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ABSTRACT  

A modification of the method for calculating the distribution function of random fields of dipole-dipole 

interaction in dilute magnetics using the expansion in the Gram-Charlier series with the help of Bell 

polynomials has been carried out. On the basis of this method, a model has been developed that allows us to 

estimate the ensemble magnetisation, the volume fractions of particles in different magnetic states, the 

volume concentration of the ferrimagnetic and its effective spontaneous magnetisations on the basis of 

experimental data on hysteresis characteristics. The proposed approach allows us to take into account the 

particle size distribution and magnetic states. The model has several advantages, such as the possibility of 

taking into account the cluster distribution of particles and applicability to the limiting cases of thin layer and 

thin filament. Examples of partial verification of this model on objects of artificial and natural origin are given. 
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Introduction 

A considerable number of works [1–7] are devoted to the theoretical description of the processes 

of remanent magnetization formation in various types of magnetic materials of both natural and 

artificial origin. Micromagnetic modeling, of this computer simulations [8–12], widely used for the 

theoretical study of magnetic structures, including those taking into consideration the dipole-

dipole interaction between particles [13–17], firstly, often does not take into consideration the 

possible chemical heterogeneity of individual particles, secondly, their distribution by size, and, 

accordingly, by magnetic states [18,19], and thirdly, in the case of using software, there are often 

computational problems associated with the huge number of particles in real objects. Joint 

application of the micromagnetic approach and statistical methods enables partially solving these 

problems. The works of the authors [7,20] show the validity of such an approach for ensembles of 

magnetic particles randomly scattered in a "non-magnetic" matrix (dilute magnetic). 

The purpose of this work is to modify the method developed earlier [21,22] for 

calculating the distribution function of random fields of dipole-dipole interaction in a 

dilute magnetic, and to apply this method to calculate the magnetization and to estimate 

the effective spontaneous magnetizations and ferrimagnetic concentration in the sample. 

http://dx.doi.org/10.18149/MPM.5222024_15
https://orcid.org/0000-0002-0448-7624
https://orcid.org/0009-0004-3554-34242
https://orcid.org/0000-0001-6723-72463
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Method of moments for a cylindrically shaped sample 

To find the distribution density of the dipole-dipole interaction fields of randomly 

scattered magnetic dipoles, we will use the approximation that N single-domain uniaxial 

spherical particles of diameter d0 with magnetic moment m are randomly located in the 

volume V, which create a field on a fixed particle located at the origin of coordinates [21]. 

The field h generated by the test particle, 

𝐡(𝐦, 𝐫) =
3(𝐦𝐫)𝐫

𝑟5 −
𝐦

𝑟3, (1) 

where r is the radius vector of the test particle. Here and further in the paper all 

expressions are written in the CGS system, unless otherwise specified. 

By averaging the fields over all values of the magnetic moments and radius vectors, 

it is possible to calculate the moments of the density distribution of the random fields of 

the dipole-dipole interaction w(h): 

< ℎ𝑘
𝑛 > =

1

𝑉
∫ ω(Ω)𝑑Ω ∫ ℎ𝑘

𝑛(𝐦, 𝐫)𝑑𝑉
𝑉

, (2) 

𝜇𝑛 = 𝑁 < ℎ𝑛 >, (3) 

where k is the index responsible for the projection (k = x, y, z), ω is the distribution density 

of magnetic moment orientations, and V is the volume of the sample excluding the 

central region with a diameter of 2d0. 

For further analysis, the shape of a non-magnetic matrix in the form of a cylinder 

having height d, base radius R, and volume V was chosen (Fig. 1). This geometry allows 

further analyzing bulk samples as well as thin layers (d ≪ R) and thin threads (d ≫ R).  

 

 
 

Fig. 1. Non-magnetic matrix of cylindrical shape with chaotic volume distribution of magnetic particles 

 

The notations adopted in this model are as follows: the coordinates of the sample 

particle are spherical coordinates (r, θ, φ), the coordinates of the magnetic moment of the 

sample particle are (m, γ, ε), ω(Ω) = ω(γ, ε) sinγ dγ dε. The two cases when the easy 

magnetization axes and the magnetic moments of the particles are parallel to the 

coordinate axes Oz and Ox (Eqs. (4) and (5), respectively) are of most interest: 

𝜔(γ, ε) =
1

sin γ
[αδ(γ) + βδ(γ − π)]δ(ε), (4) 

𝜔(γ, ε) =
1

sin γ
[αδ(ε) + βδ(ε − π)]δ(γ − π/2), (5) 
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where α + β = 1 are the relative fractions of particles oriented along and against the 

direction of the coordinate axis, respectively. By substituting Eqs. (4) and (5) into Eq. (2), it 

is possible to analytically calculate the moments of the interaction field distribution [21]. 

The obtained expressions are cumbersome, but their use saves computational resources and 

provides an alternative to rather labor-intensive methods such as the Monte Carlo method. 

There are at least two series expansions by moments of the probability density of a 

random normalized variable - the Gram-Charlier series expansion by orthogonal 

polynomials and the Edgeworth asymptotic series expansion [23]. In this paper, the Gram-

Charlier series expansion is used, although the choice of the series expansion is not 

fundamental, since both series converge to the same values. 

The Gram-Charlier series expansion of the probability density function is as follows: 

𝑓(𝑥) = 𝐶0ϕ(𝑥) +
𝐶1

1!
ϕ′(𝑥) + ⋯ +

𝐶𝑛

𝑛!
ϕ(𝑛)(𝑥), (6) 

where ϕ(x) = exp(-x2/2)/(2)1/2 is the density of the standard normal distribution,  

ϕ(n) = (-1)n Hen(x) ϕ(x), Hen(x) is the Hermite polynomial of the nth degree, Cn are constant 

coefficients defined as: 

𝐶𝑛 = (−1)𝑛 ∫ 𝐻𝑒𝑛(𝑥)𝑓(𝑥)𝑑𝑥
+∞

−∞
. (7) 

The Hermite polynomials (in the probabilistic definition) can be found through the 

recurrence relation: 

𝐻𝑒0(𝑥) = 1, 

𝐻𝑒1(𝑥) = 𝑥, (8) 

𝐻𝑒𝑛(𝑥) = 𝑥 ⋅ 𝐻𝑒𝑛−1(𝑥) − (𝑛 − 1) ⋅ 𝐻𝑒𝑛−2(𝑥), 𝑛 ≥ 2. 

Thus, it is possible to analytically find any coefficient and any term of the series 

expansion of ϕ(x) through reduced moments: 

ν𝑘 =
μ𝑘

σ𝑘 = ∫ 𝑥𝑘𝑓(𝑥)𝑑𝑥
+∞

−∞
. (9) 

This method is very convenient for analytical calculation of the coefficients and 

further expansion of the density into a series with a predetermined number of expansion 

terms. In case it is necessary to dynamically determine the number of expansion terms in 

the program, the numerical calculation of Eq. (9), although possible, is difficult. Therefore, 

in our case another approach using the Bell polynomials is chosen. 

The probability density function can be defined as follows [24]: 

𝑓(𝑥) = exp [∑ 𝑘𝑟

(−
𝑑𝑟

𝑑𝑥𝑟)

𝑟!
∞
𝑟=3 ] ϕ(𝑥). (10) 

The sum under the exponent can be rewritten through the complete Bell polynomials [25]: 

exp [∑ 𝑘𝑟

(−
𝑑𝑟

𝑑𝑥𝑟)

𝑟!
∞
𝑟=3 ] = ∑ 𝐵𝑛(0, 0, 𝑘3, 𝑘4, . . , 𝑘𝑛)

(−
𝑑𝑛

𝑑𝑥𝑛)

𝑛!
∞
𝑛=0 , (11) 

where kn are the cumulants expressed through reduced moments by means of the 

incomplete Bell polynomials: 

𝑘𝑛 = ∑ (−1)𝑖−1(𝑖 − 1)! 𝐵𝑛,𝑖(ν1, ν2, … , ν𝑛−𝑖+1)𝑛
𝑖=1 . (12) 

The Bell polynomials can be found through the recurrence relation [26]: 

𝐵𝑛+1,𝑘+1(𝑥1, 𝑥2, … , 𝑥𝑛−𝑘+1) = ∑ 𝐶𝑛
𝑖 𝑥𝑖+1𝐵𝑛−𝑖,𝑘(𝑥1, 𝑥2, … , 𝑥𝑛−𝑘−𝑖+1)𝑛−𝑘

𝑖=0 , 

𝐵0,0 = 1, (13) 

𝐵𝑛,0 = 0 for 𝑛 ≥ 1, 

𝐵0,𝑘 = 0 for 𝑘 ≥ 1, 
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where Cn
i = n!/[i!(n–i)!]. The complete Bell polynomials are defined through the 

incomplete ones as a sum: 

𝐵𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ 𝐵𝑛,𝑘(𝑥1, 𝑥2, … , 𝑥𝑛−𝑘+1)𝑛
𝑘=1 . (14) 

Then the density of probability distribution is expressed through cumulants as follows: 

𝑓(𝑥) = [∑ 𝐵𝑛(0, 0, 𝑘3, 𝑘4, . . , 𝑘𝑛)
(−𝐷)𝑛

𝑛!
∞
𝑛=0 ] ϕ(𝑥). (15) 

Analytical expressions of moments (3) were previously obtained in [21]. Then the 

distribution density is found by Eqs. (6) or (10) with any necessary accuracy. For most 

problems, several first terms of the series are sufficient. Let the first unaccounted term of 

series (6) have the number n. Then the condition of its smallness can be written as follows: 
1

𝑛!
μ𝑛 ≪ 1 or 

μ𝑛

𝑛!μ2
𝑛/2 ≪ 1. (16) 

To estimate the accuracy, we discard the terms of order d0/d and d0/R in the 

expressions for the moments due to their smallness, then for a magnetic with volume 

concentration c = Nv0/V (v0 is the particle volume) and spontaneous magnetization Is the 

moments are: 

μ𝑛,𝑧, μ𝑛,𝑥 ≈ 8 (
π

6
𝐼𝑠)

𝑛

𝑐
1

𝑛−1
∑ 𝐶𝑛

𝑘 (−3)𝑘

2𝑘+1

𝑛
𝑘=0 . (17) 

If we take μ5 as the first discarded term, then, taking into consideration μ2,z,  

μ2,x ≈ (32/5)c(Is/6)2, the condition of a satisfactory approximation of the density 

distribution of the interaction fields will have the following form: 

μ5 ≪ 12400 (
π

6
𝐼𝑠)

5

𝑐5/2. (18) 

From Eq. (18) we obtain a lower limit on the range of possible volume concentrations 

of the magnetic, at which the remaining quantity of terms of series (6) well approximates the 

distribution density of the interaction fields, namely c ≫ 0.003. Thus, for larger 

concentrations, the first four moments of the distribution function are sufficient. Approximate 

values of the moments up to the fourth order inclusive, obtained taking into account Eq. (18) 

from the analytical expressions given in [21], are given in Table 1. 

 
Table 1. Analytical expressions of the first four moments of the distribution function in approximation 

2R > d (tg θmax = 2R/d determines the maximum value of the angle θ in Fig. 1):  <Hi> - mathematical 

expectation, 2 - dispersion, μ3 and μ4 - central moments of the corresponding orders 

Moment 

Orientation of the external field and easy axes 
 

Parallel to the base of the cylinder  

(coordinate axes Ox or Oy) 

Perpendicular to the base of the cylinder 

(coordinate axis Oz) 

< 𝐻𝑖 > 
4𝜋

3
𝑐𝐼𝑠 (1 −

3

2
⋅ cos θ𝑚𝑎𝑥) 𝜁(𝑥0) −

8𝜋

3
𝑐𝐼𝑠 (1 −

3

2
⋅ cos θ𝑚𝑎𝑥) 𝜁(𝑥0) 

σ2 (
4𝜋

3
)

2

𝑐𝐼𝑠
2

1

10
[1 −

45

32
⋅ (

𝑑0

𝑑
)

3

] (
4𝜋

3
)

2

𝑐𝐼𝑠
2

1

10
[1 −

15

4
⋅ (

𝑑0

𝑑
)

3

] 

μ3 (
4𝜋

3
)

3

𝑐𝐼𝑠
3

1

280
(1 + 10 ⋅ (

𝑑0

𝑑
)

6

) ζ(𝑥0) (
4𝜋

3
)

3

𝑐𝐼𝑠
3

1

280
(1 − 67 ⋅ (

𝑑0

𝑑
)

6

) ζ(𝑥0) 

μ4 (
4𝜋

3
)

4

𝑐𝐼𝑠
4

1

1120
[1 − 20 ⋅ (

𝑑0

𝑑
)

9

] (
4𝜋

3
)

4

𝑐𝐼𝑠
4

1

1120
[1 − 264 ⋅ (

𝑑0

𝑑
)

9

] 
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In Table 1, dimensionless magnetization ζ of an ensemble of particles is equal to 

the difference between the relative number of magnetic moments oriented along and 

against external field H directed along the chosen axis: 

ζ = α − β = ∫ 𝑊(𝐻𝑖 − 𝐻)𝑑𝐻𝑖
∞

−𝐻0
− ∫ 𝑊(𝐻𝑖 − 𝐻)𝑑𝐻𝑖

−𝐻0

−∞
, (19) 

where H0 is the magnetization reversal field of the particle, W(Hi – H) is the distribution 

density of the magnetostatic interaction field projections on the chosen coordinate axis, 

which can be expressed through f(x): 

𝑊(𝐻𝑖 − 𝐻) = 𝑓(𝑥)/σ, where 𝑥 =
𝐻𝑖−𝐻−<𝐻𝑖>

σ
. (20) 

Equation (19) can be reduced to the following form: 

ζ(𝑥0) = 1 − 2 ∫ 𝑓(𝑥)𝑑𝑥
−𝑥0

−∞
, where 𝑥0 =

𝐻0+𝐻+<𝐻𝑖>

σ
. (21) 

Expression (21) can be simplified by substituting Eqs. (6) and (15): 

ζ(𝑥0) = 1 − 2 ∫ ϕ(𝑥) ∑ 𝐴𝑛𝐻𝑒𝑛(𝑥)∞
𝑛=0 𝑑𝑥

−𝑥0

−∞
, (22) 

where An = (–1)nCn/n! = Bn(0, 0, k3, k4, …, kn)/n! is a field-independent coefficient that 

depends only on the distribution moments. In a similar way, the functions Z(x0), 

independent of the distribution moments, can be introduced: 

𝑍𝑛(𝑥0) = ∫ ϕ(𝑥)𝐻𝑒𝑛(𝑥)𝑑𝑥
−𝑥0

−∞
. (23) 

This function can be simplified to the following system: 

𝑍𝑛(𝑥0) = {
1

2
−

1

2
erf (

𝑥0

√2
) , 𝑛 = 0

(−1)𝑛ϕ(𝑥0) ⋅ 𝐻𝑒𝑛−1(𝑥0), 𝑛 ≥ 1
, (24) 

and the magnetization is simplified to the following expression: 

ζ(𝑥0) = 1 − 2 ∑ 𝐴𝑛 ⋅ 𝑍𝑛(𝑥0)∞
𝑛=0 . (25) 

 

A model of interacting particles with effective spontaneous magnetization  

In a real dilute magnetic, the particles are distributed by sizes and magnetic states, may 

have different crystallography and directions of easy axes, be chemically inhomogeneous, 

etc. In the case of an ensemble of stable single-domain particles, we can take a lognormal 

size distribution and, having estimated the average particle size, calculate the ensemble 

magnetization in an external field. If the dispersion of the distribution is large and the 

ensemble includes particles in different magnetic states, the concept of effective 

spontaneous magnetization, which takes into consideration possible magnetic and/or 

chemical inhomogeneity of the particles, can be introduced to estimate the hysteresis 

characteristics of the ensemble. 

By using the approximation of lognormal particle distribution by volume [27,28], 

the fractions of particles in different magnetic states can be calculated (Fig. 2). In 

modeling, the range of particles is divided into 5 intervals: superparamagnetic (SP), 

single-domain (SD), pseudo-single-domain (PSD), and multi-domain (MD), with the range 

of superparamagnetic particles containing unblocked superparamagnetic ones that do 

not contribute to the remanent magnetization, as well as superparamagnetic particles 

blocked by magnetostatic interaction that contribute not only to the saturation 

magnetization but also to the remanent magnetization [6,29]. The probability density of 

the lognormal distribution is written as: 

φ(𝑥) =
1

𝑥σ√2π
exp (−

(ln(𝑥−μ))
2

2σ2
), (26) 
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where x = v/vp is the particle volume reduced to the characteristic volume,  is the 

standard deviation, and μ is the mathematical expectation of the corresponding Gaussian 

distribution. The fraction of particles in the volume range from x1 to x2 is equal to: 

𝑛𝑖 = ∫ φ(𝑥)𝑑𝑥
𝑥2

𝑥1
/ ∫ φ(𝑥)𝑑𝑥

𝑥max

𝑥min
, (27) 

where x1 and x2 are the lower and upper limits of the range of volumes of a group of 

particles in a certain magnetic state, xmin (d = 0) and xmax (d = dmax) are the minimum and 

maximum relative volumes of particles, respectively, and x2 ≤ xmax.  

 

  
Fig. 2. Lognormal distribution of relative volumes 

of particles [29] 
Fig. 3. Graphical determination of the value of 

effective spontaneous magnetization (Is eff  or Irs eff) 
 

The average relative volume of each particle group is found as: 

𝑥𝑖 = ∫ 𝑥 ∙ φ(𝑥)𝑑𝑥
𝑥2

𝑥1
, (28) 

and the average absolute volume as: 

𝑣𝑖 = 𝑣𝑝
𝑥𝑖

𝑛𝑖
, (29) 

where vp = dp
3/6, dp is the characteristic size of the particle. 

The volume concentration of particles in each of the states is equal to: 

𝑐 = 𝑁
𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑉
=

𝑁

𝑉
(𝑛𝑠𝑝𝑣𝑠𝑝+𝑛𝑏𝑠𝑝𝑣𝑏𝑠𝑝 + 𝑛𝑠𝑑𝑣𝑠𝑑 + 𝑛𝑝𝑠𝑑𝑣𝑝𝑠𝑑 + 𝑛𝑚𝑑𝑣𝑚𝑑), (30) 

where N is the number of ferrimagnetic particles in a sample of volume V,  

vaverage = nspvsp + nbspvbsp  + nsdvsd + npsdvpsd + nmdvmd is the average volume of ferrimagnetic 

particles in various magnetic states with corresponding average volumes [6]. If the particles 

are grouped into clusters in the sample volume, which is essential to account for the dipole-

dipole interaction, we can introduce the volume concentration of ferrimagnetic η in a 

cluster of volume Vcl and concentration of clusters ccl in the sample. Then c = ηccl if the 

interaction between clusters can be neglected. If the interaction cannot be neglected, then, 

in the first approximation, we can discard the cluster distribution and consider the particle 

distribution to be homogeneous over the sample volume (see Eq. (30)). 

To find the value of the effective spontaneous magnetization, it is necessary to bring 

the theoretical dimensionless magnetization determined by Eq. (25) into agreement with 

the experimental value: 

ζ𝑒𝑥𝑝 =
𝑀

𝑐𝐼𝑠
, (31) 



Modeling of hysteresis characteristics of a dilute magnetic with dipole-dipole interaction of particles  148 

 

where M is the saturation magnetization Ms or the saturation remanence Mrs, and cs and 

crs are the corresponding volume concentrations of particles contributing to Ms or Mrs. In 

our model, two values correspond to the spontaneous saturation magnetization of 

ferroparticles: Is eff and Irs eff. For chemically homogeneous particles, Is eff coincides with the 

spontaneous magnetization of the material, whereas for chemically inhomogeneous 

particles it is some averaged value. The value of Irs eff  takes into consideration the 

magnetic and chemical heterogeneity, as well as the peculiarities of the crystallography 

of both individual particles and the ensemble as a whole. Besides, in our model, volume 

concentration crs does not include fractions of truly superparamagnetic (unblocked) and 

multidomain particles. 

Since, in general, finding the effective spontaneous magnetizations is reduced to 

solving the integral equation (see Eqs. (23-25) and expressions for odd moments in Table 1), 

it is easier to find the solution graphically by specifying the range of possible values of Is. The 

point of intersection of the theoretical ζtheor (25) and experimental ζexp (31) curves provides the 

value of the effective spontaneous magnetization Ieff, corresponding to Is eff or Irs eff (Fig. 3).  

The effective spontaneous magnetization by the remanence Irs eff takes into 

consideration the changes that occur in the magnetic state of the ensemble and its 

constituent particles when the external magnetic field decreases from saturation to zero. 

The value of Irs eff is influenced by a number of factors, namely, the distribution of particles 

by size and, consequently, by magnetic states, the scatter of the directions of the 

crystallographic axes of particles relative to the external field, and the chemical 

heterogeneity of the whole ensemble and individual particles. In addition, in our 

approximation of magnetostatic interaction due to a large number of particles, the 

distribution of random fields of the dipole-dipole interaction is considered unchanged, 

and unblocking of a part of magnetic moments of superparamagnetic particles is related 

only to the reduction of the external field. 

To check the consistency of the values of the effective spontaneous magnetizations 

with the experimental data, we can use the following evaluation formula: 
𝑀𝑟𝑠

𝑀𝑠
=

𝑐𝑟𝑠𝐼𝑟𝑠

𝑐𝑠𝐼𝑠
. (32) 

Here crs is the volume concentration of particles participating in the creation of the 

remanent magnetization (for simplicity we can neglect the concentrations of truly 

superparamagnetic and multidomain particles, see Eq. (30)); the concentration of 

particles contributing to the saturation magnetization, cs = c. 

 

Conclusion 

The modified method for calculating the distribution function of dipole-dipole interaction 

fields in a dilute magnetic of cylindrical shape taking into consideration the lognormal 

distribution of particles by sizes (and, consequently, magnetic states) allows, on the basis of 

experimental values of hysteresis parameters and structural characteristics of individual 

particles, their clusters, and the ensemble as a whole, calculating the volume fractions of 

particle concentrations in different magnetic states, the volume concentration of 

ferrimagnetic in the sample, and its effective spontaneous magnetizations.  

The approach presented in this paper has a number of advantages. In the case of 

chaotic distribution of magnetic particles in a “non-magnetic” matrix, the model allows 
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moving from micromagnetic calculations of the interaction of each of the particles with 

one another to the distributions of random interaction fields. In addition, due to the 

decomposition of the distribution function into an infinite series, any necessary accuracy 

can be achieved, and the moments of this function are obtained in analytical form. The 

model allows taking into consideration cluster distribution of particles. If the 

concentration of clusters is small, the dipole-dipole interaction between them can be 

neglected, otherwise the distribution of particles in the sample can be considered 

homogeneous (the entire sample is one cluster). Moreover, the choice of the cylindrical 

volume allows the method to be used in the limiting cases of thin threads and thin layers. 

The drawback of the model is the simplifying assumptions about the spherical shape of 

the particles and their crystallographic uniaxiality. However, this disadvantage is partially 

compensated by the fact that the model assumes the field of magnetization reversal of a 

single particle H0 = Hcr, where Hcr is the experimental value of the coercivity of remanence.  

Partial verification of the model described in this paper was carried out when 

calculating the hysteresis characteristics of objects of both artificial and natural origin 

[6,7,20,29,30]. To estimate the hysteresis characteristics of two-phase chemically 

inhomogeneous particles and their ensembles, one can use the approach developed by 

the authors in [6,7] and the program for micromagnetic modeling [31,32]. 
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