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ABSTRACT  

The problem of subcritical growth of repolarization nuclei in ferroelectric crystals is considered. Following 

the approach of Barenblatt to the theory of equilibrium brittle cracks, a concept of cohesive forces, acting 

on adjacent domain walls in a region near the domain tip, is introduced. These cohesive forces are 

intimately related to the gradient term in the Ginzburg-Landau energy and become substantial as the 

separation between the domain walls compares with their thickness δ. The condition of equilibrium for a 

ferroelectric domain is formulated by taking into account the internal field associated with the cohesive 

forces. Criteria for stable subcritical growth of nuclei in non-uniform electric fields are presented in terms 

of a gradient modulus, which is an extension of the cohesion modulus concept of Barenblatt. 
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Introduction 

One of the main factors that determines the efficacy of application of functional materials in 

various devices is the high sensitivity of their physical properties to the features of the real 

structure. In the case of ferroics (ferroelectrics, ferroelastics, ferromagnets), it is the behavior 

of the real (domain) structure that is the cause of physical nonlinearities observed in the form 

of hysteresis phenomena, the mechanism of which is often the subject of debate. Elucidation 

of the mechanism of the subcritical growth of ferroelectric domains in polycrystalline films 

is one of the current controversial issues in the physics of ferroelectrics. 

The lead zirconate titanate Pb(Zr1-xTix)O3 (PZT) solid solution near the morphotropic 

phase boundary x = 0.47, separating two ferroelectric phases ― rhombohedral and 

tetragonal, is one of the most widely used smart materials due to unique combination of its 

piezoelectric and dielectric properties. In such applications as nonvolatile random access 

memories also the nonlinear properties of PZT become important, especially its resistance 

to dynamic fatigue resulting from the polarization switching and reducing life time of the 

memory cells. The experimental studies of the influence of dynamic fatigue on ferroelectric 
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hysteresis revealed a considerable difference in physical mechanisms, underlying the 

polarization reversal in polycrystalline PZT films of different microstructure. In particular, for 

(Pb1-yLay)(Zr1-xTix)O3 (PLZT) polycrystalline films, including tetragonal Pb(Zr50Ti50)O3, deposited 

on Pt/Ti-coated Si substrates [1] the grain size D of ~0.3 µm was comparable with the film 

thickness H = 0.55 µm. These films show a frequency dependence of a coercive field Ec(ν) in 

the Merz form, ln(ν/ν0) = – α/Ec, for a wide range of frequencies ν = 101–105 Hz. An important 

observation made in [1] is that the dynamic fatigue does not affect the characteristic 

frequency ν0, which lies around 109 Hz for different PLZT compositions and can be considered 

as a signature of the physical mechanism of polarization switching. Unlike ν0, the activation 

field α increases with the number of cycles used in fatigue tests and is the only parameter in 

the Merz equation that characterizes the degree of fatigue [1]. Surprisingly, it was found that 

in polycrystalline Pb(Zr0.53Ti0.47)O3 films deposited on Pt/Ti/SiO2/Si substrates the frequency 

dependence of the coercive field Ec(ν) differs significantly from the Merz equation and follows 

the unusual law: ln(ν/ν0) = – (β/Ec)2 [2], which was never observed before and can be referred 

to as 1/E2–law. This result not only means the change in the physical mechanism governing 

the polarization switching rate in these films, but also implies the existence of a low limiting 

frequency ν0, approaching which the coercive field diverges. The value of ν0 obtained by the 

extrapolation of the experimental dependence of lnν on 1/Ec
2 to the point 1/Ec

2 = 0 was about 

105 Hz [2]. This value is much less both the Debye frequency in ferroelectric crystals with 

perovskite structure (~1013 Hz for PZT [1]) and also the aforementioned limiting frequency 

for PZT films, in which the polarization switching rate is given by the Mertz equation. Fatigue 

tests [2] showed that the limiting frequency ν0 for the new mechanism is also independent 

of the number of cycles, whereas the activation field β increases with cycling, as shown in 

Fig. 1. Despite their importance, the results obtained in [2] remained unnoticed until they 

were reproduced in [3,4] for tetragonal Pb(Zr0.40Ti0.60)O3 films grown on Ir/SiO2/Si substrates 

using the sol–gel process. Here, it is worth to mention that the 1/E2–law was also reported 

for some other ferroelectric materials [5,6].  

The existence of two principally different mechanisms of polarization switching in 

polycrystalline PZT films raises the question of what structural features of the films are 

responsible for realization of a particular mechanism. However, there is no information on 

the film thickness in [2]. The films grown in [3,4] had the thickness of 240 nm, but the grain 

size values were reported neither in [2] nor in [3,4]. Some insight into the microstructure 

can be gained from [7], where tetragonal Pb(Zr0.20Ti0.80)O3 films with thickness of 260 nm 

were composed of elongated single-domain grains with the mean size of ~ 50 nm. The 

switching of polarization by an electric field is a multistage process. It includes the stage 

of formation of repolarization nuclei; the stage of their forward growth into the crystal, 

which results in the formation of planar domain walls; and subsequent sideways motion of 

the domain walls. According to [8], it is the nucleation stage of the repolarization nuclei 

that is responsible for 1/E2–law. Furthermore, as was shown in [8], thin repolarization 

nuclei arise as the result of thermal fluctuations. Taking into account the experimental 

value of ν0 = 106 Hz from [3], the activation energy was estimated as ΔG(Ec) ~ 10 kT, where 

the coercive field Ec = 62.5 kV/cm corresponds to the hysteresis loop at a frequency 

ν = 9.3 Hz [3] and kT – to room temperature. Thus the nucleation due to thermal 

fluctuations is not so prohibitive as is sometimes accepted. Among additional factors, which 

could contribute to the dependence of Ec on ν, one should mention the thermally activated 
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sideways motion of domain walls in the field of short-range obstacles. For instance, such 

interactions become important in bulk PZT-based ceramics and lead to a logarithmic 

dependence of the coercive field on frequency [9–12]. 

 

 
 

Fig. 1. Semi-log plots lnν vs 1/Ec
2 illustrating schematically shift of the limiting frequency ν0(D)  

with a change in the electrode diameter D (D2 < D1) in fresh PZT films (squares correspond to RT data and 

D1 = 320 µm [3]). An expected transformation of the plot in fatigued films is sketched 

 

The original model [8] of the polarization reversal was not flexible enough to explain 

some features of the 1/E2–law, namely some size (or geometric) effects. According to [3,4], 

the observable limiting frequency ν0 is not a fundamental characteristic of the film material 

or structure. It depends on the size of the upper electrode R as well: ν0 = ν0(R). A qualitative 

phenomenological model [13], explaining the origin of such effects, assumes the existence 

of an additional mechanism for the growth of nuclei, which must be much faster than the 

usual nucleation due to thermal fluctuations. Further development [14] led to the 

conclusion that such mechanism is subcritical growth of repolarization nuclei in a non-

uniform electric field at the edges of the electrode. In this work, following the approach of 

Barenblatt [15] to equilibrium brittle cracks, a concept of cohesive forces, acting on 

adjacent domain walls in a region near the domain tip, is introduced. These cohesive forces 

stem from the gradient term in the Ginzburg-Landau energy. The condition of equilibrium 

for a ferroelectric domain is formulated by explicit incorporation of the internal field 

associated with the cohesive forces. Criteria for stable subcritical growth of nuclei in non-

uniform electric fields are presented in terms of a gradient modulus, which is an extension 

of the cohesion modulus of Barenblatt. 

 

Thin domain approximation 

In the theory of brittle cracks proposed by Barenblatt the concept of atomic cohesive 

forces is introduced to describe interaction of the crack surfaces in the cohesion zones 

near its tips. The cohesive forces are assumed to be local. Like surface forces in the 

continuum elasticity theory they are applied directly to the crack surfaces. Therefore, they 

differ from the real interatomic forces acting on atoms situated in a surface layer, which 
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thickness depends on the range of interatomic interaction. The idea of cohesive forces 

turns out to be also useful for ferroelectric domains, where they act locally on the 

adjacent domain walls. These forces are related to the gradient term in the Ginzburg-

Landau energy and become substantial in the region near the domain tips, where the 

separation between the domain walls compares with their thickness δ. This region can 

be referred to as the gradient zone. To illustrate incorporation of the cohesive forces into 

equations of equilibrium of ferroelectric domains, we consider a two-dimensional 

problem of a thin 180° domain of length l = a2 - a1 = 2a in an infinite uniaxial crystal. The 

domain is infinitely long in the z-direction and polarized in the x-direction. Its tips are 

situated at points x = a1 and x = a2, respectively, as shown in Fig. 2. From the microscopic 

viewpoint, the shape h(x) of the domain profile in xy-plane depends on distribution of 

atomic steps at the curved domain walls bounding the domain. Since each step increases 

the domain thickness by one interplanar distance c, the thickness h(x) at a point x is 

determined by the total number of steps situated between this point and the domain tip 

x = a2. By introducing the step density function n(x), h(x) can be represented as: 

ℎ(𝑥) = {
 𝑐 ∫ 𝑛(𝑢)𝑑𝑢,  (𝑎1   ≤ 𝑥  ≤ 𝑎2)

𝑎2

𝑥

 0 ,                   (𝑥  < 𝑎1 or 𝑥  > 𝑎2)
.          (1) 

 

 

 
 

Fig. 2. A 180° domain of length 2a = a2 - a1. Atomic steps on the domain wall W are schematically shown. 

The thickness of the domain cross section in the xy-plane is described by the function h(x). The gradient 

zone G is shown for the tip a2 

 

Further analysis throughout the paper is based on the thin domain 

approximation [8]. It means that all steps are situated in one plane y = 0 and we deal with 

a plane step distribution. Within the framework of this approximation the spontaneous 

polarization, which in our case has only one component, is localized in the plane y = 0 

and can be expressed as: 

𝑃𝑥
0(𝑥, 𝑦) = −𝑃𝑠 + 𝛥𝑃𝑠ℎ(𝑥)𝛿(𝑦),            (2) 

where 𝑃𝑠 denotes the value of spontaneous polarization and 𝑃𝑠𝑐 = 2𝑃𝑠𝑐 is the bound 

charge (per unit length along the z-axis) associated with a step on the domain wall. The 

shape of an equilibrium domain is to be found from the condition of vanishing the 

configuration force fx(x) acting on each step. Provided that the potentials of remote 

electrodes are fixed, it is to be derived from the electric free energy [8]. In general, the 

condition of step equilibrium contains three terms of different nature: 

𝑓𝑥(𝑥) = 𝑓𝑥
𝐸(𝑥) + 𝑓𝑥

𝐺𝐿(𝑥) + 𝑓𝑥
𝑙𝑎𝑡(𝑥) = 0.           (3) 
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However, the main contribution to the configuration force in Eq. (3) is due to the 

cohesive (or gradient) force: 

𝑓𝑥
𝐺𝐿(𝑥) = −(𝛥𝑃𝑠𝑐)𝐸𝑥

∗(𝑥),             (4) 

where 𝐸𝑥
∗(𝑥) = 𝐸𝑥

∗[ℎ(𝑥)] is the internal field associated with the Ginzburg-Landau energy, 

and the electric force:  

𝑓𝑥
𝐸(𝑥) = 𝛥𝑃𝑠𝑐(𝐸𝑈(𝑥) + 𝐸𝑥

𝑑(𝑥, 𝑦 = 0)).           (5) 

Here, 𝐸𝑈(𝑥) = 𝐸𝑥
𝑈(𝑥, 𝑦 = 0) is the electric field of remote electrodes with an 

account of the depolarization field of the homogeneously poled ferroelectric crystal and 

𝐸𝑥
𝑑(𝑥, 𝑦 = 0) =

𝛥𝑃𝑠𝑐

2𝜋
 ∫  

𝑛(𝑢)

𝑥−𝑢
 𝑑𝑢

𝑎2

𝑎1
            (6) 

is the depolarization field due to bound charges of the steps. Correspondingly, 

 = (ε11ε22)1/2 stands for the effective dielectric constant. As concerns the force 𝑓𝑥
𝑙𝑎𝑡(𝑥) in 

Eq. (3), it has the lattice periodicity and plays the same role as Peierls force on a crystal 

dislocation. Its mean value over the lattice period vanishes and we neglect it in the step 

equilibrium condition given in Eq. (3). Finally, taking into account Eq. (6), we obtain the 

equation of domain equilibrium: 
1

2𝜋
 ∫  

𝑛(𝑢)

𝑥−𝑢
 𝑑𝑢

𝑎2

𝑎1
= 𝐸𝑥

𝑈(𝑥) − 𝐸𝑥
∗(𝑥),  (𝑎1 < 𝑥 < 𝑎2),         (7) 

which is a singular integral equation for the step density function 𝑛(𝑥). The self-force on 

a step, resulting from Eq. (6) for the depolarization field, has a singularity at x = u, but it 

can be excluded, using the principal value of the integral in Eq. (7). Unlike the previous 

analysis [8,14], here we include explicitly the internal field 𝐸𝑥
∗(𝑥) acting only on few steps 

in the neighbourhood of the domain tips. It is the field, which work gives rise to an 

increase in the domain wall surface energy as the domain grows. It cannot be derived 

within the framework of the semi-continuum approach used here. More details on 

properties of 𝐸𝑥
∗(𝑥) following from the Ginzburg-Landau theory will be published 

elsewhere. Moreover, one can consider the internal field phenomenologically, like it was 

done for elastic twins [16-18] and brittle cracks [15]. In fact, the internal field is not a 

usual function of the step position x, namely, it is a functional of the domain thickness 

h(x) at this point and thereby is a functional of the step density n(x). Therefore, strictly 

speaking, Eq. (7) is nonlinear. However, this difficulty can be overcome in the same way 

as in Barenblatt’s theory [15]. 

 

The concept of gradient modulus 

Eq. (7) can be solved analytically, see [14] for details. Let’s consider the solution for the 

depolarization field defined in Eq. (6). Ahead the right domain tip x = a2 it has the form: 

𝐸𝑥
𝑑(𝑥 > 𝑎2, 𝑦 = 0) =

1

𝜋√(𝑥−𝑎1)(𝑥−𝑎2)
 ∫  

√(𝑎2−𝑢)(𝑢−𝑎1)

𝑥−𝑢

𝑎2

𝑎1
 [𝐸𝑥

𝑈(𝑢) − 𝐸𝑥
∗(𝑥)] 𝑑𝑢,      (8) 

and near the tip shows a universal behaviour with a singularity: 

𝐸𝑥
𝑑(𝑥 → 𝑎2, 𝑦 = 0) =

1

√2𝜋 (𝑥−𝑎2)
 {𝐾(𝑎2) −

1

√𝜋 𝑎
∫ √ 

𝑢−𝑎1

𝑎2−𝑢

𝑎2

𝑎1
 𝐸𝑥

∗(𝑢) 𝑑𝑢 },       (9) 

where the quantity 

𝐾(𝑎2) =
1

√𝜋𝑎
 ∫  √ 

𝑢−𝑎1

𝑎2−𝑢

𝑎2

𝑎1
 𝐸𝑥

𝑈(𝑢) 𝑑𝑢         (10) 
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is a weighted average (or intensity factor) of the external field. Since for the equilibrium 

domain the depolarization field has to be non-singular, the singularity in Eq. (9) is to be 

eliminated. This requirement leads to the condition: 

𝐾(𝑎2) =
1

√𝜋𝑎
 ∫  √ 

𝑢−𝑎1

𝑎2−𝑢

𝑎2

𝑎1
 𝐸𝑥

∗(𝑢) 𝑑𝑢.         (11) 

Since the internal field rapidly vanishes outside the gradient zone, Eq. (11) takes the form: 

𝐾(𝑎2) = 𝐾∗,             (12) 

where the quantity K* characterizes the behaviour of the cohesive forces in the gradient 

zone and can be referred to as gradient modulus. It is a material constant and can be 

represented as: 

𝐾∗ = √
2

𝜋
 ∫  

𝐸∗(𝑢)

√𝑢

𝑑

0
 𝑑𝑢 = √

2

𝜋
 ∫  

𝐸∗(𝑢)

√𝑢

∞

0
 𝑑𝑢,        (13) 

where d is the gradient zone size and 𝐸∗(𝑢) =   |𝐸𝑥
∗(𝑥)|. In practice, one can use d = ∞, 

since beyond the gradient zone the internal field is vanishing. Eq. (12) is the first equation 

for the unknown positions a1 and a2 of the equilibrium domain tips. The second equation 

for a1 and a2 can be obtained similarly, eliminating the singularity at the left tip a1. 

 

Subcritical growth of a repolarization nucleus 

If the external field is uniform, the intensity factors for both domain tips coincide, 

𝐾(−𝑎) = 𝐾(𝑎) = 𝐸𝑈√𝜋𝑎,           (14) 

where the domain tip positions are chosen at a1 = –a and a2 = a. The size of the 

equilibrium domain in terms of the gradient modulus is given as: 

𝑙𝑐 =
2

𝜋
(

𝐾∗

𝐸𝑈)
2

.               (15) 

Such domain is unstable [14]. If the size of a repolarization nucleus exceeds the critical 

value given in Eq. (15), the nucleus can grow, thus reducing the thermodynamic potential, 

otherwise it shrinks. Comparing Eq. (15) with the results of [14], one can obtain the important 

relation between the gradient modulus and the domain wall surface energy γw, 

𝐾∗ = 2√𝛾𝑤/휀.            (16) 

In the case of non-uniform electric fields, the thermodynamics of the growth process 

can be analyzed by means of the known in fracture mechanics Irwin formula for a crack 

in an elastic solid. Its extension to the case of a ferroelectric domain was made in [14] 

and represents the variation in the electric free energy when the domain size changes by 

the value of δl, 
𝛿�̃�

𝐷
= −

1

2
∫ [𝐸𝑥

𝑈(𝑥) + 𝐸𝑥
𝑑(𝑥, 𝑦 = 0)]

𝑎2+𝛿𝑙

𝑎2
(∫ 𝛿𝑃𝑥

0(𝑥 − 𝛿𝑙, 𝑦)𝑑𝑦
∞

−∞
)𝑑𝑥.     (17) 

According to [14], calculation of the integral in Eq. (17) gives rise to a simple result, 
𝛿�̃�

𝐷
= −

𝐾2(𝑎2)

2
 𝛿𝑙,            (18) 

for the electric free energy release, and the domain growth in a non-uniform electric field 

becomes thermodynamically favourable if 
𝛿𝐺

𝐷
=

𝛿�̃�

𝐷
+ 2𝛾𝑤𝛿𝑙 = (−

𝐾2(𝑎2)

2
+

𝐾∗2

2
)  𝛿𝑙 ≤ 0.        (19) 

For the tip x = a1 a similar condition takes place. 

  



Subcritical growth of repolarization nuclei in polycrystalline ferroelectric films  24 

  

The mechanism of subcritical growth can be demonstrated within the framework of 

a simple model presented in Fig. 3, where it is assumed that a repolarization nucleus of 

size l = 2a arose at the edge of the electrode x = –b as a result of thermal fluctuation. 

This model is directly relevant to the forward growth of nuclei near the electrode edges 

in PZT films. Analysis of the results of numerical calculations of the coefficients K(–a) and 

K(a) depending on the value of the geometric parameter b/a, where b is the distance from 

the edge of the electrode to the centre of the nucleus, shows that if the right tip of the 

nucleus is in equilibrium, its left tip cannot be in equilibrium and always shifts towards 

the edge of the electrode. However, the main conclusion is that at b = a the value of the 

intensity factor K(a) = 2KE/π for the right edge of the nucleus turns out to be independent 

of its size. Here, KE= Q/(2ε(πR)1/2), Q is the linear charge of the electrode, and 2R is its 

width. Consequently, if condition (19) is met, nuclei of arbitrarily small size resulting from 

thermal fluctuations do not annihilate, but can grow, lowering the thermodynamic 

potential G of the system. This means the fundamental possibility of stable subcritical 

growth of repolarization nuclei in the vicinity of the electrode edges. 

 

 
 

Fig. 3. A sketch of a 180° repolarization nucleus of length 2a near the edge x = –b of a thin planar 

electrode occupying the region -2R - b  ≤ x ≤ -b 

 

Conclusions 

Stable subcritical growth of repolarization nuclei, which doesn’t require thermal 

activation, becomes possible due to the lack of dependence of electric energy release on 

the nucleus size. This growth regime is provided by specific behaviour of the non-uniform 

electric field near electrode edges. Since the electric field decreases with the distance r 

from the electrode edge as 1/√𝑟, the electric free energy released by the domain 

expansion is fully consumed by the newly formed domain wall surfaces whatever nucleus 

size is. This effect is very similar to the microcrack formation mechanism by arrested 

dislocation pile-ups (Zener-Mott-Stroh model), where elastic energy release turns out to 

be independent of crack size [19–21]. 
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