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Abstract. Quantum effects occurring during current filamentation in a chalcogenide glass are 
considered. Under the conditions considered, the current filament appears as a set of 
concentric tubes with different temperatures. In every tube, the electron has a specific wave 
function and a specific energy level. The radii of the tubes appear to be proportional to natural 
numbers n. The dependence of maximal temperature on the electrical field is obtained. The 
Schroedinger equation is reduced to the first order differential equation. The type of energy of 
an electron at the tube is close to exciton energy dependence. The potential energy of an 
electron is described with the first order polynom of temperature. The temperature distribution 
in the filament is shown as an interference of the electron. 
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1. Introduction 
Formation of current filaments (current filamentation, or crowding) is a phenomenon that 
often occurs in chalcogenide glasses, which are considered to be the material of choice for the 
next-generation phase-change memory (PCM) devices [1,2]. This effect consists of a 
significantly higher current density in a certain coordinate region [3,4]. When the radius of the 
current filament decreases down to tens of nanometers, one can expect the appearance of 
quantum effects consisting in the fact that the diameter of the filament would take only 
certain, albeit close to each other, values. Taking into account that quantization of current and 
conductance were observed in, e.g., superconductors [5], carbon nanotubes [6], and metallic 
nanowires [7], this hypothesis is worth verification in application to chalcogenide glasses, too. 

In this paper, the formation of a current filament is analyzed with allowance for 
quantum effects, and a simple analytical formula describing the quantization phenomena is 
presented. Additionally, a description of the filament is proposed as an object in which the 
energy of an electron has a form similar to the energy of an exciton in a solid or an electron in 
a hydrogen atom. 

 
2. The model 
In general, quantization can take place in all three coordinates. In the case of the current 
filament, however, only the radius will take certain values, since we assume that the length of 
the filament is L ~ 10-6 m, which is too large a value for the manifestation of quantum effects. 
Assuming in the first approximation that the electrons do not interact with each other, we 
suggest that it is possible to describe the quantum scale of the resulting filament with the 
formula: 
∫ �2𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟)𝑟𝑟𝑐𝑐
0 𝑑𝑑𝑑𝑑 = 𝑛𝑛ℎ. (1) 
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Here T is the temperature, k is Boltzmann's constant, m is the electron mass. 
Expression (1) is an integral of work in time, and when it becomes of the same order of 
magnitude as Planck's constant h, quantum effects should appear. Here, we integrate from 
zero to the radius of the filament rc the momentum of an electron moving along the radial 
coordinate r in a medium with a certain temperature distribution. As a result, a value is 
obtained that has the same dimension as that of the angular momentum, yet is not exactly the 
momentum, as the angular momentum of an electron moving along the radius is equal to zero. 
The temperature in the stationary case is represented by the formula: 
𝑇𝑇(𝑥𝑥) = 𝑇𝑇0 + (𝑇𝑇𝑚𝑚 − 𝑇𝑇0)𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑎𝑎𝑥𝑥

2

4
�. (2) 

Here 

𝑥𝑥 = 𝑟𝑟
𝑟𝑟0

,  𝑎𝑎 = 𝐹𝐹2

𝐹𝐹𝑠𝑠2
𝑒𝑒𝑒𝑒𝑒𝑒 �−1

𝑡𝑡𝑚𝑚
� 1
𝑡𝑡𝑚𝑚2
− 1;𝐹𝐹𝑠𝑠2 = 2𝜆𝜆𝜆𝜆𝜆𝜆

𝜎𝜎0𝐿𝐿𝐿𝐿
,  

where F is the electric field, F0=106 V/m, λ is the heat sink coefficient, ΔE is the energy of 
activation of conductivity, Tm is a filament temperature of radius xc(n), T0 is the room 
temperature, σ0 is the initial conductivity, r0 is a constant of the order of 1 μm, 𝑡𝑡𝑚𝑚 = 𝑘𝑘𝑘𝑘𝑚𝑚

𝛥𝛥𝛥𝛥
. In 

this consideration, the conductivity of the glass was taken in the form that summarizes its 
temperature and electric field dependences [3],[8],[9]: 
𝜎𝜎 = 𝜎𝜎0exp(−𝛥𝛥𝛥𝛥

kT
+ 𝐹𝐹

𝐹𝐹0
). 

Expression (2) describes the temperature in the filament as satisfactory; therefore, rc can 
be taken as the radius of the filament, since outside the radius of the filament as the coordinate 
increases, the sample temperature is not described by a simple analytical formula. Taking into 
account that the action takes place on a small scale, formula (2) can be expanded in Taylor's 
series up to the second term and substituted in (1). As a result, we get an equation of the third 
degree: 
𝑝𝑝𝑚𝑚𝑥𝑥 − 𝑝𝑝𝑚𝑚

𝑇𝑇𝑚𝑚−𝑇𝑇0
𝑇𝑇𝑚𝑚

𝑎𝑎𝑎𝑎3

24
= 𝑛𝑛 ℎ

𝑟𝑟0
, (3) 

where 𝑝𝑝𝑚𝑚 = �2𝑘𝑘𝑘𝑘𝑒𝑒𝑇𝑇𝑚𝑚. Equation (3) is then reduced to the canonical form: 
𝑥𝑥3 − 24𝑇𝑇𝑚𝑚

𝑎𝑎(𝑇𝑇𝑚𝑚−𝑇𝑇0)𝑥𝑥 + 24𝑛𝑛ℎ𝑇𝑇𝑚𝑚
𝑟𝑟0𝑝𝑝𝑚𝑚𝑎𝑎(𝑇𝑇𝑚𝑚−𝑇𝑇0) = 𝑥𝑥3 + 𝑝𝑝𝑝𝑝 + 𝑞𝑞 = 0. (4) 

The roots of a given polynomial can be found using Cardano's formulas. Omitting the 
consideration of the choice of the legible roots, which will be presented in details elsewhere, 
we come straight to the expression for the current filament radius with a number n: 
𝑥𝑥𝑐𝑐(𝑛𝑛) = 3𝑛𝑛ℎ

2𝑟𝑟0𝑝𝑝𝑚𝑚
; 𝑝𝑝𝑚𝑚 = �2𝑘𝑘𝑘𝑘𝑇𝑇𝑚𝑚. (5) 

The quantized radius was defined as Bohr radius or quantized resistance by using the 
Heisenberg principle. The current filament is formed gradually. First, a filament with a large 
radius is formed, then a filament of a smaller radius is formed inside the first filament, and in 
a few nanoseconds, a structure consisting of a number of concentric tubes is obtained. 

The authors attempted to describe a behavior of an electron in every ring considering a 
thermal potential: 
𝑈𝑈(𝑥𝑥) = 𝐶𝐶 − kT(𝑥𝑥). 

Here C is a constant with its value laying in the range from 1 to 4 eV; it describes total 
energy of an electron and cannot exceed the value of work function, otherwise, the electron 
will leave the filament and the material. The subtrahend in this equation is the kinetic energy 
of the electron. 

The first order Schroedinger equation of this potential: 
𝑦𝑦′ + 𝑦𝑦2 + 𝑦𝑦

𝑥𝑥
− 2𝑚𝑚𝑚𝑚02

ℏ2
𝑈𝑈(𝑥𝑥) + 2𝑚𝑚𝑚𝑚02

ℏ2
𝐸𝐸 = 0, (6) 

𝑦𝑦(𝑥𝑥) = �𝑓𝑓′(𝑥𝑥)�,𝜓𝜓(𝑥𝑥) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝑓𝑓(𝑥𝑥)�,𝜓𝜓(𝑥𝑥) is a Schroedinger function. 
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The thermal electron energy depends on the quantum filament radius. The dependence 
is similar to that of the exciton energy. 
𝐸𝐸𝑛𝑛 = 𝑈𝑈�𝑥𝑥(𝑛𝑛)� − ℏ2

8𝑚𝑚𝑚𝑚02𝑥𝑥𝑛𝑛2
  (7) 

If 𝑛𝑛 → ∞,𝐸𝐸𝑛𝑛 → 𝐶𝐶 − 𝑘𝑘𝑘𝑘0 . This result does not contradict physical meaning. 𝐸𝐸𝑛𝑛 is the 
absolute value of energy for the electron in the conduction band. 

The probability of the appearance of the filament with zero radius is zero because of 
ψ2(x)x = 0 when n=0. Indeed, from the classical theory of the current filament [2], it follows 
that a filament with zero radius should be formed at an infinitely high electric field. The 
energy of an electron in a filament of zero radius is infinite and negative. This can be 
interpreted as if the electron is placed in an infinite field and at the same time is located in a 
quantum well. When T0 → 0, Tm decreases for a given n. On the contrary, the difference 
between the adjacent radii xc(n) increases. All this leads to a more pronounced manifestation 
of quantum effects. 

In addition to the analytical solution, values of En were calculated numerically by 
solving the Schroedinger equation using Matlab software. The results are presented in Table 
1. A good agreement between the analytically and numerically calculated values is observed. 
The subtrahend ℏ2

8𝑚𝑚𝑚𝑚02𝑥𝑥𝑛𝑛2
≪ 𝐶𝐶 − 𝑘𝑘𝑘𝑘, which, in fact, means, that the quantization effects are rather 

weak. The most interesting is the first (more precisely, zero) energy level. As can be seen in 
Table 1, this energy very much differs in value from the subsequent values lying in the 
interval kTm. The change of the sign of the potential energy did not affect the position of the 
energy level E0. The wave functions were calculated and the behavior of an electron seems 
similar to the interference of light. For the electron, the probabilities to be found exist in a 
certain area of the sample appear to be periodical with different magnitudes (Fig. 1). The ring-
like (or, rather, tube-like) areas with different temperatures are separated from each other. The 
temperature distribution is continuous in the case of large areas where quantum effects 
disappear. Thus, we assume that this energy near zero coordinates corresponds to the colder 
region of the glass and that the filament has the shape of empty tubes with similar temperature 
distributions with a cold area existing at the center of the current filament. 
 
Table 1. Calculated values of electron energy 
n, quantum number En, eV (numerical) En, eV (analytical) 

0 1.6092 - 
1 1.9482 1.9512 
2 1.9594 1.9591 
3 1.9670 1.9665 
4 1.9717 1.9711 

 
Also, the formula for calculation of the temperature 𝑇𝑇𝑚𝑚 in each ring was derived: 

9𝑛𝑛2ℎ2

𝑟𝑟02
= 𝐹𝐹′(𝑡𝑡𝑚𝑚), 𝐹𝐹′(𝑡𝑡𝑚𝑚) = 2𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚4

�𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽�−1𝑡𝑡𝑚𝑚
�−𝑡𝑡𝑚𝑚2 �(𝑡𝑡𝑚𝑚−𝑡𝑡0)

  (8) 

Here β=F2/Fs
2, 𝑡𝑡𝑚𝑚 = 𝑘𝑘𝑘𝑘𝑚𝑚

𝛥𝛥𝛥𝛥
is the maximum temperature of heating for each ring, 𝑡𝑡0 = 𝑘𝑘𝑘𝑘0

𝛥𝛥𝛥𝛥
. 

The value of 𝑡𝑡𝑚𝑚  cannot possibly be smaller than 𝑡𝑡0  and 𝑛𝑛 → ∞  if 𝑡𝑡𝑚𝑚 → 𝑡𝑡0 . It means that 
filaments do not form at low currents. The width of every filament is of the order of 10 nm. 
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Fig. 1. The wave functions of the electron at the potential 𝑈𝑈(𝑥𝑥) = 𝐶𝐶 − kT(𝑥𝑥), 
𝑇𝑇0 = 300𝐾𝐾,𝑇𝑇𝑚𝑚 = 1000𝐾𝐾,𝐹𝐹 = 4 ⋅ 106 𝑉𝑉 𝑚𝑚⁄  

Figure 2 shows the relation between the maximum temperature and the electric field. In 
the case presented in Fig. 2, the quantum number n (in this case, n = 2 and 9𝑛𝑛

2ℎ2

𝑟𝑟02
= 5.49 ⋅ 10−5, 

which is shown as a solid blue horizontal line) intersects the graph of the function F. The 
maximum temperature 𝑡𝑡𝑚𝑚 is searched at the points of the intersection of the two lines. The 
most probable 𝑡𝑡𝑚𝑚 is the maximal root of equation (8). 

 
Fig. 2. The relation between the maximum temperature and the electric field. In the case 

considered, n = 2 and 9𝑛𝑛
2ℎ2

𝑟𝑟02
= 5.49 ⋅ 10−5 (shown as a horizontal line) 

3. Conclusion 
In this work, an attempt was made to develop a quantum approach to the formation of a 
current filament in a cylindrical sample of chalcogenide glass with a conductivity that 
exponentially depends on the inverse temperature taken with a negative sign. It is shown that 
quantum effects can manifest themselves in current filaments on scales of tens of nanometers 
at high fields and a glass sample thickness of the order of a micrometer. The radius of the 
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filament has been refined; the formed filament has a certain radius and a certain maximum 
temperature in the center. A law has been established according to which the maximum 
temperature depends on the electric field. Every filament represents a set of concentric tubes, 
each up to ten nanometers wide, with a specific temperature that drops sharply from 
maximum to room temperature. An exception is the central region of the filament; the authors 
believe that a cold "spot" is formed in the very center of such a filament. The second-degree 
differential equation describing the probability of an electron to be in a certain quantum of the 
filament has been replaced by an equation of the first degree, which simplified the approach. 
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