ABSTRACT  

In this paper, the thermal deformation response of a circular plate due to the influence of memory-

dependent derivatives (MDD) is analyzed using a quasi-static approach. The top, bottom, and curved 

surfaces of the plate experience convective boundaries with heat flow on the outer curved radii, and 

additional cross-sectional heating is prescribed on the top and bottom plate surfaces. Integral 

transformation methods are used to solve the memory-dependent heat transfer model. Due to the complex 

nature of the analytical analyses, the Laplace transform is numerically inverted. The rate of change in 

temperature and thermal deflection is dependent on past changes, making it more suitable for studying 

physical problems. Numerical calculations of the obtained thermal results are performed for a copper plate 

and presented graphically. 
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Introduction 

The fractional order theory of thermoelasticity is an integral part of fractional calculus, 

which falls well under the branch of mathematics. Fractional-order thermoelastic 

problems have been a hot topic for mathematicians and researchers in recent decades 

due to their practical application. The results of various investigations based on 

modelling fractional thermoelasticity have been successfully studied and illustrated by 

many renowned researchers [1–10]. 

Wang and Li [11] first proposed the concept of memory-dependent deductions in 

2011, and compared to Caputo derivations, it proves to be more suitable for modelling 

problems based on memory. Since MDD may represent memory-dependent derivatives in 

a variety of physical processes, it has emerged as a new area of fractional calculus that is 

constantly growing. The fractional derivative (FD) mostly reflects local change, even 

though it is stated on an interval. Compared to FD, MDD's physical significance is 

noticeably more apparent. The kernel function reflects the memory-dependent weight, 

and the time delay shows how long the memory effect lasts. For temporal modeling, 

which is helpful in explaining the thermal effect of solid bodies, the memory-related 

derivative is more appropriate, according to the research that is currently available. In the 

domains of thermoelasticity, thermoelectricity, particle physics, vibration mechanics, etc., 

memory-dependent derivatives can serve as a helpful substitute for fractional derivatives. 

Karamany and Ezzat [12] developed a new generalized concept of thermoelasticity with 
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the effect of time delay and applied it to the solution of one-dimensional half-spaces 

with free choice of kernel function. Memory-based differentiation was utilized by Purkait 

et al. [13] to investigate the issue in an infinite space. Sun and Wang [14] recreate the 

MDD heat transfer model and use first-order memory-dependent advance differentiation 

to analyze the one-dimensional heat transmission problem. The temporal thermal stress 

problem associated with a hollow cylinder with underlying surface cracking subjected to 

a temperature shock at its interior was resolved by Xue et al. [15]. Ma and Gao [16] 

investigated the dynamic response of a generalized thermoelastic problem in an infinite 

cylindrical body due to thermal shock and the memory effect. 

Sur et al. [17] investigated the innovative mathematical framework for generalized 

thermoelasticity in the background of memory-related heat transfer. Karamany and 

Ezzat [18] developed fundamental equations for thermoelastic diffusion in various solids. 

Qi et al. [19] investigated nonclassical continuum mechanics in a micro/nano-scale 

system with a memory-based effect. From a mathematical perspective, Verma et al. [20] 

developed the hygrothermoelasticity theory with fractional order theory. 

Othman and Mondal [21] introduced phase-lag models and calculated the 

displacement and stress functions for generalized thermoelasticity. Awwad et al. [22] 

studied the thermoelastic response with temperature-dependent properties for a 

cylindrical hole. Mondal [23] discussed transient phenomena in a rod considering a 

moving heat source with memory response in generalised thermoelasticity. 

Abouelregal et al. [24] successfully investigated MDD's response with time delay by 

constructing a new thermal model and studying its effect graphically. Using the Laplace 

transform, Abouelregal et al. [25] determined the solution for temperature, bending 

moment, and displacement for a thermomechanically rotating size-dependent nanobeam. 

A dynamically bar was the subject of an investigation into the memory phenomenon and 

discussion of thermo-mechanical performance by Abouelregal et al. [26]. To understand 

the memory phenomenon in solid objects under thermoelasticity, Lamba [27] recently 

studied the memory effects of an internal heat source by taking a cylindrical, thick shape 

under the impact of radiation boundaries. Also, some other renowned authors contributed 

their work to the field, as reflected in [28–36]. Lamba and Deshmukh [37] conducted a 

recent analytical and numerical study to examine the impact of time delay on the 

temperature, displacement, and thermal heat transfer stress histories in an infinitely long 

thermoelastic solid circular cylinder. 

Compared to fractional-order derivatives, the concept of MDD proves to be superior 

and suitable for describing the memory effect. This inspired the author to create a 

mathematical model of a solid object to study the thermal effect.  

In the present work, a two-dimensional boundary value problem of a circular plate 

with ranges 0 ≤ 𝑟 ≤ 𝑏; −ℎ ≤ 𝑧 ≤ ℎ is considered to investigate the thermal response due 

to the effects of MDD on the temperature and deflection distribution (the geometry of the 

problem is as shown in Fig. 1). The top, bottom and curved surfaces of the plate are 

subject to convective heat transfer with heat flux on the outer curved boundary, and 

additional cross-sectional heating is prescribed on the top and bottom plate surfaces. The 

integral transform method is used to solve the governing heat equation with memory-

based derivative.  

 



Quasi-static thermal response of a circular plate due to the influence of memory-dependent derivatives  165 

 

 

 
 

Fig. 1. Geometrical shape of the memory-based circular plate 

 

Investigators working on the development and design of the novel structural 

material may find the present work to be helpful as it adds to the collection of knowledge 

in the subject of thermoelasticity. 

 

Modelling of thermoelastic problem 

Heat conduction with MDD 

The new concept of memory-based Cattaneo and Vernotte (CV) modelling is developed 

by introducing first-order MDD as in [28]: 

𝑞 + 𝜏𝐷𝜔𝑞 = −𝑘𝛻𝑇.                                                                                                          (1) 

If there is no heat inside the body, the equation of thermal equilibrium is expressed as [31]: 

𝛻𝑞 = −𝜌𝑚𝑐𝐸
𝜕𝑇

𝜕𝑡
                                      (2) 

where 𝜌𝑚 and 𝑐𝐸  are, respectively, mass density and specific heat capacity. 

For an axially symmetric circular plate in cylindrical coordinates with influence of 

memory dependent derivative, the governing equation of heat conduction is obtained by 

transforming Eq. (1) into Eq. (2) as: 

𝑘𝛻2𝑇 = 𝜌𝑚𝑐𝐸(1 + 𝜏𝐷𝜔)
𝜕𝑇

𝜕𝑡
.                                          (3) 

A list of variables is shown below in without dimensions form for ease of use:  

𝑟 ′ =
𝑟(𝑡 ′,𝜏′,𝜔′)

𝑟0
=

1

𝜌𝑚𝑐𝐸𝑟0
2 (𝑡, 𝜏, 𝜔),   𝑧 ′ =

𝑧(𝑡 ′,𝜏′,𝜔′)

𝑧0
=

1

𝜌𝑚𝑐𝐸𝑟0
2 (𝑡, 𝜏, 𝜔),   𝑇 ′ =

𝑇

𝑇0
. Using the above 

dimensionless variables, Eq. (3) takes the following form (omitting the prime numbers for 

simplicity): 

𝛻2𝑇 = (1 + 𝜏𝐷𝜔)
1

𝑘

𝜕𝑇

𝜕𝑡
,                                                                                                        (4) 

where the function's memory dependent derivative is a weighted integral of its common 

integer-order derivative on an interval that slips, which is denoted by [11]: 

𝐷𝜔𝑇(𝑡) =
1

𝜔
∫ 𝐾(𝑡 − 𝜉)

𝑡

𝑡−𝜔

𝜕𝑇(𝜉)

𝜕𝜉
𝑑𝜉.                                                                                                               (5) 

For any function 𝑇(𝑡) that is 𝑚 times differentiable with respect to 𝑡, the memory-

dependent derivative of order 𝑚 of 𝑇(𝑡) is: 

𝐷𝜔
𝑚𝑇(𝑡) =

𝜕𝑚−1

𝜕𝑡𝑚−1 𝐷𝜔𝑇(𝑡) =
1

𝜔
∫ 𝐾(𝑡 − 𝜉)

𝑡

𝑡−𝜔

𝜕𝑚𝑇(𝜉)

𝜕𝜉𝑚 𝑑𝜉,                                                                        (6) 

where the time delay 𝜔 and kernel function 𝐾(𝑡 − 𝜉) are arbitrary choices made to reflect 

the actual behaviours of the materials. 
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Kernel functions, in particularly, can be selected as: 

𝐾(𝑡 − 𝜉) = 1 −
2𝑙2

𝜔
(𝑡 − 𝜉) +

𝑙1
2

𝜔2
(𝑡 − 𝜉)2,                                                                                                  (7) 

where 𝑙1and 𝑙2  are constants. 

The function of the kernel usually falls between 0 and 1. Also 𝜉 ∈ [𝑡 − 𝜔, 𝑡] and 

|𝐷𝜔𝑇(𝑟, 𝑧, 𝑡)| ≤ |
𝜕𝑇(𝑟,𝑧,𝑡)

𝜕𝑡
|. 

 

Quasi-static deflection based on thermal moment 

The deflection function's differential formulation is given in [29]. 

𝛻4𝑊 =
−𝛻2𝑀𝑇

𝛺(1−𝑣′)
,          (8) 

where 𝑀𝑇is the plate's thermal moment, which is stated as:  

𝑀𝑇 = 𝑎𝑡𝐸′ ∫ 𝑇(𝑟, 𝑧, 𝑡)𝑧 𝑑𝑧
ℎ

−ℎ
,    (9) 

where 𝛺 is the disc's rigidity,  

𝛺 = 𝐸′ℎ3/12(1 − 𝑣 ′2),      (10) 

where 𝑎𝑡,  𝐸′ and 𝑣′ represents the disc's material linear thermal expansion coefficient, 

the Young's modules, and Poisson's ratio, respectively.  

For an annular disc's edge to be fixed and clamped, one must write: 

𝑊(𝑏, 𝑧, 𝑡) =
𝜕𝑊(𝑏,𝑧,𝑡)

𝜕𝑟
= 0,             (11) 

𝑊(𝑡 = 0) = 0.                                                                                                                                           (12) 

 

Boundary and initial constraints 

The differential form of heat transfer Eq. (4) of a circular plate under the impact of MDD 

is subjected to the following constraints: 

[𝑇 + 𝑘3
𝜕𝑇

𝜕𝑟
]

(𝑟=𝑏)
= 𝑄(𝑧)𝛿(𝑡),                                                                             (13) 

[𝑇 + 𝑘1
𝜕𝑇

𝜕𝑧
]

(𝑧=−ℎ)
= 𝑒𝑥𝑝(−𝑝𝑡) 𝛿(𝑟 − 𝑟0),                                                                                                (14) 

[𝑇 + 𝑘2
𝜕𝑇

𝜕𝑧
]

(𝑧=ℎ)
= 𝑒𝑥𝑝(−𝑝𝑡) 𝛿(𝑟 − 𝑟0),                       (15) 

𝑇(𝑟,  𝑧, 𝑡)   =  0, 𝑡 = 0,                                                                                                                                     (16) 

where, 𝑒𝑥𝑝(−𝑝𝑡) 𝛿(𝑟 − 𝑟0) denotes the additional sectional heating applied at the 

bottom and top surfaces of plate and 𝑄(𝑧)𝛿(𝑡) is the heat flux at outer radii. Also, 𝑘1 and 

𝑘2 denotes the radiation constants on the plate plane surfaces and 𝑘3on the outer curved 

surface, respectively.  

The problem under examination is mathematically formulated in Eq. (4) through Eq. (16). 

 

Solution of the modeling 

Evaluation of temperature function 

To determine the integral of the heat transfer memory-related differential Eq. (4), first we 

write the formula of the finite Marchi-Fasulo transform and its inverting formula for any 

function 𝐹(𝑟, 𝑧, 𝑡) as [30]. 

𝐹(𝑟, 𝛬𝑛, 𝑡) = ∫ 𝐹(𝑟, 𝑧, 𝑡)𝐿𝑛(𝑧)𝑑𝑧
ℎ

𝑧=−ℎ
,                                                                                                       (17) 
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𝐹(𝑟, 𝑧, 𝑡) = ∑
𝐹(𝛬𝑛)

𝜆𝑛

∞
𝑛=1 𝐿𝑛(𝑧),                                                                                                                        (18) 

where  

𝐿𝑛(𝑧) = 𝑀𝑛 𝑐𝑜𝑠( 𝛬𝑛𝑧) − 𝑁𝑛 𝑠𝑖𝑛( 𝛬𝑛𝑧),  

𝑀𝑛 = 𝛬𝑛(𝛾1 + 𝛾2) 𝑐𝑜𝑠( 𝛬𝑛ℎ) + (𝜂1 − 𝜂2) 𝑠𝑖𝑛( 𝛬𝑛ℎ),  

𝑁𝑛 = (𝜂1 + 𝜂2) 𝑐𝑜𝑠( 𝛬𝑛ℎ) + (𝛾2 − 𝛾1)𝛬𝑛 𝑠𝑖𝑛( 𝛬𝑛ℎ),  

𝜆𝑛 = ∫ 𝐿𝑛
2 (𝑧)𝑑𝑧

ℎ

𝑧=−ℎ
= ℎ[𝑀𝑛

2 + 𝑁𝑛
2] +

𝑠𝑖𝑛(2𝛬𝑛ℎ)

2𝛬𝑛
[𝑀𝑛

2 − 𝑁𝑛
2],  

where the solutions to the equation below are satisfied by the Eigen values 𝛬𝑛. 
[𝜂1 𝑠𝑖𝑛( 𝛬ℎ) + 𝛾1𝛬 𝑐𝑜𝑠( 𝛬ℎ)] × [𝛾2𝛬 𝑠𝑖𝑛( 𝛬ℎ) + 𝜂2 𝑐𝑜𝑠( 𝛬ℎ)]= 

= [−𝜂2 𝑠𝑖𝑛( 𝛬ℎ) + 𝛾2𝛬 𝑐𝑜𝑠( 𝛬ℎ)] × [−𝛾1𝛬 𝑠𝑖𝑛( 𝛬ℎ) + 𝜂1 𝑐𝑜𝑠( 𝛬ℎ)],                                     (19) 

where 𝛾1, 𝛾2, 𝜂1 and 𝜂2 are the constants.   

On utilizing Eq. (17) to Eq. (4) using Eqs. (14) and (15), one obtains: 
𝜕2𝑇̄

𝜕𝑟2 +
1

𝑟
 

𝜕𝑇̄

𝜕𝑟
− 𝛬𝑛

2 𝑇̄ + [
𝐿𝑛(ℎ)

𝑘2
−

𝐿𝑛(−ℎ)

𝑘1
] 𝑒𝑥𝑝(−𝑝𝑡) 𝛿(𝑟 − 𝑟0) = (1 + 𝜏𝐷𝜔)

1

𝑘

𝜕𝑇̄

𝜕𝑡
,     (20) 

where 𝑇̄ represents the integral transform of 𝑇. 

With transformed boundaries as: 

[𝑇̄(𝑟 = 𝑏) + 𝑘3
𝜕𝑇̄(𝑟=𝑏)

𝜕𝑟
] = 𝑄(𝛬𝑛)𝛿(𝑡),  𝑡 > 0,                   (21) 

𝑇̄(𝑟, 𝛬𝑛, 𝑡)   =  0,  𝑡 = 0 ,                                                                                                                                (22) 

here 𝑄(𝛬𝑛) = ∫ 𝑄(𝑧)𝐿𝑛(𝑧)𝑑𝑧
ℎ

𝑧=−ℎ
. 

Secondly, we state the finite Hankel transform formula and its inversion for 𝐹̄ which 

satisfies convective boundary conditions [31]: 

𝐹̂̄(𝜇𝑚, 𝑛, 𝑡) = ∫ 𝑟𝐹̄(𝑟, 𝑛, 𝑡)𝐾0
𝑏

0
(𝜇𝑚, 𝑟)𝑑𝑟,                      (23) 

𝐹̄(𝑟, 𝑛, 𝑡) = ∑ 𝐹̂̄(𝜇𝑚, 𝑛, 𝑡)𝐾0(𝜇𝑚, 𝑟)∞
𝑚=1 ,                (24) 

where 𝐾0(𝜇𝑚, 𝑟) =
√2

𝑏

𝜇𝑚𝑘3

[1+𝑘3
2𝜇𝑚

2 ]
1
2

𝐽0(𝜇𝑚,𝑟)

𝐽0(𝜇𝑚,𝑏)
, here 𝜇𝑚 denotes the root of the below equation:  

𝑘3𝜇𝐽0
′ (𝜇, 𝑏) + 𝐽0(𝜇, 𝑏) = 0,                 (25) 

where 𝑇̂̄ represents 𝑇̄'s Hankel transform.  

Now, applying the integral method of transformation defined above in Eq. (23) to 

Eq. (20) with transformed boundary conditions (21), one obtains: 

−(𝜇𝑚
2 + 𝛬𝑛

2 )𝑇̂̄ +
𝑏𝐾0(𝜇𝑚,𝑏)

𝑘3
𝛿(𝑡)𝑄(𝛬𝑛) + [

𝐿𝑛(ℎ)

𝑘2
−

𝐿𝑛(−ℎ)

𝑘1
] 𝑒𝑥𝑝(−𝑝𝑡) 𝑟0𝑓0(𝜇𝑚, 𝑟0) = (1 + 𝜏𝐷𝜔)

1

𝑘

𝜕𝑇̂̄

𝜕𝑡
.       (26) 

and transformed initial condition:  

𝑇̂̄(𝜇𝑚, 𝛬𝑛, 𝑡)   =  0,  𝑡 = 0.                               (27) 

Next, taking Laplace transformation of Eq. (26) and utilizing transformed initial 

boundary (27), one get: 

𝑇̂̄∗(𝜇𝑚,  𝛬𝑛, 𝑠) =
𝑏𝑘𝐾0(𝜇𝑚,𝑏)

𝑘3{(1+𝐺)𝑠+𝑘(𝜇𝑚
2 +𝛬𝑛

2 )}
𝑄(𝛬𝑛) +

𝑘𝜓1(ℎ)𝜓2(𝑟0)

(𝑠+𝑝){(1+𝐺)𝑠+𝑘(𝜇𝑚
2 +𝛬𝑛

2 )}
,          (28) 

where [
𝐿𝑛(ℎ)

𝑘2
−

𝐿𝑛(−ℎ)

𝑘1
] = 𝜓1(ℎ), 𝑟0𝑓0(𝜇𝑚, 𝑟0) = 𝜓2(𝑟0) and 𝐺 =

𝜏

𝜔
{(1 − 𝑒−𝑠𝜔) (1 −

2𝑙2

𝜔𝑠
+

+
2𝑙1

2

𝜔2𝑠2
) − (𝑙1

2 − 2𝑙2 +
2𝑙1

2

𝜔𝑠
) 𝑒−𝑠𝜔}. 

Finally, inverting the integral transforms in Eq. (28) by using inversion formula 

defined in Eqs. (24) and (18), one obtains the expression of temperature distribution in 

Laplace transform domain as below: 

𝑇∗ = ∑ ∑
1

𝜆𝑛
𝐾0(𝜇𝑚, 𝑟)∞

𝑛=1 𝐿𝑛(𝑧) [
𝑏𝑘𝐾0(𝜇𝑚,𝑏)

𝑘3{(1+𝐺)𝑠+𝑘(𝜇𝑚
2 +𝛬𝑛

2 )}
𝑄(𝛬𝑛) +

𝑘𝜓1(ℎ)𝜓2(𝑟0)

(𝑠+𝑝){(1+𝐺)𝑠+𝑘(𝜇𝑚
2 +𝛬𝑛

2 )}
]∞

𝑚=1 .          (29) 
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Determination of thermal deflection 

Equations (8), (9) and (11) can be rewriting in the Laplace transform domain as: 

𝛻4𝑊∗ =
−𝛻2𝑀𝑇

∗

𝛺(1−𝑣′)
,    (30) 

𝑀𝑇
∗ = 𝑎𝑡𝐸′ ∫ 𝑇∗(𝑟, 𝑧, 𝑠)𝑧 𝑑𝑧

ℎ

𝑧=−ℎ
,  (31) 

𝑊∗ =
𝜕𝑊∗

𝜕𝑟
= 0, at 𝑟 = 𝑏.  (32) 

Equation (31), which incorporates the value of the temperature (29), yields the 

equation for heat based moments in the Laplace transform domain as: 

𝑀𝑇
∗ = 𝑎𝑡𝐸′ √2

𝑏
∑ ∑

𝜇𝑚𝑘3

[1+𝑘3
2𝜇𝑚

2 ]
1
2

𝐽0(𝜇𝑚,𝑟)

𝐽0(𝜇𝑚,𝑏)
∞
𝑛=1 [

𝑏𝑘𝐾0(𝜇𝑚,𝑏)

𝑘3{(1+𝐺)𝑠+𝑘(𝜇𝑚
2 +𝛬𝑛

2 )}
∞
𝑚=1 (∫ 𝑄(𝑧)𝐿𝑛(𝑧)𝑑𝑧

ℎ

𝑧=−ℎ
) +

+
𝑘𝜓1(ℎ)𝜓2(𝑟0)

(𝑠+𝑝){(1+𝐺)𝑠+𝑘(𝜇𝑚
2 +𝛬𝑛

2 )}
] × ∫

𝑧𝐿𝑛(𝑧)

𝜆𝑛
𝑑𝑧

ℎ

−ℎ
.                                                                             (33) 

Assuming that Eq. (30) has a solution that satisfies condition (32) in the domain of 

the Laplace transform:  

𝑊∗(𝑟, 𝑠) = ∑ 𝑐𝑛
∗ (𝑠)[2𝑏𝐽0(𝜇𝑚, 𝑟) − 2𝑏𝐽0(𝜇𝑚, 𝑏) + 𝜇𝑚(𝑟2 − 𝑏2)𝐽1(𝜇𝑚, 𝑏)]∞

𝑚=1 .                     (34) 

As a result, the condition (32) is satisfied by the solution (34): 

𝛻4𝑊∗ = (
𝜕2

𝜕𝑟2 +
1

𝑟
 

𝜕

𝜕𝑟
)

2

 ∑ 𝑐𝑛
∗ (𝑠)[2𝑏𝐽0(𝜇𝑚, 𝑟) − 2𝑏𝐽0(𝜇𝑚, 𝑏) + 𝜇𝑚(𝑟2 − 𝑏2)𝐽1(𝜇𝑚, 𝑏)]∞

𝑚=1 .          (35) 

Using well-known result [
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
)] 𝐽0(𝜇𝑚𝑟)   =   −𝜇𝑚

2  𝐽0(𝜇𝑚𝑟), Eq. (35) can be 

rewritten as: 

𝛻4𝑊∗ = ∑ 𝑐𝑛
∗ (𝑠)[2𝑏𝜇𝑚

4  𝐽0( 𝜇𝑚𝑟) + 2𝜇𝑚𝐽1(𝜇𝑚, 𝑏)]∞
𝑚=1                                                                     (36) 

Also,      

𝛻2𝑀𝑇
∗ = −𝑎𝑡𝐸′ √2

𝑏
∑ ∑

𝑘3

[1+𝑘3
2𝜇𝑚

2 ]
1
2

𝜇𝑚
3  𝐽0(𝜇𝑚𝑟)

𝐽0(𝜇𝑚,𝑏)
∞
𝑛=1 [

𝑏𝑘𝐾0(𝜇𝑚,𝑏)

𝑘3{(1+𝐺)𝑠+𝑘(𝜇𝑚
2 +𝛬𝑛

2 )}
(∫ 𝑄(𝑧)𝐿𝑛(𝑧)𝑑𝑧

ℎ

𝑧=−ℎ
)∞

𝑚=1 + 

+
𝑘𝜓1(ℎ)𝜓2(𝑟0)

(𝑠+𝑝){(1+𝐺)𝑠+𝑘(𝜇𝑚
2 +𝛬𝑛

2 )}
] × ∫

𝑧𝐿𝑛(𝑧)

𝜆𝑛
𝑑𝑧

ℎ

−ℎ
                                                                                                        (37) 

Equations (36) and (37) combined with Eq. (30) yield:  

𝑐𝑛
∗ (𝑠) = 𝑎𝑡𝐸′

√2

𝑏𝛺(1 − 𝑣 ′)
∑ ∑

𝑘3

[1 + 𝑘3
2𝜇𝑚

2 ]
1
2

𝜇𝑚
3  𝐽0(𝜇𝑚𝑟)

𝐽0(𝜇𝑚, 𝑏)[2𝑏𝜇𝑚
4  𝐽0( 𝜇𝑚𝑟) + 2𝜇𝑚𝐽1(𝜇𝑚, 𝑏)]

∞

𝑛=1

∞

𝑚=1

× 

× [
𝑏𝑘𝐾0(𝜇𝑚,𝑏)

𝑘3{(1+𝐺)𝑠+𝑘(𝜇𝑚
2 +𝛬𝑛

2 )}
(∫ 𝑄(𝑧)𝐿𝑛(𝑧)𝑑𝑧

ℎ

𝑧=−ℎ
) +

𝑘𝜓1(ℎ)𝜓2(𝑟0)

(𝑠+𝑝){(1+𝐺)𝑠+𝑘(𝜇𝑚
2 +𝛬𝑛

2 )}
] ∫

𝑧𝐿𝑛(𝑧)

𝜆𝑛
𝑑𝑧

ℎ

−ℎ
.          (38) 

Substituting Eq. (38) into Eq. (34), we get: 

𝑊∗(𝑟, 𝑠) = 𝑎𝑡𝐸′ √2

𝑏𝛺(1−𝑣′)
∑ ∑

𝑘3𝜇𝑚
3  𝐽0(𝜇𝑚𝑟)[2𝑏𝐽0(𝜇𝑚,𝑟)−2𝑏𝐽0(𝜇𝑚,𝑏)+𝜇𝑚(𝑟2−𝑏2)𝐽1(𝜇𝑚,𝑏)]

[1+𝑘3
2𝜇𝑚

2 ]
1
2𝐽0(𝜇𝑚,𝑏)[2𝑏𝜇𝑚

4  𝐽0( 𝜇𝑚𝑟)+2𝜇𝑚𝐽1(𝜇𝑚,𝑏)]

∞
𝑛=1

∞
𝑚=1 ×  

× [
𝑏𝑘𝐾0(𝜇𝑚,𝑏)

𝑘3{(1+𝐺)𝑠+𝑘(𝜇𝑚
2 +𝛬𝑛

2 )}
(∫ 𝑄(𝑧)𝐿𝑛(𝑧)𝑑𝑧

ℎ

𝑧=−ℎ
) +

𝑘𝜓1(ℎ)𝜓2(𝑟0)

(𝑠+𝑝){(1+𝐺)𝑠+𝑘(𝜇𝑚
2 +𝛬𝑛

2 )}
] ∫

𝑧𝐿𝑛(𝑧)

𝜆𝑛
𝑑𝑧.

ℎ

−ℎ
          (39) 

In the Laplace transform domain, the mathematical formula for temperature and 

thermal deflection has thus been found. So, for the purpose of numerical inversion 

algorithm proposed by Brancik [32,33] is adopted. 
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Numerical results 

Dimension 

Let the radius of circular plate varies from 𝑟 = 0  to 𝑟 = 1 m and having thickness ℎ = 0.1 m. 

Fixing 𝑄(𝑧) = 𝑧2 × (𝑧2 − ℎ2)2.  

 

Material properties 

Following material properties of copper metal plate is considered for the purpose of 

numerical computations. 

 
Table 1. Thermo-mechanical properties 

𝑘 = 112.34 × 10−6𝑚/𝑠2 𝑣 ′ = 0.35 
𝑎𝑡 = 16.5 × 10−6𝐾 𝜇 = 26.67𝐺𝑃𝑎 

𝜌 = 8954𝑘𝑔/𝑚3 𝑐𝑝 = 383𝐽/(𝑘𝑔𝐾) 

 

Graphical presentation 

This part is primarily concerned with the time delay's influence on how temperatures are 

distributed and thermal deflection fluctuates in a circular plate. All the plots presented 

below are made considering dimensionless quantities. For the graphical computation, the 

dimensionless thickness of the plate is chosen as 𝑧 = 0.2 and the dimensionless time is 

chosen as 𝑡 = 0.5. Figures 2 and 3 show the graphically plotted temperature and 

deflection flow radially under the influence of the time delay parameter  

𝜔 = 0, 0.01, 0.02, 0.03 for thin copper plates. 

 

  
Fig. 2. Temperature distribution  

with impact of time delay 
Fig. 3 Deflection distribution  

with impact of time delay 
 

For various time delay parameters 𝜔 = 0, 0.01, 0.02, 0.03, Fig. 2 shows the 

dimensionless temperature behaviour along radii at 𝑡 = 0.5. At the inner radii, the 

temperature is initially zero, while at the outer radii it is nonzero due to the applied heat 

flux. The maximum temperature distribution is found in the middle of the radial direction, 

which may be due to the effect of additional cross-sectional heating on the bottom and 

top plate surfaces. When the time delay is shortened and 𝐾(𝑡 − 𝜉) = 1, the present heat 

transfer model reduces to the model of Cattaneo and Vernotte (CV). Further observations 

show that the temperature distribution changes smoothly for large values of the time 

delay values, implying that the temperature flow depends on the values of the time delay 

variation. Also, depending on the time delay parameters, the thermal waves vary 
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continuously, uniformly, and strongly. As a result, the time delay factor can be crucial in 

the classification and design of new structural materials. 

Figure 3 shows the deflection function along radii at 𝑡 = 0.5 for different  

𝜔 = 0, 0.01, 0.02, 0.03. It is observed that the variation in thermal deflection is zero at the 

internal and external radii, which fulfills the applied boundary condition mathematically 

defined in Eq. (11). Also, the variations in the deflection curve are observed at the 

transition from inner to outer radii, which may be due to the effect of the additional cross-

sectional heating at the top and bottom surfaces of the plate. A smooth and continuous 

variation of the deflection curves is also observed for large time delay parameters. 

Moreover, the curve shows finite wave propagation characteristics compared to the 

diffusive characteristics of the Fourier model.  

It follows that the temperature and deflection behaviour in a circular body is 

considerably affected by the time delay and depends on the past changes, which makes 

this study more suitable for the study of the physical problems associated with the 

development of novel materials. 

 

Conclusions 

The governing equation of the memory-dependent heat transmission equation for a 

circular plate with certain boundary conditions is solved analytically by employing the 

Marchi-Fasulo, Hankel, and Laplace transformations. The effect of the time delay 

parameters on the temperature distribution and thermal deflection (based on thermal 

moment) is successfully investigated. 

The following important findings are highlighted from the graphical investigations: 

1. The change in the past affects the instantaneous rate of temperature change and 

thermal deflection, which is more suitable for the study of physical problems and has 

applications in the real world. 

2. The rate of finite wave propagation can be seen from the change in temperature and 

deflection curves. 

3. For different time delay parameters, a significant difference in the temperature and 

deflection curves is observed. 

4. For large time delays, a uniform distribution of temperature and deflection is observed. 

It can be concluded that temperature and deflection are considerably affected by the time 

delay parameter. 

As a result, the time delay factor plays an important role in both the development 

and categorisation of new structural materials. Moreover, the present work is useful for 

mathematicians and researchers working on the development of fractional and memory 

theory by considering mathematical modelling of various solids. 
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