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ABSTRACT  
A two-phase topology optimization method is proposed, determines not only the ratio of the phases of high and 
low stiffness at each point of the body, but also the angle of rotation of the axes of anisotropy. The proposed method 
makes it possible to significantly improve the functionality of the products being developed. The topology 
optimization of the two-phase material is implemented using the method of moving asymptotes, and the angle of 
rotation of the anisotropy axes is aligned along the main axes of the stress tensor. As an example, a rectangular 
elastic plate is considered, with joint constraints in the two lower corners and the force in the middle of the upper 
face. The problem of simultaneous optimization of phases and axes of anisotropy is solved for this plate. The 
obtained results are analyzed, after which the correctness of the developed algorithm is concluded. 
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Introduction 

With the fast grow of additive manufacturing technologies possibilities, it becomes 

possible to create complex shaped products based on topology optimization: bridges [1,2], 

porous structures [3], minimum-weight, symmetrically loaded wheel structures [4], and 

materials with required effective mechanical properties [5,6]. Until recently, most additive 

manufacturing technologies were limited to using a single-phase material, which limited 

the functionality of the products being developed. 3D printing for multiphase material is 

only an emerging technology, but it will certainly lead to more functional products. For 

example, the article [7] demonstrates the manufacture of a product obtained using two-

phase topology optimization using PolyJet additive manufacturing technology, which 

allows printing bulk materials with a wide range of elastic modulus [8]. 

In the classical formulation, topology optimization is the task of finding the optimal 

distribution of material in a given area under certain loads and boundary conditions. The 

review of the articles allows us to identify 3 classes of existing topology optimization 

algorithms – algorithms based on optimality criteria, algorithms based on sensitivity 

analysis (mathematical programming methods), and so-called genetic algorithms of 

topology optimization [9]. The most stable method used by the authors in optimizing 
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structures made of anisotropic materials is the method of moving asymptotes (MMA) [10], 

therefore in this work it was chosen as the base optimization algorithm. 

As a result of the analysis of existing sources for optimizing the phase ratio, it was 

observed that the most of the of works on topology optimization based on density, taking 

into account several material phases, are based on expanding the interpolation scheme 

of a solid isotropic material (SIMP), which uses a power law to determine intermediate 

densities, taking into account various regions of a solid and voids [11,12]. To optimize 

the topology of two materials (without voids) [13], a single design variable is used to 

interpolate between two phases of the material [14]. The approach has also been used, 

for example, to multiphysics actuators design, [15] and functionally graded structures 

with optimal eigenfrequencies design [16]. A three-phase expansion of SIMP has also 

been proposed [14], characterized by a topology design variable that controls the 

material/void distribution and a second design variable that interpolates between two 

solid material phases. This “three-phase mixing” scheme is expandable to an arbitrary 

number of materials [17,18], however, it is noted that with a further increase in the 

number of design variables, the optimization problem, as a rule, gets stuck in a local 

extremum. In fact, most of the results in the papers on optimizing topology from multiple 

materials using this “m-phase mixing” scheme were limited to two solid phases and a 

void [7,19]. The multi-material topology optimization by considering the volumes of 

multiple materials have also been applied to other problems, including simultaneous 

structural and thermal analyses [20], lattice structures [21], thermal buckling criteria [22], 

and cable-suspended membrane structures [23]. 

Development of composite 3D printers [24] make actual to use topology 

optimization with conjunction of material anisotropy axes optimization. As a result of the 

analysis of existing articles on the optimization of anisotropy axes directions, several 

approaches have been identified to solve this problem. In particular, there are approaches 

that do not introduce additional design variables for the orientation of the material. 

Instead, it is assumed that the main direction of the material coincides with the main 

direction of stress tensor or deformation tensor, which is reasonable for "shear-weak" 

materials [25,26]. Also, there are approaches that introduce additional design variables 

to optimize the orientation of the material [27,28]. However, due to the difficulty of 

avoiding local optima [29,30], the optimization of the orientation of the material based 

on the stress tensor and strain tensor is used in this work. 

 

Methods 

The classic state of topology optimization problem is to determine the optimal material 

distribution in terms of stiffness under given boundary conditions and resource 

constraints. Maximizing the stiffness of a body is equivalent to minimizing the elastic 

energy of deformation (i.e. compliance), which has the following form: 

𝑐 =
1

2
∫ ( 𝑪 

4 ∙∙ 𝜺) ∙∙ 𝜺𝑑Ω
Ω

, (1) 

where 𝑪 
4  is an elasticity tensor; 𝜺 is a strain tensor; 𝛺 is a material volume (design domain). 

Parameterization of the optimization space is performed through finite element 

discretization and the application of the approach SIMP (solid isotropic material with 
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penalization). The properties of the material in each element depend on the magnitude 

of the fictitious density 𝜌𝑒, the values of which vary from 0 to 1. It is assumed that: 

𝑪 
4 𝑒 = 𝜌𝑒𝑝 𝑪 

4
0
𝑒, (2) 

where 𝑪 
4

0
𝑒 is an initial elasticity tensor in a given finite element, 𝑝 is a penalization factor. 

The maximum allowed volume fracture is expressed by the following inequality: 

∫ 𝜌(𝒓)𝑑Ω
 

Ω
< 𝑉, (3) 

where Ω is a design domain, 𝜌(𝒓) is a fictitious density (design variable, which vary from 0 to 1). 

Thus, the problem of finding the distribution of material in the considered area in 

the finite element formulation will have the form (4) subject to (5) [11]: 

𝑚𝑖𝑛(𝒇𝑇𝒖), (4) 

{
 
 

 
 
𝑲𝒖 = ∑ 𝑲𝑒(𝜌𝑒)𝒖𝑒𝑁

𝑒=1 = 𝒇

𝑲𝑒(𝜌𝑒) = 𝜌𝑒𝑝𝑲0
𝑒

𝑉

𝑉0
=

∑ 𝑉𝑒𝑁
𝑒=1

𝑉0
= 𝛼

0 < 𝛼 < 1

, (5) 

where 𝒇𝑇 is a force vector, 𝒖 is a displacement vector, 𝒖𝑒 is a displacement vector of the 

element nodes, 𝑲 is a global stiffness matrix, 𝑲𝑒(𝜌𝑒) is a local stiffness matrix of the 

element, 𝑲0
𝑒 is an initial local stiffness matrix of the element, 𝑉𝑒 is a volume of the 

element, 𝑉0 is an initial volume of the body. 

To solve this problem, mathematical programming methods are further applied. In 

this work, the method of moving asymptotes (MMA) was used. 

 

Topology optimization using two phases 

Control of several phases in the optimization process is carried out using an extension of 

the SIMP method. In this work, a three-phase SIMP method (as shown in 1) was used, 

which is characterized by two design variables 𝜌0
𝑒 and 𝜌1

𝑒 [15]: 

𝑲𝑒(𝜌0
𝑒 , 𝜌1

𝑒) = 𝜌0
𝑒𝑝0(𝜌1

𝑒𝑝1𝑲1
𝑒 + (1 − 𝜌1

𝑒)𝑝1𝑲2
𝑒), (6) 

where 𝜌0
𝑒 is a density of the total material in element, 𝜌1

𝑒 is a ratio of the volume of 

phase 1 with respect to the volume of the total material in element, 𝑝0 and 𝑝1 are 

penalization factors, 𝑲1
𝑒 is an initial local stiffness matrix of the element of phase 1, 𝑲2

𝑒 

is an initial local stiffness matrix of the element of phase 2. 

 

 
Fig. 1. 1 – void phase, 2 – phase 1, 3 – phase 2 
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The volume constraint for design domains of two materials can be written as (7) [31]: 

{
 
 

 
 

𝑉𝑒

𝑉0
∑ (1 − 𝜌0

𝑒)𝑁
𝑒=1 = (1 − 𝛼0)

𝑉𝑒

𝑉0
∑ 𝜌0

𝑒𝜌1
𝑒𝑁

𝑒=1 = 𝛼0𝛼1

𝑉𝑒

𝑉0
∑ 𝜌0

𝑒(1 − 𝜌1
𝑒)𝑁

𝑒=1 = 𝛼0(1 − 𝛼1)

, (7) 

where 𝛼0 is a volume fraction of the total material with respect to the volume of the design 

domain, 𝛼1 is a ratio of the volume of the first phase to the volume of the total material. 

The formulation of the topology optimization problem can be expressed as (8) 

subject to (9) [15]: 

𝑚𝑖𝑛(𝒇𝑇𝒖), (8) 

{
 
 
 
 

 
 
 
 

𝑲𝒖 = ∑ 𝑲𝑒(𝜌0
𝑒 , 𝜌1

𝑒)𝒖𝑒𝑁
𝑒=1 = 𝒇

𝑲𝑒(𝜌0
𝑒 , 𝜌1

𝑒) = 𝜌0
𝑒𝑝0(𝜌1

𝑒𝑝1𝑲1
𝑒 + (1 − 𝜌1

𝑒)𝑝1𝑲2
𝑒)

𝑉𝑒

𝑉0
∑ (1 − 𝜌0

𝑒)𝑁
𝑒=1 = (1 − 𝛼0)

𝑉𝑒

𝑉0
∑ 𝜌0

𝑒𝜌1
𝑒𝑁

𝑒=1 = 𝛼0𝛼1

𝑉𝑒

𝑉0
∑ 𝜌0

𝑒(1 − 𝜌1
𝑒)𝑁

𝑒=1 = 𝛼0(1 − 𝛼1)

0 < 𝛼0, 𝛼1 < 1

. (9) 

 

Predicting the optimal orientation  

An orthotropic material was considered. The stiffness of the structure was maximized by 

varying the orientation of the orthotropy axes in each finite element. 

Optimization of the orthotropy axes was carried out in conjunction with topology 

optimization. The classical SIMP method with one design variable (10) was used, where 

the stiffness matrix can be expressed using a rotation tensor [32]: 

{
𝑲𝑒(𝜑, 𝜌𝑒) = 𝜌𝑒𝑝𝑲0

𝑒(𝜑)

𝑲0
𝑒(𝜑) = 𝑩𝑇𝑻𝑇(𝜑)𝑫𝑻(𝜑)𝑩𝑑𝑒𝑡(𝑱)

, (10) 

where 𝜑 is a variable orientation of the orthotropy axes, 𝑲0
𝑒(𝜑) is a local stiffness matrix 

of the element rotated by an angle 𝜑, 𝑫 is an elasticity matrix of an orthotropic material, 

𝑩 is a matrix of the derivatives of shape functions, 𝑻(𝜑) is a rotation matrix, 𝑱 is the Jacobi 

matrix. 

The algorithm for optimizing the distribution of the material and the angle of rotation 

is constructed in such a way that the design variable is only a fictitious density 𝜌𝑒 .  

The angle 𝜑 is aligned along the main stress or strain axes before each step of the 

topology optimization algorithm.  

The scheme of algorithm is shown in Fig. 2. The constructed algorithm consists of 

the following steps: 

1. Changing all design variables 𝜌𝑒 to satisfy the volume fraction constraint. 

2. Finite element calculation of the stress-strain state of the body. 

3. Calculation of the sensitivities of the strain energy by design variables (11): 
𝜕𝑐

𝜕𝜌𝑒
, (11) 

where 𝑐 = 𝒖𝑻𝑲𝒖. 

4. Finding the main direction of the stress/strain tensor. 
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5. Construction of a convex approximation of the function, finding the minimum through 

the dual function (internal MMA cycle) [10]. 

6. The found solution is the next step of the approximation point. Updating the vector of 

design variables. 

7. Updating direction of anisotropy axes according to main stress/strain tensor direcitons. 

8. Checking for convergence. If there is no convergence, return to step 2. 

 

 
Fig. 2. Developed algorithm scheme 

 

The formulation of the topology optimization problem can be expressed as (12) 

subject to (13): 

𝑚𝑖𝑛(𝒇𝑇𝒖), (12) 

{
 
 

 
 
𝑲𝒖 = ∑ 𝑲𝑒(𝜑, 𝜌𝑒)𝒖𝑒𝑁

𝑒=1 = 𝒇

𝑲𝑒(𝜑, 𝜌𝑒) = 𝜌𝑒𝑝𝑲0
𝑒(𝜑)

𝑉

𝑉0
=

∑ 𝑉𝑒𝑁
𝑒=1

𝑉0
= 𝛼

0 < 𝛼 < 1

. (13) 
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Development of a topology optimization algorithm using two phases, taking into 

account the direction of the anisotropy axes 

The optimization of heterogeneous orthotropic material was carried out using a 

combination of two approaches (14): 

{
𝑲𝑒(𝜑, 𝜌0

𝑒 , 𝜌1
𝑒) = 𝜌0

𝑒𝑝0 (𝜌1
𝑒𝑝1𝑲1

𝑒(𝜑) + (1 − 𝜌1
𝑒)𝑝1𝑲2

𝑒(𝜑))

𝑲𝑖
𝑒(𝜑) = 𝑩𝑇𝑻𝑇(𝜑)𝑫𝑖𝑻(𝜑)𝑩𝑑𝑒𝑡(𝑱)

, (14) 

where 𝑲𝑖
𝑒(𝜑) is a local stiffness matrix of the element of the i-th phase, 𝑫𝑖 is an elasticity 

matrix of the orthotropic i-th phase. 

The algorithm for optimizing the distribution of phases and the angle of rotation is 

the same as in the previous subsection but uses only two design variables – 𝜌0
𝑒 and 𝜌1

𝑒 . 

The formulation of the topology optimization problem can be expressed as (15) 

subject to (16): 

𝑚𝑖𝑛(𝒇𝑇𝒖), (15) 

{
 
 
 
 

 
 
 
 

𝑲𝒖 = ∑ 𝑲𝑒(𝜑, 𝜌0
𝑒 , 𝜌1

𝑒)𝒖𝑒𝑁
𝑒=1 = 𝒇

𝑲𝑒(𝜑, 𝜌0
𝑒 , 𝜌1

𝑒) = 𝜌0
𝑒𝑝0 (𝜌1

𝑒𝑝1𝑲1
𝑒(𝜑) + (1 − 𝜌1

𝑒)𝑝1𝑲2
𝑒(𝜑))

𝑉𝑒

𝑉0
∑ (1 − 𝜌0

𝑒)𝑁
𝑒=1 = (1 − 𝛼0)

𝑉𝑒

𝑉0
∑ 𝜌0

𝑒𝜌1
𝑒𝑁

𝑒=1 = 𝛼0𝛼1

𝑉𝑒

𝑉0
∑ 𝜌0

𝑒(1 − 𝜌1
𝑒)𝑁

𝑒=1 = 𝛼0(1 − 𝛼1)

0 < 𝛼0, 𝛼1 < 1

, (16) 

 

Implementation of the developed topological optimization algorithms 

To implement the optimization algorithm, the Python language was chosen as the most 

convenient and fastest from the point of view of development, as well as containing the 

NumPy and SciPy libraries with a large number of functions for working with matrices, 

including highly sparse large-dimensional matrices that arise when using the finite 

element method. 
A proprietary 2D finite element solver has been developed, which includes not only 

well-known standard procedures, but also supplemented with the parameters necessary 

to solve the optimization problem. The finite element solver was tested on simple 2D 

problems of elasticity theory, the results coincided with ANSYS with high accuracy. 

The MMA method did not need to be fully implemented, since an implementation 

of this algorithm in Python was found in open sources. However, it was necessary to adapt 

this program code to solve the problem of topological optimization, both in terms of 

algorithm settings and in terms of the connection of the algorithm with a finite element 

solver. In particular, a feature has been added that allows you to change the design 

variables in the finite element model after each completed internal MMA cycle. 

To display the optimization results, a separate module was developed using the 

Python - matplotlib library. 
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Results and Discussion 

Optimization of the material distribution, phases and orthotropy direction angle was 

tested on a two-dimensional plate with boundary conditions and loads shown in Fig. 3. 

Design domain with boundary conditions and load: L =40 mm, finite element 

discretization 160 × 40, F =100 N. 

The following parameters were used for each of the optimization tasks: 

- number of iterations: 100; 

- penalization powers: 𝑝 = 𝑝0 = 𝑝1 = 4; 

- volume constraints: 
𝑉

𝑉0
 = 0.5, 

𝑉1

𝑉0
 = 

𝑉2

𝑉0
 = 0.25. 

 
Fig. 3. Design domain with boundary conditions and loads: 𝐿 = 40 mm, finite element discretization 

160 × 40, 𝐹 = 100 N 

 

The test materials taken from literature [15,29] are presented in Tables 1–3. The 

optimization results are shown in Figs.–7. 

It can be seen that the phase with high stiffness is distributed along the edges as a 

result of optimization, which corresponds to the results given in the literature. However, 

the optimization results in this paper and the optimization results from the sources are 

slightly different, due to different optimization parameters and phase properties. 

Optimization through alignment of the orthotropy axes along the main directions 

of the stress tensor is a more effective method compared to alignment along the main 

directions of the strain tensor. Firstly, the value of the objective function (strain energy) 

as a result of optimization for the first case turns out to be less. Secondly, alignment 

along the main directions of the stress tensor gives a more understandable result – the 

direction of the anisotropy axes in most cases agrees with the topology of the structure, 

that is, inside the "rod-like" structures remaining as a result of optimization, the direction 

of the orthotropy axes coincides with the direction of the outer boundary of these 

structures. In the case of alignment along the main directions of the strain tensor, the 

results are more unpredictable. 

Finally, the simultaneous optimization of the material distribution, phases and 

orthotropy direction angle was tested on a plate. On Fig. 6, it can be seen that phase 

distribution has the same character as in the case of isotropic phases, and the anisotropy 

axes are consistent with the "rod-like" topology. 

To demonstrate the advantages of the presented optimization, a comparative 

analysis of the results for the classic topology optimization algorithm and developed was 

performed. The results of optimization and comparison are presented in Table 4. 

It can be seen from the table above that the use of two orthotropic phases and the 

alignment of the anisotropy axes leads to a decrease in compliance.  
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Fig. 4. Optimal distribution of isotropic phases,  

𝑐 = 22.49 J: red color – phase 1, blue color – 

phase 2 

Fig. 5. Optimal distribution of orthotropic 

material, alignment of orthotropy axes along the 

main directions of the stress tensor, 𝑐 = 19.413 J 

 

 
 

Fig. 6. Optimal distribution of orthotropic 

material, alignment of anisotropy axes along the 

main directions of the strain tensor, 𝑐 = 27.317 J 

Fig. 7. Optimal distribution of orthotropic phases, 

alignment of anisotropy axes along the main 

directions of the stress tensor, 𝑐 = 12.669 J:  

red color – phase 1, blue color – phase 2 

Table 1. Properties of isotropic phases for the task of optimizing the phase distribution 

𝐸1, GPa 𝐸2, GPa 𝜈1 𝜈2 

200.00 100.00 0.31 0.31 

 
Table 2. Properties of an orthotropic material for the task of optimizing the distribution of the material and 

the axes of orthotropy 

𝐸𝑥 , GPa 𝐸𝑦, GPa 𝐸𝑧, GPa 𝐺𝑥𝑦 , GPa 𝐺𝑦𝑧, GPa 𝐺𝑥𝑧 , GPa 𝜈𝑥𝑦 𝜈𝑦𝑧 𝜈𝑥𝑧 

54.00 18.00 18.00 9.00 9.00 9.00 0.25 0.25 0.25 
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Table 3. Properties of orthotropic phases for the problem of optimizing the distribution of phases and axes 

of orthotropy 

№ phase 𝐸𝑥 , GPa 𝐸𝑦, GPa 𝐸𝑧, GPa 𝐺𝑥𝑦 , GPa 𝐺𝑦𝑧, GPa 𝐺𝑥𝑧 , GPa 𝜈𝑥𝑦 𝜈𝑦𝑧 𝜈𝑥𝑧 

1 108.00 18.00 18.00 9.00 9.00 9.00 0.25 0.25 0.25 

2 54.00 18.00 18.00 9.00 9.00 9.00 0.25 0.25 0.25 

 
Table 4. Comparison table of optimization results for various materials (1 – topology optimization with one 

orthotroic material phase, 2- topology optimization with two orthotropic material phases, 3 - topology 

optimization with two orthotropic material phases with orthotropy axes direction variation) 

№ material Predicting orientation Compliance, J Optimal distribution 

1 No 72.36  

2 No 35.49 

 

 
 

2 No 28.23 

 

 
 

3 Yes 12.67 

 

 
 

 

Conclusions 

In this paper, an algorithm for two-phase topology optimization was developed, taking 

into account the rotation of the axes of anisotropy (orthotropy). 

The distribution of the two isotropic phases was compared with the results from 

open sources. Based on the results of the comparison, it can be said that the phase 

distributions are qualitatively the same. 

The alignment of orthotropy direction angles along the main directions of the stress 

and strain tensor was compared. Alignment along the main directions of the stress tensor 
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is a more efficient method, which is why it was used in optimizing a heterogeneous 

material with two orthotropy phases and a void. 

The developed algorithm was tested on the problem of topology optimization of 

the plate. An optimal distribution of the material with two orthotropic phases and a void 

was obtained, in which the phase distribution was similar to the isotropic case, and the 

orthotropy axes were consistent with a "rod-like" topology. 
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