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Abstract. A distributed autowave model of the Portevin-Le Chatelier effect has been 

developed for the region of medium and elevated temperatures in alloys. The model was 

converted into dimensionless form and the mechanisms of serrated deformation and 

localization of plastic flow were studied using analytical and numerical approaches. An 

instability region is found for the rate of plastic deformation and temperature, in the vicinity 

of which the Portevin-Le Chatelier effect is realized. The critical dimensionless parameters 

responsible for the variety of spatial-wave solutions of the initial system of equations are 

determined: the shapes of the load oscillations representing a quasi-periodic sequence of 

oscillating wave packets; bursts of plastic deformation velocity. The bursts are strictly 

correlated and form distinct Portevin-Le Chatelier bands under the stochastic deformation 

regime. Portevin-Le Chatelier bands extend from one end of the crystal to the other, where the 

reverse band is formed. This process of propagation of deformation bands is periodically 

repeated. 

Keywords: Portevin-Le Chatelier effect; alloys; serrated deformation; high temperatures; 

stochastic self – oscillation; Luders and Portevin-Le Chatelier bands 

 

Acknowledgements. The Russian Science Foundation supported this work, project No. 22-22-

00749. 

 

Citation:. Sarafanov GF, Shondin YG, Kuznetsov SI. A model of the formation of serrated 

deformation and propagation of Luders bands during the Portevin-Le Chatelier effect in 

alloys. Materials Physics and Mechanics. 2023;51(5): 16-23. DOI: 

10.18149/MPM.5152023_3. 

 

 

Introduction 

Plastic deformation processes are among the most complex processes in materials science, 

since they lead to various features of the microstructure of the resulting materials and their 

behavior under loading. 

One of such features of metal alloys in the region of medium and elevated temperatures 

is the instability of plastic deformation in the form of the serrated flow [1–7] known as the 

Portevin-Le Chatelier effect (PLC), named after French researchers who first observed this 

phenomenon in 1923 [8]. 

https://orcid.org/0000-0002-1246-8503


A model of the formation of serrated deformation and propagation of Luders bands during  17 

the Portevin-Le Chatelier effect in alloys  

The PLC effect consists in the irregular repetition of the load jumps d  and the rate of 

plastic deformation[4,5,9], which correspond to the localization of plastic flow in the form of 

deformation bands of the Luders type [10,11]. The  oscillations of the deformable crystal 

occur due to the elastic response of the machine-sample system [12,13] and have the form of 

stochastic relaxation self-oscillations (Fig. 1). 

 

  
 

Fig. 1. A typical stress-time curve showing type B  stress jumps at a given rate of 

plastic deformation 
14

0 101,4= −− s [12] 

   

There are usually five types of basic jumps of the deforming stress [14,15], but three 

[13,16] of them are distinguished, which correspond to various features of the occurrence and 

propagation of deformation bands [4,5].   

Jumps of the A type occur above a certain average level of deforming stresses at 

relatively low temperatures. Jumps of the B type are irregular in nature and characterized by 

the relay propagation of deformation bands and their spatial correlation. Jumps of the C type 

occur at elevated temperatures, are located below the average level of deforming stresses and 

are characterized by high randomness. Jumps of other types are usually less common [14]. 

In the articles [17,20], an autowave model of the Portevin-Le Chatelier effect has been 

proposed. The model is described by a system of differential equations for deforming stress, 

dislocation velocity, concentration of dissolved impurity atoms interacting with moving 

dislocations and forming a cloud of impurity atoms around them, which is called the Cottrell 

atmosphere [3]. At low velocities of dislocations the Cottrell atmosphere brakes them 

strongly. However, as the dislocation velocity increases, the atmosphere decreases, which 

leads to a weakening of the braking force (there is a negative sensitivity to strain rate) and 

instability, which is the cause of various spatial-wave solutions. 

In [20], within the framework of this model, in the dislocation sliding plane, the 

formation of a switching wave of the plastic deformation rate was described, interpreted as a 

Luders band. In the article [17], a solution was obtained in the form of relaxation self-

oscillations of the deforming stress and the plastic deformation rate, which can be considered 

as a manifestation of the Portevin-Le Chatelier effect. However, in [17], the oscillatory 

process is considered in a homogeneous approximation, which does not allow for the 

localization of sliding in the form of deformation bands. 

In this paper, the PLC autowave model is generalized to the case of deformation 

propagation along the sample and investigated numerically for spatial wave solutions, namely 

stochastic load dynamics and plastic deformation rate. 

Note that there are other models for describing the phenomenon of PLC [12,13], the so-

called Dynamic Strain Ageing (DSA) models  [14]. However, they are mainly 

phenomenological in nature, unlike our approach. 
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PLC effect model 

Consider the behavior of an ensemble of dislocations in a slip band of width .w  Let’s choose 

the direction of dislocation sliding to the x0  axis at some angle to the x0  axis of sample 

stretching. Usually this angle is approximately /3 [2]. Let the dislocation distribution in the 

slip band be considered homogeneous 0=  . Denote by ),( xtv   the velocity of dislocations 

in the transverse sliding plane. Accordingly, the rate of plastic deformation in the slip band is 

determined by the Orovan’s formula as ),(=),( 0 xtvbxt   (b  is the modulus of the Burgers 

vector). Then the dislocation velocity and the rate of plastic deformation along the loading 

axis can be approximately written as ),(),( xtvxtv   and ),,(),( xtxt    where 

1/31/2=   is the orientation factor. 

In this case, the process of plastic deformation in the loading regime with a given rate of 

plastic deformation 0  can be described along the loading axis by the following system of 

equations [17]  
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Here we neglect the orientation factor  , since it has little effect on the nature and shape 

of the space-wave solutions, making only small corrections to the numerical results. 

Equation (1) is the equation of dislocation motion,  m*  is the effective mass of a 

dislocation (per unit length), )(t  is the external stress minus dry friction stresses (which we 

consider constant) such as Hall-Petch stresses and substructural hardening, nti  is an internal 

stress field from a system of dislocation charges induced by plastic deformation at grain 

boundaries, )(vF  is a viscous N-shaped braking force per unit dislocation length due to the 

interaction of dislocations with impurity atoms [3]. 

Equation (2) takes account for the role of boundaries in the formation and propagation 

of deformation bands. Due to the elastic correlation of the grains, stresses  2
1

i = xx
nt

 [14, 

18] arise, which relax due to accommodation mechanisms [19]. The parameter 2
1 GDg  

serves as a measure of elastic correlation of grains ( 1g , D is the grain size), at  is 

characteristic time of plastic accommodation [20]. 

Equation (3) is the Gilman-Johnston equation for the active loading mode [21], which 

takes account for the dynamics of the load change   under the condition that the strain rate of 

the crystal sample is constant. Here 0  is the specified rate of plastic deformation in the slip 

band, ShG  /= 0
*

 is the effective modulus of elasticity,   is the rigidity of the "machine-

sample" system, 0h  and S  are the height and cross-section area of the sample, L  is the length 

of the sample,   is geometric factor of the order one. 

In equation (1) the function  

)()(=)( 21 vFvFvF +   (4) 

consists of two terms. The force )(1 vF  is due to the interaction of impurity atoms with a 

dislocation moving at some speed v  and is determined by the formula [3]  

,=)(1 xd
x
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where c  is the concentration of impurity atoms, which is determined from the stationary 

diffusion equation [17]  
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Here cD  is the diffusion coefficient of dissolved atoms,  

1/222 )(
=

xb
W

+


  (7) 

is the energy of interaction of dislocations with impurity atoms in the one-dimensional 

approximation, similar to the interaction energy in the two-dimensional case in the Cottrell 

theory [1, 3]. 

Analysis of solution for the braking force )(vF  shows that the deceleration force first 

increases, reaching a maximum at a certain value maxb  at a speed /= kTDv ca [22], and then 

decreases. This is due to the fact that as the velocity increases, the dislocation gradually loses 

the atmosphere of dissolved atoms and at some critical velocity [3]  
2/= kTbDv cc    (8) 

the atmosphere disappears and the braking is caused only by statistically distributed atoms of 

the dissolved substance. In this region )>( cvv the deforming stress linearly depends on the 

velocity [3, 22], i.e. ,=2 BvF  where the mobility is defined as )/(= 2
0 bkTDcB c [22]. Here, 

parameter 1<  takes account for the features of the movement of dislocations in the field of 

uniformly distributed impurity atoms. 

Analyzing the mathematical structure of the equation (6), it can be seen that its solution 

is determined by two dimensionless quantities: velocity cDbvu /=  and parameter ,/= kTWa c  

which is inversely proportional to temperature. Here bWc /=   is the maximum binding 

energy of the dislocation with impurity atoms [3]. 

Numerical solution for )(uF  by taking account for equations (4)-(6) and uBF =2  

(where ),= 0 aWcB c  leads to the dependency shown in Fig. 2.  

 

 
  

Fig. 2.   Dependence of the N – shaped braking force )(uF  on the dimensionless 

dislocation velocity ,/= cDvbu  where .3= 0 acb max  The calculations were performed at the 

values of the parameters 3=a  and α = 0.7 
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It can be seen that aDbvu ccc =/=  and .=/= 1−aDbvu caa  Since a typical value of the 

binding energy is 0.1=cW eV, then at room temperature KT 300=  (temperature kT  in 

energy units is 0.025 eV)  parameter 4,=a  the value 3=a  corresponds to the temperature 

.400= KT  

Let us determine the region of instability of plastic deformation at which 0.<)(uF   By  

analyzing the curve )(uF  we find that the condition 0<)(uF   is satisfied for the velocity 

interval in the range ].,[ 1 aa−
 For example, at temperature KT 400= , this is [0.33,3].Cottrell 

noticed [1] that the Portevin-Le Chatelier effect is experimentally observed at 
51/2

0 10)/( −cD cm. 

If cDbvu /=  is converted to the form ,/=/ 00 cc DDbv    then the above mentioned 

instability region for 
1/2

0 )/( cD  takes the form 0.57 < 1.73,<1/2  i.e. approximately 

.)/( 1/21/2
0

−cD  If we take the typical value ,cm10= 210 −  then we get Cottrell’s 

experimental result. 

 

Numerical study of the PLC effect 

In [17], a regular self-oscillating solution of )(t  was obtained for the homogeneous case. 

Such solution, however, does not correspond to experimental results, because the load 

fluctuations have a pronounced stochastic character. 

To identify the spatial-wave solutions of the original model, a numerical study of the 

original system of equations (1)–(3) was carried out. At the same time, the system of 

equations was transformed to a dimensionless form. It was found out that solutions of the 

system are controlled by temperature via the parameter kTWa c/=  and a given plastic 

deformation  rate .0  In addition, dimensionless parameters play an essential role:  
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which characterize, respectively, the rigidity of the sample-machine system, the elastic 

correlation of grains and the intensity of plastic accommodation. Here axa bmvt m
*

0 /=  . 

The analysis shows that the parameters (9) have a large range of possible values. 

Therefore, in this paper we will limit ourselves to the following values: the length of the 

plastic zone is chosen equal to 20=L cm, grain size m10= D , and  

.10=3,=0.01,=1,= 14
0

−− saa    (10) 

The parameters  , K  and a  characterize, respectively the rigidity of the sample-

machine system, the elastic correlation of grains and the intensity of plastic accommodation. 

For small values of 610< −K  , a regular mode is realized in the system. In this case, 

there is a in-phase mode of velocity fluctuations in the areas of the plastic flows (along the x  

coordinate), but already at 510= −K , the deformation process acquires an irregular stochastic 

character (Fig. 3).  
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Fig. 3. Change of dislocation velocity ),( xtu  (in section 10=x cm) and load )(t  

depending on time. Numerical results are obtained at a temperature of 400K and the values of 

the parameters given in (10) and K = 10-5   

 

At the same time, the pulses of the plastic deformation rate are strictly correlated and 

form clear Portevin-Le Chatelier bands, which are shown in Fig. 4. This figure shows the 

wave pattern of the propagation velocity of dislocations ),( xtu  in a crystal sample.  

 

 
 

Fig. 4. Wave pattern of propagation of dislocation velocity disturbances ),( xtu  in a 

crystalline sample in the form of PLC bands under stochastic deformation mode 
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It can be noticed that the PLC deformation bands, which are pulses of plastic 

deformation, they originate at one of the ends of the crystal and move at a certain speed to the 

other, where the reverse band is formed. This deformation process is periodically repeated. 

Under the given deformation conditions, the PLC bands are strictly correlated. When 

conditions change, oncoming bands may occur, propagating simultaneously from opposite 

ends of the crystal. In this case, the bands can annihilate, break up into parts, reappear in other 

parts, etc. It is necessary at the same time that the total rate of plastic deformation is equal to 

the specified speed 0 . 

In conclusion, we will make some remarks about the Luders bands and PLC bands. In 

many respects, the mathematical description of these deformation bands differs little, 

however, the Luders band is a single wave front [20] and occurs above a certain critical load 

value, while the Portevin-Le Chatelier bands are formed in the instability region 

0,<|)((
0=vvvF    where )/= 000  bv   as a quasi -periodic sequence of  running waves. 

Thus, the original model assumes a wide variety of space-wave solutions, which will be 

considered in the following work. 

 

Resume 

1. The mechanism of plastic deformation instability of crystalline alloys is considered in the 

autowave model of the Portevin-Le Chatelier effect. Within the framework of the model in 

the field of medium and elevated temperatures, the mechanisms of serrated deformation and 

localization of plastic flow in alloys have been studied. 

2. An analytical and numerical study of the model was carried out after bringing it to a 

dimensionless form. An instability region is determined for the rate of plastic deformation and 

temperature, in the vicinity of which the Portevin-Le Chatelier effect is realized. The critical 

dimensionless parameters responsible for the variety of wave solutions of the initial system of 

equations are determined. 

3. For given values of the model parameters, the form of stochastic load oscillations is 

determined, which is a quasi-periodic sequence of oscillating wave arcs, i.e. load surges, as 

well as bursts of plastic deformation rate, which are strictly correlated and form clear 

Portevin-Le Chatelier bands under stochastic deformation mode. 
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