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ABSTRACT  
A microstructural model of functional behavior of shape memory alloys has been used for modeling of the 
pseudo-elasticity effect taking into account the influence of latent heat of the martensitic transformations, 
heat exchange conditions and strain rate. A completely coupled boundary value problem on tension of a 
cylindrical rod under conditions of heat exchange with the environment and heat diffusion along the radius 
has been solved. The obtained results are in good agreement with the available experimental data. The 
Fourier and Biot criteria were used to evaluate the critical radius, for which it is necessary to solve a fully 
coupled boundary value problem at given material parameters, deformation rate and heat exchange 
conditions. It has been shown that the microstructural model taking into account the latent heat release 
and adsorption is an adequate tool for describing the strain rate dependence of the pseudo-elastic behavior 
for shape memory alloys. 
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Introduction 
Nowadays the ability of shape memory alloy (SMA) parts to restore the original shape at 
heating after preliminary deformation (shape memory effect), as well as pseudoelastic 
behavior consisting in the recovery of significant deformations during isothermal 
unloading, has found wide application. These materials are used as active working 
elements of actuators and sensors [1,2], passive and semi-active vibration protection 
devices [3], medical devices [4,5]. The functional properties of SMAs are caused by 
martensitic transformations - reversible change of the crystal lattice from a high-
temperature austenitic structure to a low-temperature martensitic one. Martensitic 
transformations in SMAs are usually controlled by temperature kinetics, so that the 
volume fraction of martensite smoothly increases at cooling through the temperature 
interval of the direct transformation and decreases at heating through the interval of the 
reverse transformation [6]. The finite rate of heat diffusion and the processes of release 
(or absorption) of the latent heat of the transformation can have a significant influence 
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on functional characteristics of a particular device [7–9]. For example, cyclic temperature 
variations of SMA samples associated with the release and absorption of the latent heat 
of transformation were revealed during cyclic loading at constant ambient temperature. 
Moreover, the oscillation amplitude increases with the loading rate [10,11]. Heat 
exchange with the environment leads to an attenuation of the influence of internal heat 
sources [12], but sometimes the heat exchange can be difficult, especially when an SMA 
element has a coating [13,14]. At some conditions, a loaded sample may develop 
deformation in time due to a delay of the martensitic transformation caused by the 
presence of two simultaneous processes: the release of the latent heat of transformation 
and heat flux to the environment [15]. 

Simulation, which takes into account the presence of internal heat sources in SMA 
elements and heat exchange conditions becomes especially important for devices that 
are required to operate at a given temperature and/or within a given time interval. For 
modelling of SMA element deformation different theoretical approaches can be used. For 
solving boundary value problems to find the stress and strain fields usually a macroscopic 
(phenomenological) model is used for calculation of the SMA deformation. In such models 
the volume fraction of the martensitic phase and the transformation strain are considered 
as internal variables, and the relationships that determine their evolution are based either 
directly on the results of experiments [16], or on a combination of experimental 
constitutive relations with basic thermodynamic principles [17–21]. When it is necessary 
to describe the reorientation of martensite, phenomenological models either introduce 
two types of martensite – chaotic and oriented, or consider the existence of several 
orientational variants or martensite plates and formulate criteria for reorientation [22,23]. 
Unfortunately, the ability of macroscopic models to describe the entire set of functional 
properties of SMA at changing thermal and mechanical regimes are greatly limited due 
to the lack of direct consideration of the structure of martensite and the details of the 
mechanisms of transformation and reorientation. Microstructural models of the behavior 
of SMAs [24–26], based on accounting for the structure of these materials and the specific 
features of the deformation mechanisms, have greater capabilities. Although a large 
number of internal variables as well as the complexity of determining the material 
constants are the obstacles for using such models, there are a few successful examples 
of solving boundary value problems for SMA elements based on a microstructural model 
[27–29]. In the present work, the simulation of pseudoelastic behavior of an SMA cylinder 
at different strain rates accounting the influence of heat release/absorption during 
martensitic transformations as well as heat exchange conditions have been performed. 
Two approaches within the frames of the microstructural model were used. The first one 
did not involve solving a boundary value problem in the classical sense and could be 
considered as a zero-dimensional problem for a cylinder with a uniform temperature field. 
The second one is the completely coupled boundary value problem. Since solving the 
connected boundary value problems for SMA bodies is associated with a number of 
difficulties, a theoretical estimate of the critical radius for the cylinder at which the 
temperature field can be considered homogeneous at a given loading rate and heat 
transfer conditions was made. It could reduce the cost of time and computational 
resources 
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Microstructural model  
The microstructural model used in this work is described in detail in [15,29], so here we 
will only briefly present its basic assumptions. An SMA representative volume consists of 
grains characterized by the orientation ω of the crystallographic axes relative to the 
selected laboratory basis. The grains consist of a high-temperature phase austenite and 
orientation variants of martensite formed from austenite by one of N crystallographically 
equivalent variants of transformation of the crystal lattice. The internal variables 𝛷𝑛 are 
such that the volume fraction of the n-th variant of martensite equals Reuss' averaging 
scheme is used, so that the strain of a representative volume is calculated by averaging 
the strains over all grains. The strain of a grain is found as the sum of elastic, thermal, 
phase, and micro-plastic deformation associated with accommodation of martensite. 
Active plastic deformation is not taken into account in this work. Elastic and thermal 
strain of austenite martensite variants are calculated with the Duhamel-Neumann law. 
The phase strain of the n-th variant of martensite is proportional to the Bain strain 𝐷𝑛 
realizing the transformation of the crystal lattice and to the volume fraction of the n-th 
martensitic variant. Due to the Reuss' hypothesis, the phase strain of the grain is 
calculated by averaging the phase strains over all orientational variants of martensite: 
𝜀𝑔𝑟 𝑃ℎ =

1

𝑁
∑ 𝛷𝑛𝐷𝑛

𝑁
𝑛=1 .             (1) 

For calculation of the micro-plastic strain another set of internal variables 𝜀𝑛
𝑚𝑝 , that 

are related to martensitic variants, are introduced. It is assumed that the micro-plastic 
strain of the grain can be calculated by the relation similar to Eq. (1): 
𝜀𝑔𝑟 𝑚𝑝 =

1

𝑁
∑ 𝜅𝜀𝑛

𝑚𝑝dev(𝐷𝑛)
𝑁

𝑛=1
,            (2) 

where κ is the scaling factor (the material constant), "dev" means the deviator. 
Constitutive equations for calculation the evolution of variables 𝛷𝑛 and 𝜀𝑛

𝑚𝑝are 
formulated in terms of thermodynamic forces that are the derivatives of the Gibbs 
thermodynamic potential G with respect to these variables. These equations are described 
in detail in [29]. 

The condition for the martensitic transformation expresses the equality of the 
thermodynamic driving force 𝐹𝑛 = −

𝜕𝐺

𝜕𝛷𝑛
 to some dissipative force Ffr caused by the 

resistance to the growth of martensitic crystals and responsible for the existence of the 
transformation hysteresis: 
𝐹𝑛 = ±𝐹𝑓𝑟,               (3) 
where a sign "+" is taken for the direct and "–" for the reverse transformation. The material 
constant 𝐹𝑓𝑟 is calculated through the values of the characteristic temperatures and 
latent heat of the transformation. When the driving force changes due to variation of 
temperature and stress, increments of internal variables also change so that condition (3) 
remains satisfied. 
 
Modeling of pseudo-elastic effect at different strain rates 

Simulation of loading and unloading of the cylindrical specimen made of a NiTi SMA at 
temperature 290 K, when the alloy demonstrates pseudo-elastic behavior, was 
performed. According to the experimental procedure presented in [20], the cylinder radius 
is 2.5 mm, the strain rate varied from 3.310-4 to 3.310-2 s-1, maximum value of achieved 
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strain is 9 %. Material constants for SMA and characteristics of the vibrating system are 
presented in Table 1. 

 
Table 1. Material constants used for modeling 

Material constant Value 
Characteristic temperatures Mf, Ms, As, Af,  K 224, 227, 262, 265 
Latent heat q0, MJ/m3 -150 
Number of martensite variants N 12 

Lattice deformation matrix D (
0.025 0.059 0.0456
0.059 0.025 0.0456

0.0456 0.0456 −0.042
) 

Elastic modulus of austenite EA, GPa 80 
Elastic modulus of martensite EM, GPa 25 
Poisson’s ratio of austenite νA 0.33 
Poisson’s ratio of martensite νM 0.45 
Density of austenite 𝜌𝐴, density of martensite 𝜌𝑀 ,kg/m3 6500 

Thermal-expansion coefficient of martensite, K-1 6.6‧10-6 
Specific heat of austenite CA, J/(kg K) 550 
Specific heat of austenite CM, J/(kg K) 500 
 

  
Fig. 1. Stress-strain diagrams for tension of SMA rod at different strain rates: (a) modeling with the 

microstructural model, (b) experiment [30] 
 

In the first set of numerical experiments it is assumed for simplicity that the 
temperature in the SMA rod is uniform and the heat exchange is carried out through its 
surface in accordance with Newton’s law. In this case one can write the thermal balance 
equation: 
−(𝜌𝑀𝛷𝑀 + 𝜌𝐴(1 − 𝛷𝑀))(𝐶𝑀𝛷𝑀 + 𝐶𝐴(1 − 𝛷𝑀))𝑇̇ + ℎ𝑐𝑜𝑛𝑣

𝐴𝑆𝑀𝐴

𝑉𝑆𝑀𝐴
(𝑇 − 𝑇𝑎𝑚𝑏) = 𝑞0𝛷̇𝑀,     (4) 

where 𝜌𝑀, 𝜌𝐴 are the densities and CM, CA are the specific heats of martensite and 
austenite; 𝛷𝑀 is the total volume fraction of martensite, 𝑇𝑎𝑚𝑏 is the ambient temperature, 
ℎ𝑐𝑜𝑛𝑣 is the heat transfer coefficient, 𝐴𝑆𝑀𝐴 and 𝑉𝑆𝑀𝐴 are the area and volume of the SMA 
cylinder, dot means the time derivative. The value of ℎ𝑐𝑜𝑛𝑣 was chosen as 80 W/(m2 K) to 
be corresponding to a metal-air heat exchange [31]. 

The calculated stress-strain diagrams and the experimental results of Kan et al. [20] 
are presented on Fig. 1. One can see good agreement between the model curves and the 
experimental data. Deformation at higher strain rates causes greater heating of the 
specimen due to the release of latent heat of the direct martensitic transformation. This 
leads to increase of the maximum stress while the value of the phase yield limit (stress 

(a)                                                                     (b) 
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at which the elastic mechanism of deformation gives way to a phase one) does not 
change. As a result, the slope of the pseudo-elastic "flag" becomes steeper. 

During unloading such a direct connection between the strain rate and cooling due 
to the reverse martensitic transformation is not observed. At a high strain rate, the sample 
does not have time to cool much more than the initial temperature. At a very slow strain 
rate, the sample does not cool much due to slow heat exchange with the environment. 
When the strain rate belongs to some medium range, the model specimen manages to 
cool down due to heat absorption caused by the endothermal reverse martensitic 
transformation. 

 
Coupled boundary value problem 
The results described in the previous section can be considered as the results of solving 
zero-dimension boundary value problem for the cylinder with the uniform temperature 
field. This seems acceptable for relatively thin samples and for characteristic deformation 
duration that assume temperature equalization along the radius of the cylinder. 
Otherwise, to calculate the deformation of the rod and distribution of temperature along 
the radius it is necessary to solve a connected boundary-value thermomechanical 
problem that takes into account heat exchange with the environment, thermal 
conductivity, the release of latent heat of transformation and the dependence of the 
change in phase state and deformation on the temperature and stress. 

The cylindrical model element of the radius R that is in thermal contact with the 
environment has been considered. An axial force F acting along the axis z is supposed to 
be applied to the end of the cylinder (Fig. 2). 
 

 
Fig. 2. Tension of a cylindrical rod, which is in thermal contact with the environment through the side 

surface (scheme) 
 

It was assumed, that the cylinder was long enough so that the peculiarities of the 
force distribution at the end could be neglected and the cross-sections could be 
considered to remain flat. As a result, the longitudinal fibers' strain 𝜀𝑧𝑧 = 𝜀 does not 
depend on the radial coordinate r. In the cylindrical coordinate system r, , z non-zero 
can be strain components 𝜀𝑟𝑟(𝑟) and 𝜀𝜑𝜑(𝑟).  

Conditions of static equilibrium of a rod under consideration are: 
∫ 𝜎𝑧𝑧𝑑𝑆 = 𝐹

 

𝑆
,                          (5) 

where the integration is carried out over the entire cross section of the cylinder. 
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Let us assume that the constitutive relations of the material allow us to additively divide 
the total strain 𝜀 into elastic 𝜀𝑒𝑙 and non-elastic 𝜀𝑛𝑒components, so that 𝜀 = 𝜀𝑒𝑙 + 𝜀𝑛𝑒 .  
Then, according to Hooke's law: 
𝜎 = 𝐸(𝜀 − 𝜀𝑛𝑒),              (6) 
where E is the effective Young's modulus, determined in this work by the "mixture rule" 
for elastic compliances: 
𝐸−1 = 𝛷𝑀𝐸𝑀

−1 + (1 − 𝛷𝑀)𝐸𝐴
−1.            (7) 

Increments of phase strain and internal variables were determined by the 
microstructural model described in the previous section. Formally, they can be written as: 
𝛥𝜀𝑛𝑒(𝑟) = 𝐹1(𝛥𝑇(𝑟), 𝛥𝜎(𝑟), 𝑋(𝑟)),

𝛥𝑋(𝑟) =  𝐹2(𝛥𝑇(𝑟), 𝛥𝜎(𝑟), 𝑋(𝑟)),
            (8) 

where the functions F1 and F2 are determined by the microstructural model and the 
symbol X denotes the set of internal variables 𝛷𝑛(𝜔) and 𝜀𝑛

𝑚𝑝(𝜔) for each of the n 
variants in each grain ω, correspondingly. 

The variation of temperature over time was calculated by solving the heat 
conduction equation: 
𝑐𝜌

𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑟
(𝜆

𝜕𝑇

𝜕𝑦
) + 𝑄̇,              (9) 

where c is the specific heat capacity, 𝜌 is the density and 𝜆 is the thermal conductivity. 
All these parameters were determined for mixture of martensite and austenite by the 
same way as it was previously done for the effective elastic compliance (7). The intensity 
of heat sources is determined by the latent heat of transformation of an SMA q0 and the 
growth rate of the total volume fraction of martensite 𝛷М, so that 𝑄̇ = −𝑞0𝛷̇М. 

It is assumed, that heat exchange with the environment occurs according to 
Newton's law: 
∓  𝜆

𝜕𝑇

𝜕𝑦
|

𝑦=±
ℎ

2

=  ℎ𝑐𝑜𝑛𝑣(𝑇 −  𝑇𝑒𝑛𝑣),           (10) 

where hconv is the heat transfer coefficient, Tenv is the ambient temperature. 
To solve the axis-symmetric problem, a discrete scheme was used. The radius R of 

the cylinder was divided into K equal segments, thereby determining the nodes of the 
spatial grid with coordinates 𝑟𝑗 =  𝑗𝑅 𝐾, 𝑗 = 1, … 𝐾⁄ . The stress, deformation and 
temperature fields at different points of the body were specified as a set of values at the 
grid nodes. During the calculation, at each loading step, the problem is divided into sub-
problems with their own operators:  
1. the mechanical equilibrium problem (an operator 𝑀̅) – finding of the grid function σ(r) 
for a given value of the applied force F and values 𝜀𝑛𝑒(𝑟𝑗) of inelastic deformation at the 
nodes using relations (5)–(7); 
2. the "rheological” problem of finding inelastic deformation and density of heat sources 
(as well as internal variables) using the microstructural model (8) (an operator 𝐹̅); 
3. the thermal (heat diffusion) problem (an operator 𝑇̅) – finding of the grid function 𝑇(𝑟𝑗) 
using the heat conductivity Eq. (9) under given heat exchange conditions (10) and known 
internal variables. 

The search for such stress and temperature fields that satisfied simultaneously 
equations of equilibrium, thermal conductivity and boundary conditions changing during 
the step can be reduced to the problem of a fixed point of the operator 𝐴̅: 



Influence of latent heat and heat exchange conditions on tension behavior of shape memory alloy specimen  24 

 

(
𝜎(𝑦)

𝑇(𝑦)
) = 𝐴̅ (

𝜎(𝑦)

𝑇(𝑦)
).             (11) 

Here the operator 𝐴̅ is a composition of operators 𝑀̅, 𝐹̅ and 𝑇̅: 

(
𝜎(𝑟)

𝑇(𝑟)
) = (

𝑀̅(𝜀𝑛𝑒(𝑟))

𝑇̅ (𝑄̇(𝑟))
) ,         (

𝜀𝑛𝑒(𝑟)

𝑄̇(𝑟)
) = 𝐹̅ (

𝜎(𝑟)

𝑇(𝑟)
).        (12) 

In this work, this problem was solved by reducing it to finding the minimum of a 
functional of many variables [32]. The result of the solution were grid functions for stress, 
strain, temperature and internal variables of the microstructural model. 
 
Boundary value problem: simulation of pseudo-elastic effect at different 
strain rates 
The computational experiments described in the previous section were carried out by 
solving of the boundary value problem. The calculated stress-strain diagrams for a 
cylindrical sample with the radius 2.5 mm are presented on Fig. 3. 
 

 
 

Fig. 3. Stress-strain diagrams for tension of SMA 
rod at different strain rates – calculated by 
solving coupled boundary-value problems 

Fig. 4. Temperature distributions along the cylinder 
radius during deformation up to 9 % at strain rate 

3.310-2 s-1 at the end point of deformation 
 
Although there are some peculiarities on the stress-strain curves in comparison with 

ones from Fig. 1(a), we can conclude that they are in a good qualitative and quantitative 
agreement with the results obtained previously. Apparently, at given deformation rates 
and heat exchange conditions, the temperature field in the sample under consideration 
does not differ much from the uniform one. The calculation results confirm this fact. 
Figure 4 shows the temperature distribution along the radius of the sample when the 
deformation achieved its maximum value of 9 % for the strain rate 3.310-2 s-1.  
The temperature difference in the center and on the surface does not exceed 0.3 K. The 
less deformation rate, the smaller is this difference. 
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Criteria for the need to solve the heat conduction equation 
Considering the difficulties arising at solving coupled boundary value problems for SMA, 
the question emerges when it is possible to consider the temperature field to be uniform 
at given material constants, deformation rate and heat exchange conditions, and thus to 
avoid solving the heat conduction equation. 

To calculate thermal conductivity in non-stationary modes, the Fourier and Biot 
criteria (numbers) are most often used. Initially, they were formulated for problems that 
did not imply the presence of internal heat sources. However, at present they are 
successfully used, for example, for calculating fuel rods of nuclear power plants [33].  

The Biot number is the ratio of the internal thermal resistance of a body R/λ  
(a cylinder with the radius R in our case) to the external thermal resistance (resistance to 
heat transfer) 1/hconv: 
𝐵𝑖 =

ℎ𝑐𝑜𝑛𝑣𝑅

𝜆
.              (13) 

This ratio indicates whether the temperature inside a body varies significantly in 
space when the body is heated or cooled over time by a heat flux at its surface. If the Biot 
number is small (much smaller than 1), the temperature field inside the body can be 
considered as nearly uniform. Requiring that Bi must not exceed 0.1, we obtain, for the 
material parameters presented in Table 1, that 𝑅 ≤ 12.5 mm. Therefore, the cylinder 
under consideration with the radius 2.5 mm satisfies this condition. The Biot number for 
this radius is 0.02. 

The Fourier number characterizes the relationship between the rate of change of 
thermal conditions in the environment and the rate of redistributing of the temperature 
field inside the body under consideration. It depends on the characteristic size L of the 
body and its thermal diffusivity χ = λ/(ρC): 
𝐹𝑜 =

𝜒𝑡𝑐

𝐿2 ,              (14) 
where tc is the characteristic time of change of external conditions. If we take the total 
deformation time to a given strain of 9 % as the characteristic time of the process, then 
for L = R = 2.5 mm and the strain rate 3.310-2 s-1 we obtain 𝑡𝑐 ≈ 2,7 s and 𝐹𝑜 ≈ 1,5. It is 
known, that for the Fourier number significantly greater than 1.0 it can be assumed that 
there is enough time to establish the uniform temperature field across the entire 
characteristic length of the specimen. 

Of course, 1.5 is not much greater than 1.0, nevertheless the model sample shows 
rather uniform temperature field at the chosen strain rate (Fig. 4). This may be due to the 
choice of the characteristic time for the characteristic length of the process. 

One can try to evaluate the characteristic time and the Fourier number directly from 
the solution of the boundary value problem of heat conduction theory in dimensionless 
form with boundary conditions of the third kind. It is known [33] that application of the 
Fourier method gives the following solution for the cylinder: 
𝜃(𝑥, 𝐹𝑜) = 𝜃0 ⋅ ∑ 𝐴𝑘 𝐽0(𝜇𝑘𝑥) exp(−𝜇𝑘

2𝐹𝑜)∞
𝑘=1 ,                                                                                    (15) 

𝐴𝑘 =
2 𝐽1(𝜇𝑘)

𝜇𝑘⋅(𝐽0
2(𝜇𝑘)+ 𝐽1

2(𝜇𝑘))
,                                                                                                                                   (16) 

where x = r/R is dimensionless coordinate, 𝜃(𝑥, 𝜏) = 𝑇(𝑥, 𝑡) − 𝑇𝑎𝑚𝑏 is the relative 
dimensionless temperature at time instant t, 𝜃0 = 𝑇0−𝑇𝑎𝑚𝑏 is the relative dimensionless 
temperature at the initial moment of time, 𝜇𝑘 are positive roots of the equation:  
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𝜇𝑘 𝐽1(𝜇𝑘) = 𝐵𝑖 𝐽0(𝜇𝑘),                                                                                                     (17) 
(in ascending order). Here 𝐽𝜈(𝑥) are Bessel functions of the 1st kind of order ν.  

Keeping only the first term of the series in Eq. (15) one can obtain for the cylinder 
𝜃(𝑥, 𝐹𝑜) = 𝜃0𝐴1 𝐽0(𝜇1𝑥) exp(−𝜇1

2𝐹𝑜),          (18) 
𝐴1 =  

2𝐵𝑖

𝐵𝑖2+𝜇1
2.              (19) 

Assuming that the permitted temperature difference on the surface (x = 1) and in 
the center (x = 0) is 1 K, for a given Bi = 0.02 it is possible to estimate the characteristic 
time. It occurred to be equal about 12 s. The corresponding 𝐹𝑜 ≈ 8 satisfies the condition 
of uniform temperature distribution. The values of the characteristic times and Fourier 
numbers for some other radii R are given in Table 2. 
 

          
Fig. 5. Temperature distribution along the cylinder radius for R = 8 mm (a), R = 25 mm (b) at the final 

point of deformation. The strain rate 3.310-2 s-1 
 

Figure 5 shows the calculated temperature distributing along the radius for 
R = 8 mm and R = 25 mm when the strain was 9 %. The maximum temperature difference 
in the center and on the surface of the sample T in the first case was 0.8 K and in the 
second 2 K. The results for different radii are also presented in Table 2. One can note that 
for the permissible value T = 1 K for the given strain rate and heat exchange conditions, 
the radius should not exceed 8 mm. This value seems to be quite large but although the 
strain rate 3.310-2 s-1 is not extremely high, the deformation process takes only 2.7 s and 
the rod does not have enough time to cool significantly due to heat exchange with the 
environment. 
 
Table 2. Characteristic times, Fourier numbers and maximum temperature difference 

R, mm 2.5 3.0 8.0 9.0 25.0 
tc, s 12 15 49 – 259 
Fo 8.0 5.5 2.5 2.3 1.4 
T, K 0.2 0.3 0.8 1 2 

 
It should also be noted that the temperature fields obtained by solving the 

connected boundary value problem taking into account heat release and heat absorption 
demonstrates fairly good agreement with simple evaluations obtained using Fourier and 
Biot numbers excluding these processes. 

(a) (b) 
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Conclusions 
1. The microstructural model, taking into account the release and absorption of the latent 
heat of martensitic transformations, is an adequate tool for describing the strain rate 
dependence of the pseudo-elastic behavior for SMAs. The strain rate growth forces an 
increase in the maximum achieved stress and the slope of the pseudo-elastic “flag”. The 
obtained results are in good agreement with the available experimental data. 
2. The microstructural model allows solving the boundary value problem of tension of an SMA 
cylinder in a fully coupled thermomechanical formulation, taking into account the heat exchange 
with the environment, the release of latent heat of transformation and thermal conductivity. It 
allowed simulating the pseudo-elastic stress-strain diagrams for different strain rates. 
3. The Fourier and Biot criteria can be used to evaluate the critical radius of the cylinder 
for which, at a given strain rate and given heat exchange conditions, it is necessary to 
solve a fully coupled boundary value problem taking into account the thermal 
conductivity of the sample. The obtained estimates were confirmed by solving boundary 
value problems for cylinders of different radii. 
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