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ABSTRACT  
One of the key tasks in the study of two-dimensional nanomaterials (fullerenes, nanotubes, graphene) is to explore 
their mechanical properties: bending, vibrations, and stability. For the study of such problems, it is essential to 
construct both microscopic and macroscopic models of the deformation behavior of such materials. Based on the 
three-dimensional moment theory of elasticity, the moment-membrane theory of elastic cylindrical shells is 
constructed as a continual model of deformations of a single-layer carbon nanotube.  The axisymmetric deformation 
of an elastic cylindrical shell is studied, and numerical results are presented. Further, a moment-membrane technical 
theory of elastic cylindrical shells is constructed, on the basis of which the stability of the initially axial compressed 
state of a carbon nanotube is studied, and the critical load value is numerically determined. 

KEYWORDS  

carbon nanotube • continual model • moment-membrane theory of cylindrical shells 

axisymmetric statics problem • stability problem • critical load value 

Acknowledgements. The work was carried out under contract N: 10-12/23-I/SHSU funded by the Science 

Committee of RA. 

The article was prepared based on the report presented at the Symposium "Micromechanics of Functional 

Materials" at the XIII All-Russian Congress on Theoretical and Applied Mechanics. 

Citation: Sargsyan SH. Moment-membrane theory of elastic cylindrical shells as a continual model of 

deformation of a single-layer carbon nanotube. Materials Physics and Mechanics. 2024;52(1): 26–38.  

http://dx.doi.org/10.18149/MPM.5212024_3  

 

 

Introduction 

The emergence of two-dimensional nanomaterials (fullerene [1], carbon nanotube [2], 

graphene [3]) has resulted in a need to construct continual models which enable the study 

of their deformations. 

In [4–7], the consideration of the moment interaction between atoms in the crystal 

lattices of two-dimensional nanomaterials (and other nano-objects) has been justified. 

Also, the three-dimensional moment theory of elasticity (with independent fields of 

displacements and rotations) has been established as a continual model for deformations 

of the considered nanomaterials. 

Studies [4–7] have naturally led to a topical problem concerning the construction 

of a model of thin plates or shells that can adequately describe the deformations of two-

dimensional nanomaterials, based on the three-dimensional moment theory of elasticity. 

We note that the general model of constructing the models of thin shells and plates 

based on the moment theory of elasticity are developed in [8,9], where a detailed review 

of the works in the field are presented. The general remark to these models is that the 

six elastic constants of the material based on the moment theory of elasticity have not 

been defined in them. 

http://dx.doi.org/10.18149/MPM.5212024_
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In this case we note that a new approach has been taken in [10] for the construction 

of an adequate model of two-dimensional nanomaterials based on the moment theory of 

elasticity.   

In [10], the corresponding one-dimensional continual-beam model has been 

constructed, based on the study of the general deformation of a linear atomic chain, when 

the force interaction between its atoms is non-central and a moment interaction is in 

place. Considering the crystal graphene lattice, in the cell of its periodicity, by replacing 

interatomic interactions with the indicated beam model, a discrete-continual model of a 

graphene is constructed. Further, by passing the limit, a continual linear model of its 

deformation is constructed. In the same paper, it is stated that the constructed model of 

a graphene is completely identical to the so-called moment-membrane theory of elastic 

thin plates [11,12]. By comparing the two models, all elastic constants of the indicated 

theory of plates are numerically determined (through the physical parameters of the 

discrete model of a graphene). It is evident that the constructed moment-membrane 

linear theory of elastic thin plates (a) - plane stress state, (b) - transverse bending) with 

certain elastic constants is a continual model of graphene deformations ((a) - for its 

deformation in its own plane, (b) - for its transverse bending from its own plane). This 

opens a new avenue for studying various applied deformation problems of statics, 

dynamics and stability of a graphene sheet. 

It is important to note that the main feature of the moment-membrane theory of 

elastic plates is the property of a uniform distribution of displacements, free rotations, 

stresses and moment stresses along the thickness of the plate. The property is 

characteristic for a thin membrane (it is no coincidence that in many publications (for 

example [13]), the term ‘graphene membrane’ is used for a ‘graphene’). 

Considering that a single-layer carbon nanotube is an extended structure in the form 

of a hollow cylinder (consisting of one graphite layer or a graphene rolled into a tube [14], 

with a hexagonal organization of carbon atoms), it is appropriate to develop the ideas of 

works [10–12] and construct a moment-membrane theory of elastic cylindrical shells as a 

continual model of deformation of a single-layer carbon nanotube. 

 

Main hypotheses. Kinematic model of deformations of moment-membrane 

theory of cylindrical shells. Equations of strain compatibility 

As a basis, we will consider equations and boundary conditions of the three-dimensional 

moment linear theory of elasticity with independent fields of displacements and 

rotations [15] in the region of a cylindrical shell with thickness 2ℎ. A cylindrical 

coordinate system 𝑥, 𝜃, 𝑧 is considered, where 𝑥, 𝜃 represent the lines of the main 

curvatures of the middle surface of the shell (𝑧 = 0), and the rectilinear axis 𝑧is directed 

along the normal to this surface. In this case, for Lame coefficients of the middle surface, 

we take: 𝛢1 = 1, 𝛢2 = 𝑅. 

To study the deformations of a single-layer carbon nanotube, below, based on the 

three-dimensional moment theory of elasticity, as well as based on certain hypotheses, 

we will consider the basic equations of the moment-membrane theory of elastic 

cylindrical shells. 
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The hypotheses adopted below can be considered as kinematic and static: 

1. The essence of the kinematic hypothesis is the assumption about the constancy of all 

components of the displacement and free rotation vectors along the coordinate 𝑧  

(i.e., their uniform distribution over the thickness of the shell): 

𝑉𝑖 = 𝑢𝑖(𝑥, 𝜃),   𝑉3 = 𝑤(𝑥, 𝜃),   𝜔𝑖 = 𝛺𝑖(𝑥, 𝜃),   𝜔3 = 𝛺3(𝑥, 𝜃),    𝑖 = 1,2.                                                   (1)                                        

2. In the physical relations of the moment theory of elasticity [15], stresses 𝜎33, 𝜎3𝑖and 

moment stresses 𝜇33, 𝜇3𝑖 can be neglected with respect to 𝜎𝑖𝑖 , 𝜎𝑖3, 𝜇𝑖𝑖, 𝜇𝑖3(𝑖 = 1,2). 

3. It is accepted that the shell is thin (
2ℎ

𝑅
<< 1). 

We note that the formulated hypotheses correspond to the initial approximation of 

the result of the asymptotic method of integration of the three-dimensional boundary 

value problem of the moment elasticity theory in a thin shell region [16,17]. 

Based on hypotheses (1) and (3), from the corresponding geometric relations of the 

moment theory of elasticity [15] (in the case of cylindrical coordinates) for the 

components of the tensors of deformations and bending torsions, we have:  
𝛾11(𝑥, 𝜃, 𝑧) = 𝛤11(𝑥, 𝜃),   𝛾22(𝑥, 𝜙, 𝑧) = 𝛤22(𝑥, 𝜙),   𝛾12(𝑥, 𝜙, 𝑧) = 𝛤12(𝑥, 𝜙),  
𝛾21(𝑥, 𝜙, 𝑧) = 𝛤21(𝑥, 𝜙),   𝛾13(𝑥, 𝜙, 𝑧) = 𝛤13(𝑥, 𝜙),   𝛾23(𝑥, 𝜙, 𝑧) = 𝛤23(𝑥, 𝜙),                                        

𝜒11(𝑥, 𝜙, 𝑧) = 𝑘11(𝑥, 𝜙),   𝜒22(𝑥, 𝜙, 𝑧) = 𝑘22(𝑥, 𝜙),   𝜒12(𝑥, 𝜙, 𝑧) = 𝑘12(𝑥, 𝜙),                                                   (2) 
𝜒21(𝑥, 𝜙, 𝑧) = 𝑘21(𝑥, 𝜙),   𝜒13(𝑥, 𝜙, 𝑧) = 𝑘13(𝑥, 𝜙),   𝜒23(𝑥, 𝜙, 𝑧) = 𝑘23(𝑥, 𝜙),  
𝜒31 = 𝜒32 = 𝜒33 = 0,    𝛾31 = 𝛾32 = 𝛾33 = 0,                                 

where 

𝛤11 =
𝜕𝑢1

𝜕𝑥
,   Γ22 =

1

𝑅

𝜕𝑢2

𝜕𝜃
+

𝑤

𝑅
,   Γ12 =

𝜕𝑢2

𝜕𝑥
− 𝛺3,   Γ21 =

1

𝑅

𝜕𝑢1

𝜕𝜃
+ 𝛺3,  

𝛤13 =
𝜕𝑤

𝜕𝑥
+ 𝛺2,   Γ23 =

1

𝑅

𝜕𝑤

𝜕𝜃
−

𝑢2

𝑅
− 𝛺1,                                            (3)  

𝑘11 =
𝜕𝛺1

𝜕𝑥
,   𝑘22 =

1

𝑅

𝜕𝛺2

𝜕𝜃
+

𝛺3

𝑅
,   𝑘12 =

𝜕𝛺2

𝜕𝑥
,   𝑘21 =

1

𝑅

𝜕𝛺1

𝜕𝜃
,  

𝑘13 =
𝜕𝛺3

𝜕𝑥
,   𝑘23 =

1

𝑅

𝜕𝛺3

𝜕𝜃
−

𝛺2

𝑅
.  

Here 𝛤11, 𝛤22, 𝛤12, 𝛤21, 𝛤13, 𝛤23-are components of deformation tensor, 

𝑘11, 𝑘22, 𝑘12, 𝑘21, 𝑘13, 𝑘23-components of the bending-torsion tensor in the moment-

membrane theory of thin cylindrical shells. 

Based on Eqs. (1)-(3), it is easy to verify that the components of the displacement 

and free rotation vectors, the components of the deformation and bending-torsion 

tensors are constant by 𝑧coordinate functions (i.e. they are all uniformly distributed over 

the thickness of the cylindrical shell). 

It should be noted that Eqs. (1)-(3) determine the kinematic model of deformations 

in the moment-membrane theory of thin cylindrical shells. 

Twelve quantities 𝛤11, 𝛤22, 𝛤12, 𝛤21, 𝛤13, 𝛤23, 𝑘11, 𝑘22, 𝑘12, 𝑘21, 𝑘13, 𝑘23are expressed 

through six functions 𝑢1, 𝑢2, 𝑤, 𝛺1, 𝛺2, 𝛺3 by Eq. (3). These twelve quantities are 

interconnected by six equations, which are called the equations of strain compatibility of 

the middle surface in the moment-membrane theory of thin cylindrical shells (which can 

be obtained from Eq. (3), excluding the quantities 𝑢1, 𝑢2, 𝑤, 𝛺1, 𝛺2, 𝛺3): 
1

𝑅

𝜕𝛤11

𝜕𝜃
−

𝜕𝛤21

𝜕𝑥
+ 𝑘13 = 0,   

𝜕𝛤22

𝜕𝑥
−

1

𝑅

𝜕𝛤12

𝜕𝜃
−

𝛤13

𝑅
− 𝑘23 = 0,                                                       (4) 

𝜕𝛤23

𝜕𝑥
−

1

𝑅

𝜕𝛤13

𝜕𝜃
+

𝛤12

𝑅
+ 𝑘11 + 𝑘22 = 0,  

1

𝑅

𝜕𝑘11

𝜕𝜃
−

𝜕𝑘21

𝜕𝑥
= 0,   

𝜕𝑘22

𝜕𝑥
−

1

𝑅

𝜕𝑘12

𝜕𝜃
−

𝑘13

𝑅
= 0,                                                                              (5) 

𝜕𝑘23

𝜕𝑥
−

1

𝑅

𝜕𝑘13

𝜕𝜃
+

𝑘12

𝑅
= 0.  
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Unit forces and moments of the moment-membrane theory of elastic 

cylindrical shells. Elasticity relations. Equilibrium equations 

We consider an element, with the lengths of the arcs of the shell middle surface, extracted 

from the shell by normal sections drawn in the direction of the curvature lines. In these 

sections, there are tangential normal 𝜎11,  𝜎22, tangential tangents 𝜎12,  𝜎21 and transverse 

tangents stresses 𝜎13,  𝜎23, as well as corresponding moment stresses 

𝜇11,  𝜇22,  𝜇12,  𝜇21,  𝜇13,  𝜇23, which will be distributed uniformly over the thickness of the 

shell. This is easy to verify if we consider the physical relations of the moment theory of 

elasticity [15], hypothesis (2) and geometric relations (2)-(3): 

𝜎11 =
𝐸

1−𝜈2
(𝛤11 + 𝜈𝛤22),   𝜎22 =

𝐸

1−𝜈2
(𝛤22 + 𝜈𝛤11),   𝜎12 = (𝜇 + 𝛼)(𝛤12 + 𝜂1 ⋅ 𝛤22),  

𝜎21 = (𝜇 + 𝛼)(𝛤21 + 𝜂1 ⋅ 𝛤12),   𝜎13 = �̃� ⋅ 𝛤12,   𝜎23 = �̃� ⋅ 𝛤23,   𝜂1 =
𝜇−𝛼

𝜇+𝛼
,   

𝜇11 = (𝛾 + 휀)[(1 + 2𝜂2)𝑘11 + 𝜂2 ⋅ 𝑘22],     

𝜇22 = (𝛾 + 휀)[(1 + 2𝜂2)𝑘22 + 𝜂2 ⋅ 𝑘11],   𝜂2 =
𝛾−𝜀

𝛾+𝜀
,           (6)  

𝜇12 = (𝛾 + 휀)(𝑘12 + 𝜂2 ⋅ 𝑘21),    
 𝜇21 = (𝛾 + 휀)(𝑘21 + 𝜂2 ⋅ 𝑘12),     
𝜇13 = 𝐵 ⋅ 𝑘13,   𝜇23 = 𝐵 ⋅ 𝑘23,  

where [10]: 

Е,   𝜈,   𝜇 =
𝐸

2(1+𝜈)
,   𝛼,   �̃� =

4𝜇𝛼

𝜇+𝛼
,   𝛾,   휀,   𝛽 =

𝛾−𝜀

𝛾+𝜀
2𝛾,   𝐵 =

4𝛾𝜀

𝛾+𝜀
                                                              (7)  

are the elastic constants of the moment theory of elasticity for two-dimensional 

nanomaterials. 

Now, instead we introduce integral characteristics - forces and moments - statically 

equivalent to the components of the stress tensor and the moment stress tensor (6). 

Considering the thinness of the shell, we have: 

𝑇11 = ∫ 𝜎11𝑑𝑧 = 2
ℎ

−ℎ
𝜎11ℎ,   𝑇22 = ∫ 𝜎22𝑑𝑧 = 2

ℎ

−ℎ
𝜎22ℎ,   𝑆12 = ∫ 𝜎12𝑑𝑧 = 2

ℎ

−ℎ
𝜎12ℎ,      

𝑆21 = ∫ 𝜎21𝑑𝑧 = 2
ℎ

−ℎ
𝜎21ℎ, 𝑁13 = ∫ 𝜎13𝑑𝑧 = 2

ℎ

−ℎ
𝜎13ℎ,   𝑁23 = ∫ 𝜎23𝑑𝑧 = 2

ℎ

−ℎ
𝜎23ℎ,             (8)  

𝐿11 = ∫ 𝜇11𝑑𝑧 = 2
ℎ

−ℎ
𝜇11ℎ,   𝐿22 = ∫ 𝜇22𝑑𝑧 = 2

ℎ

−ℎ
𝜇22ℎ,   𝐿12 = ∫ 𝜇12𝑑𝑧 = 2

ℎ

−ℎ
𝜇12ℎ,     

𝐿21 = ∫ 𝜇21𝑑𝑧 = 2
ℎ

−ℎ
𝜇21ℎ,  𝐿13 = ∫ 𝜇13𝑑𝑧 = 2

ℎ

−ℎ
𝜇13ℎ,   𝐿23 = ∫ 𝜇23𝑑𝑧 = 2

ℎ

−ℎ
𝜇23ℎ.       

With the help of Eq. (6), as well as Eq. (8), we obtain the physical relations of 

elasticity of the moment-membrane theory of cylindrical shells: 
𝑇11 = �̃�∗(𝛤11 + 𝜈 ⋅ 𝛤22),   𝑇22 = �̃�∗(𝛤22 + 𝜈 ⋅ 𝛤11),     
𝑆12 = 𝐷2(𝛤12 + 𝜂1 ⋅ 𝛤21),   𝑆21 = 𝐷2(𝛤21 + 𝜂1 ⋅ 𝛤12),  𝑁13 = 𝐷1 ⋅ 𝛤13,     

𝑁23 = 𝐷1 ⋅ 𝛤23, 𝐿11 = 𝐷′[(1 + 2𝜂2)𝑘22 + 𝜂2 ⋅ 𝑘11],   𝐿22 = 𝐷′[(1 + 2𝜂2)𝑘22 + 𝜂2 ⋅ 𝑘11],     (9) 
𝐿12 = 𝐷′(𝑘12 + 𝜂2 ⋅ 𝑘21),   𝐿21 = 𝐷′(𝑘21 + 𝜂2 ⋅ 𝑘12), 𝐿13 = 𝐵∗ ⋅ 𝑘13,   𝐿23 = 𝐵∗ ⋅ 𝑘23,           

where 

Е∗ = 2𝐸ℎ,   �̃�∗ =
Е∗

1−𝜈2 ,   𝐷2 = (𝜇 + 𝛼) ⋅ 2ℎ,   𝐷1 = 2�̃�ℎ,  𝐷′ = (𝛾 + 휀) ⋅ 2ℎ,   𝐵∗ = 2𝐵ℎ.                             (10) 
It should be noted that expressions (10) represent the stiffness characteristics of the 

moment-membrane theory of elastic cylindrical shells, the numerical values of which (in 

the current form) are determined in [10].  
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Fig. 1. Forces and moments acting on the shell element 

 

We now consider the equilibrium of an element of the middle surface of a cylindrical 

shell (Fig. 1), loaded with internal forces, moments and an externally distributed load. Based 

on the condition that the main vector and the main moment of the indicated forces, acting 

on the element, are equal to zero and after switching to scalar equations, the six equilibrium 

equations of the moment-membrane theory of elastic thin cylindrical shells are obtained: 
𝜕𝑇11

𝜕𝑥
+

1

𝑅

𝜕𝑆21

𝜕𝜃
= −𝑞1,   

1

𝑅

𝜕𝑇22

𝜕𝜃
+

𝜕𝑆12

𝜕𝑥
+

𝑁23

𝑅
= −𝑞2,  

𝑇22

𝑅
−

𝜕𝑁13

𝜕𝑥
−

1

𝑅

𝜕𝑁23

𝜕𝜃
= 𝑞3,                                                            (11) 

𝜕𝐿11

𝜕𝑥
+

1

𝑅

𝜕𝐿21

𝜕𝜃
+ 𝑁23 = −𝑚1,   

1

𝑅

𝜕𝐿22

𝜕𝜃
+

𝜕𝐿12

𝜕𝑥
+

𝐿23

𝑅
− 𝑁13 = −𝑚2,   

𝐿22

𝑅
−

𝜕𝐿13

𝜕𝑥
−

1

𝑅

𝜕𝐿23

𝜕𝜃
− (𝑆12 − 𝑆21) = 𝑚3,                      

where 𝑞𝑘(𝑥, 𝜙),  𝑚𝑘(𝑥, 𝜙),  𝑘 = 1,2,3 are surface density components of externally 

distributed forces and moments.  

Geometric relations (3), elasticity relations (9) and equilibrium equations (11) are 

the basic equations of the moment-membrane theory of elastic thin cylindrical shells, at 

the same time, the basic equations of the continual model of deformations of a single-

layer carbon nanotube. 

By substituting geometric relations (3) into elasticity relations (9) and into the 

obtained equilibrium equations (11) (at 𝑚𝑘 = 0,  𝑘 = 1,2,3), we reduce the problem to a 

resolving system of six differential equations with respect to generalized displacements 

𝑢𝑖 , 𝑤, 𝛺𝑖 , 𝛺3, 𝑖 = 1,2, , the order of which is twelve: 
�̃�11𝑢1 + �̃�12𝑢2 + �̃�13𝑤 + �̃�14𝛺1 + �̃�15𝛺2 + �̃�16𝛺3 = −

𝑞1

�̃�∗
,  

�̃�21𝑢1 + �̃�22𝑢2 + �̃�23𝑤 + �̃�24𝛺1 + �̃�25𝛺2 + �̃�26𝛺3 = −
𝑞2

�̃�∗
,  

�̃�31𝑢1 + �̃�32𝑢2 + �̃�33𝑤 + �̃�34𝛺1 + �̃�35𝛺2 + �̃�36𝛺3 =
𝑞3

�̃�∗
, (12)                                                

�̃�41𝑢1 + �̃�42𝑢2 + �̃�43𝑤 + �̃�44𝛺1 + �̃�45𝛺2 + �̃�46𝛺3 = 0,  
�̃�51𝑢1 + �̃�52𝑢2 + �̃�53𝑤 + �̃�54𝛺1 + �̃�55𝛺2 + �̃�56𝛺3 = 0,  
�̃�61𝑢1 + �̃�62𝑢2 + �̃�63𝑤 + �̃�64𝛺1 + �̃�65𝛺2 + �̃�66𝛺3 = 0,                                                    
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where the coefficients �̃�𝑘𝑚 
are partial differential operators in the following form: 

�̃�11 =
𝜕2

𝜕𝑥2 +
𝐷2

�̃�∗

1

𝑅2

𝜕2

𝜕𝜃2 ,   �̃�12 = �̃�21 = (𝜈 +
𝐷2𝜂1

�̃�∗
)

1

𝑅

𝜕2

𝜕𝑥𝜕𝜃
,   �̃�13 = �̃�31 =

𝜈

𝑅

𝜕

𝜕𝑥
,  

�̃�14 = �̃�41 = 0,   �̃�15 = �̃�51 = 0,   �̃�16 = �̃�61 =
𝐷2

�̃�∗
(1 − 𝜂1)

1

𝑅

𝜕

𝜕𝜃
,  

�̃�22 =
𝐷2

�̃�∗

𝜕2

𝜕𝑥2 +
1

𝑅2

𝜕2

𝜕𝜃2 −
𝐷2

�̃�∗⋅𝑅2 ,   �̃�23 = �̃�32 =
1

𝑅
(1 +

𝐷1

�̃�∗
)

1

𝑅

𝜕

𝜕𝜃
,  

�̃�24 = �̃�42 = −
𝐷1

�̃�∗⋅𝑅
,   �̃�25 = �̃�52 = 0,   �̃�26 = �̃�62 = −

𝐷2

�̃�∗
(1 − 𝜂1)

𝜕

𝜕𝑥
,             

�̃�33 = −
𝐷1

�̃�∗
(

𝜕2

𝜕𝑥2 +
1

𝑅2

𝜕2

𝜕𝜃2) ,   �̃�34 = �̃�43 =
𝐷1

�̃�∗
⋅

1

𝑅

𝜕

𝜕𝜃
,  (13) 

�̃�35 = �̃�53 = −
𝐷1

�̃�∗

𝜕

𝜕𝑥
,   �̃�36 = �̃�63 = 0,   �̃�44 =

𝐷′(1+2𝜂2)

�̃�∗

𝜕2

𝜕𝑥2 +
𝐷′

�̃�∗
⋅

1

𝑅2

𝜕2

𝜕𝜃2 −
𝐷1

�̃�∗
,                 

�̃�45 = �̃�54 =
2𝐷′𝜂2

�̃�∗
⋅

1

𝑅

𝜕2

𝜕𝑥𝜕𝜃
,   �̃�46 = �̃�64 =

𝐷′⋅𝜂2

�̃�∗⋅𝑅

𝜕

𝜕𝑥
,  

�̃�55 =
𝐷′

�̃�∗

𝜕2

𝜕𝑥2 +
𝐷′(1+2𝜂2)

�̃�∗
⋅

1

𝑅2

𝜕2

𝜕𝜃2 − (
𝐵∗

�̃�∗𝑅2 +
𝐷1

�̃�∗
),  

�̃�56 = �̃�65 = [
𝐷′(1+2𝜂2)

�̃�∗⋅𝑅
+

𝐵∗

�̃�∗⋅𝑅
] ⋅

1

𝑅

𝜕

𝜕𝜃
,  

�̃�66 = −
𝐵∗

�̃�∗
⋅

𝜕2

𝜕𝑥2 −
𝐵∗

�̃�∗
⋅

1

𝑅2

𝜕2

𝜕𝜃2 + [
2𝐷2(1−𝜂1)

�̃�∗
+

𝐷′(1+2𝜂2)

�̃�∗⋅𝑅2 ].  

When solving specific problems, this system should be attached by boundary conditions, 

the total number of which is equal to six at each of the ends 𝑥 = 0, and 𝑥 = 𝑙of the shell (𝑙 is 

the length of the shell), as well as periodicity conditions (due to a closed shell that is considered). 

 

Potential energy of deformation of the middle surface. The principle of 

possible displacements in the moment-membrane theory of elastic thin 

cylindrical shells. Boundary conditions 

In accordance with the general relations of the three-dimensional moment theory of 

elasticity [15], by applying the expression for the potential energy of the deformation of 

a shell which we consider a three-dimensional body and, further, by applying Eq. (2) for 

the components of the deformations and bending-torsion tensors, as well as Eq. (8) and 

hypothesis (3), the potential energy of deformation in the moment-membrane theory of 

elastic thin cylindrical shells will be expressed as follows: 

𝑈0 =
1

2
∬ (𝑇11 ⋅ 𝛤11 + 𝑇22 ⋅ 𝛤22 + 𝑆12 ⋅ 𝛤12 + 𝑆21 ⋅ 𝛤21 + 𝑁13 ⋅ 𝛤13 + 𝑁23 ⋅ 𝛤23 + 𝐿11 ⋅ 𝑘11 +

(𝑠)
  

+𝐿22 ⋅ 𝑘22 + 𝐿12 ⋅ 𝑘12 + 𝐿21 ⋅ 𝑘21 + 𝐿13 ⋅ 𝑘13 + 𝐿23 ⋅ 𝑘23)𝑅𝑑𝑥𝑑𝜃,                                                          (14)                   

where (𝑠) -is an area of the middle surface. 

If the expressions for forces and moments are used with the help of elasticity 

relations (9), the surface density of the potential energy of the deformation of the 

moment-membrane theory of elastic thin cylindrical shells will be expressed as follows: 
𝑊0 =

1

2
⟨�̃�∗(𝛤11

2 + 𝛤22
2 + 2𝜈 ⋅ 𝛤11 ⋅ 𝛤22) + 𝐷2(𝛤12

2 + 𝛤21
2 + 2𝜂1 ⋅ 𝛤12 ⋅ 𝛤21) + 𝐷1(𝛤13

2 + 𝛤23
2 )    

+𝐷′{[(1 + 2𝜂2)(𝑘11
2 + 𝑘22

2 ) + 2𝜂2𝑘11𝑘22] + (𝑘12
2 + 𝑘21

2 + 2𝜂2𝑘12𝑘21)]} + 𝐵∗(𝑘13
2 + 𝑘23

2 )⟩.                            (15) 

Using the law of elasticity (9), it is easy to verify that: 

Т11 =
𝜕𝑊0

𝜕𝛤11
, . . . , 𝑆21 =

𝜕𝑊0

𝜕𝛤21
, . . . , 𝐿12 =

𝜕𝑊0

𝜕𝑘12
, … .                   (16) 

Thus, the function 𝑊0 can be considered as an elastic potential of forces and 

moments. 

In all cases, when there is an elastic potential, the principle of possible 

displacements is valid. According to the principle, the actual state of equilibrium of an 

elastic body differs from adjacent geometrically possible states in that for any infinitely 
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small possible displacements from the equilibrium position, the variation of the total 

energy of the system is equal to zero. 

If we write the principle of possible displacements of the shell, considering it as a 

three-dimensional body [15], applying formulas for displacements and rotations (1), 

components of bending deformation and bending-torsion tensors (2), stresses and 

moment stresses (6), the equation of the principle of possible displacements of the 

moment-membrane theory of elastic thin cylindrical shells will be obtained: 

∬ (𝑇11 ⋅ 𝛿𝛤11 + 𝑇22 ⋅ 𝛿𝛤22 + 𝑆12 ⋅ 𝛿𝛤12 + 𝑆21 ⋅ 𝛿𝛤21 + 𝑁13 ⋅ 𝛿𝛤13 + 𝑁23 ⋅ 𝛿𝛤23 +
(𝑠)

 (17) 
+𝐿11 ⋅ 𝛿𝑘11 + 𝐿22 ⋅ 𝛿𝑘22 + 𝐿12 ⋅ 𝛿𝑘12 + 𝐿21 ⋅ 𝛿𝑘21 + 𝐿13 ⋅ 𝛿𝑘13 + 𝐿23 ⋅ 𝛿𝑘23)𝑅𝑑𝑥𝑑𝜃 − 𝛿𝐴0 = 0,  

where 𝛿𝐴0 is the work of external forces and moments on possible displacements and 

rotations 𝛿𝑢1, 𝛿𝑢2, 𝛿𝑤, 𝛿𝛺1, 𝛿𝛺2, 𝛿𝛺3: 
𝛿𝐴0 = ∬ (𝑞1 ⋅ 𝛿𝑢1 + 𝑞2 ⋅ 𝛿𝑢2 + 𝑞3 ⋅ 𝛿𝑤 + 𝑚1 ⋅ 𝛿𝛺1 + 𝑚2 ⋅ 𝛿𝛺2 + 𝑚3 ⋅ 𝛿𝛺3)𝑅𝑑𝑥𝑑𝜃 −

(𝑠)
  

− ∫ (�̄�11 ⋅ 𝛿𝑢1 + �̄�12 ⋅ 𝛿𝑢2 + �̄�13 ⋅ 𝛿𝑤 + �̄�11 ⋅ 𝛿𝛺1 + �̄�12 ⋅ 𝛿𝛺2 + �̄�13 ⋅ 𝛿𝛺3)
𝜃0+2𝜋

𝜃0
|

𝑥=0
𝑅𝑑𝜃 +                       (18) 

+ ∫ (�̄�11 ⋅ 𝛿𝑢1 + �̄�12 ⋅ 𝛿𝑢2 + �̄�13 ⋅ 𝛿𝑤 + �̄�11 ⋅ 𝛿𝛺1 + �̄�12 ⋅ 𝛿𝛺2 + �̄�13 ⋅ 𝛿𝛺3)
𝜃0+2𝜋

𝜃0
|

𝑥=𝑙
𝑅𝑑𝜃.                   

Due to the independence of the variations𝛿𝑢1, 𝛿𝑢2, 𝛿𝑤, 𝛿𝛺1, 𝛿𝛺2, 𝛿𝛺3, from the 

variational equation (17), the equilibrium equations (11) follow as Euler equations, and 

static boundary conditions of the moment-membrane theory of elastic thin closed 

cylindrical shells follow as natural boundary conditions: 

𝑇11 = �̄�11,  𝑆12 = �̄�12,  𝑁13 = �̄�13,  𝐿11 = �̄�11,  𝐿12 = �̄�12,  𝐿13 = �̄�13, at 𝑥 = 0, 𝑥 = 𝑙.                  (19) 

The boundary conditions in generalized displacements will be as follows: 
𝑢1(𝑥, 𝜃) = �̄�1(𝑥, 𝜃),  𝑢2(𝑥, 𝜃) = �̄�2(𝑥, 𝜃),  𝑤(𝑥, 𝜃) = �̄�(𝑥, 𝜙),  

𝛺1(𝑥, 𝜃) = �̄�1(𝑥, 𝜃),  Ω2(𝑥, 𝜃) = �̄�2(𝑥, 𝜃),  Ω3(𝑥, 𝜃) = �̄�3(𝑥, 𝜃), at 𝑥 = 0, 𝑥 = 𝑙.                                      (20) 

As noted, the order of the resolving system of Eq. (12) of the moment-membrane 

theory of cylindrical shells is equal to twelve, therefore six boundary conditions of the 

type (19) or (20) must be set on each edge of a closed cylindrical shell. There may also be 

mixed boundary conditions (for example, hinge support conditions). 

 

Axisymmetric deformation of a cylindrical shell 

Due to symmetry, we accept 𝑢2 = 0,  Ω1 = 0,  𝑞2 = 0. Quantities 𝑢1,  𝑤,  𝛺2,  𝛺3  will 

depend only on the coordinate 𝑥. 

The resolving system for axisymmetric deformation with respect to 𝑢1, 𝑤, 𝛺2 takes 

the following form: 
𝑑2𝑢1

𝑑𝑥2 +
𝜈

𝑅

𝑑𝑤

𝑑𝑥
= −

𝑞1

�̃�∗
, 

𝐷1

�̃�∗

𝑑2𝑤

𝑑𝑥2 −
𝑤

𝑅2 −
𝜈

𝑅

𝑑𝑢1

𝑑𝑥
+

𝐷1

�̃�∗
⋅

𝑑𝛺2

𝑑𝑥
= −

𝑞3

�̃�∗
, 

𝑑2𝛺2

𝑑𝑥2 − (
𝐷1

𝐷′
+

𝐵∗

𝐷′⋅𝑅2) 𝛺2 −
𝐷1

𝐷′
⋅

𝑑𝑤

𝑑𝑥
= 0.    (21) 

We note that for the axisymmetric problem we also obtain 𝛺3 ≡ 0. Further, a case 

is considered when 𝑞1 = 0. In that case, from the first equation of system (21) we obtain: 
𝑑𝑢1

𝑑𝑥
+

𝜈

𝑅
𝑤 = 𝐶0 = 𝑐𝑜𝑛𝑠𝑡.                       (22) 

This means that 𝑇11 = 𝑐𝑜𝑛𝑠𝑡. To be specific, we take 𝑇11 = 0, i.e. 
𝑑𝑢1

𝑑𝑥
= −

𝜈

𝑅
𝑤.                (23) 

Instead of system (21) we obtain: 
𝑑2𝑤

𝑑𝑥2 −
𝐸∗

𝐷1𝑅2 𝑤 +
𝑑𝛺2

𝑑𝑥
= −

𝑞3

𝐷1
, 𝐷′ ⋅

𝑑2𝛺2

𝑑𝑥2 − (
𝐵∗

𝑅2 + 𝐷1) 𝛺2 − 𝐷1
𝑑𝑤

𝑑𝑥
= 0.                     (24) 

From the equations of this system the following formula is obtained for 𝛺2: 

(
𝐵∗

𝑅2 + 𝐷1) 𝛺2 = 𝐷′ (−
𝑑3𝑤

𝑑𝑥3 +
𝐸∗

𝐷1𝑅2 ⋅
𝑑𝑤

𝑑𝑥
−

1

𝐷1

𝑑𝑞3

𝑑𝑥
) − 𝐷1

𝑑𝑤

𝑑𝑥
.                                           (25) 
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Using Eqs. (24) and (25), we arrive at the solution of the following inhomogeneous 

fourth-order differential equation for 𝑤: 
𝑑4𝑤

𝑑𝑥4 − (
𝐸∗

𝐷1𝑅2 +
𝐵∗

𝐷′𝑅2)
𝑑2𝑤

𝑑𝑥2 +
𝐸∗

𝐷′⋅𝐷1𝑅2 (
𝐵∗

𝑅2 + 𝐷1) 𝑤 =
1

𝐷′𝐷1
(

𝐵∗

𝑅2 + 𝐷1) 𝑞3 −
1

𝐷1

𝑑2𝑞3

𝑑𝑥2 .                          (26) 

Further, a case is considered when 𝑞3 = 𝑐𝑜𝑛𝑠𝑡. In that case, instead of Eq. (26) we obtain: 
𝑑4𝑤

𝑑𝑥4 − (
𝐸∗

𝐷1𝑅2 +
𝐵∗

𝐷′𝑅2)
𝑑2𝑤

𝑑𝑥2 +
𝐸∗

𝐷′⋅𝐷1𝑅2 (
𝐵∗

𝑅2 + 𝐷1) 𝑤 =
1

𝐷′𝐷1
(

𝐵∗

𝑅2 + 𝐷1) 𝑞3.                               (27) 

It is easy to see that a particular solution of Eq. (27) is: 

�̃� =
𝑞3𝑅2

𝐸∗
.                                 (28) 

Let us consider a specific example, where a carbon nanotube, when the ends 

𝑥 = 0,  𝑥 = 𝑙  are hinge supported, is loaded with a uniformly distributed normally applied 

surface load 𝑞3. The boundary conditions in this case will be: 

𝑤|𝑥=0
𝑥=𝑙

= 0,
𝜕𝛺2

𝜕𝑥
|

𝑥=0
𝑥=𝑙

= 0.                                                                                                        (29) 

The initial data has the following meanings: q3 = 10 nN/nm2, R = 10 nm, l = 100 nm. 

The stiffness characteristics of a nanotube are expressed numerically as follows [10]:  

𝐸∗ = 287 
nN

nm
;   𝐵∗ = 0.505 nN ⋅ nm,  𝐷1 = 86 

nN

nm
,   𝐷′ = 0.415 nN ⋅ nm.  

The general solution of differential Eq. (27) (considering Eq. (28)) has the form:  

𝑤(𝑥) = 3.484 + 𝑒−1.15𝑥(𝐶1 𝑐𝑜𝑠 1 . 14𝑥 + 𝐶 𝑠𝑖𝑛 12 . 14𝑥) + 𝑒1.15𝑥(𝐶3 𝑐𝑜𝑠 1 . 14𝑥 + 𝐶 𝑠𝑖𝑛 14 . 14𝑥), where 

𝐶1,  𝐶2,  𝐶3,  𝐶4 are constants. 

With the help of boundary conditions (29), by determining the constants of 

integration, the solution of the stated problem will finally be expressed as follows: 
𝑤(𝑥) = 3.484 + 𝑒−1.15𝑥(−3.484 𝑐𝑜𝑠 1 . 14𝑥 − 0.03 𝑠𝑖𝑛 1 . 14𝑥)  (nm).  

The maximum deflection of the nanotube is obtained at 𝑥 = 50 nm, 𝑤𝑚𝑎𝑥. 

 

Technical theory of cylindrical shells 

The integration of the system of differential equations of a cylindrical shell into 

generalized displacements based the moment-membrane theory (12) is a complex task, 

therefore, the resolving toolkit of the theory of cylindrical shells (similar to the classical 

theory of cylindrical shells [18,19]) should involve equations that are simpler in structure 

and provide sufficient accuracy in applied calculations. 

Such a simplified (technical) version of the theory of a cylindrical shell (the shell in 

this case has zero Gaussian curvature) is built on the basis of the following assumptions: 

a) following members in equilibrium equations (11) can be neglected: in the second one 

(as in the classical case) 
𝑁23

𝑅
, in the fifth one - 

𝐿23

𝑅
 and in the sixth one - 

𝐿22

𝑅
; 

b) following members in the geometrical relations (3) can be neglected: for 𝛤23 −
𝑢2

𝑅
  

(as in the classical case); 𝑘23 −
𝛺2

𝑅
;  𝑘22 −

𝛺3

𝑅
. 

In view of the above facts, the main relations of the theory of a cylindrical shell (3), 

Eq. (11) can be written as follows: 

Equilibrium equations: 
𝜕𝑇11

𝜕𝑥
+

1

𝑅

𝜕𝑆21

𝜕𝜃
= −𝑞1,   

1

𝑅

𝜕𝑇22

𝜕𝜃
+

𝜕𝑆22

𝜕𝑥
= −𝑞2, 

𝑇22

𝑅
−

𝜕𝑁13

𝜕𝑥
−

1

𝑅

𝜕𝑁23

𝜕𝜃
= 𝑞3,   

𝜕𝐿11

𝜕𝑥
+

1

𝑅

𝜕𝐿21

𝜕𝜃
+ 𝑁23 = −𝑚1,   

1

𝑅

𝜕𝐿22

𝜕𝜃
+

𝜕𝐿12

𝜕𝑥
− 𝑁13 = −𝑚2,               (30)  

𝜕𝐿13

𝜕𝑥
+

1

𝑅

𝜕𝐿23

𝜕𝜃
+ (𝑆12 − 𝑆21) = −𝑚3.       
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Geometrical relations: 

𝛤11 =
𝜕𝑢1

𝜕𝑥
,   Γ22 =

1

𝑅

𝜕𝑢2

𝜕𝜃
+

𝑤

𝑅
,   Γ12 =

𝜕𝑢2

𝜕𝑥
− 𝛺3,  

𝛤21 =
1

𝑅

𝜕𝑢1

𝜕𝜃
+ 𝛺3,   Γ13 =

𝜕𝑤

𝜕𝑥
+ 𝛺2,   Γ23 =

1

𝑅

𝜕𝑤

𝜕𝜃
− 𝛺1, (31) 

𝑘11 =
𝜕𝛺1

𝜕𝑥
,   𝑘22 =

1

𝑅

𝜕𝛺2

𝜕𝜃
,   𝑘12 =

𝜕𝛺2

𝜕𝑥
, 𝑘21 =

1

𝑅

𝜕𝛺1

𝜕𝜃
,   𝑘13 =

𝜕𝛺3

𝜕𝑥
,   𝑘23 =

1

𝑅

𝜕𝛺3

𝜕𝜃
.                                      

We add the elasticity relations (9) to the equilibrium equations (30) and geometric 

relations (31). 

From the geometric relations (31), by eliminating displacements 𝑢1, 𝑢2, we arrive at 

the following equations for the continuity of deformations: 
𝜕𝛤21

𝜕𝑥
−

1

𝑅

𝜕𝛤11

𝜕𝜃
− 𝑘13 = 0, 

1

𝑅

𝜕𝛤12

𝜕𝜃
−

𝜕𝛤22

𝜕𝑥
+ 𝑘23 = −

1

𝑅

𝜕𝑤

𝜕𝑥
.                (32) 

It should be mentioned that equations 
1

𝑅

𝜕𝑘11

𝜕𝜃
=

𝜕𝑘21

𝜕𝑥
,   

𝜕𝑘22

𝜕𝑥
=

1

𝑅

𝜕𝑘12

𝜕𝜃
 and 

1

𝑅

𝜕𝑘13

𝜕𝜃
=

𝜕𝑘23

𝜕𝑥
 

are automatically satisfied.  

Let us consider a more essential case of loading the cylindrical shell, when 
𝑞3 = 𝑞, 𝑞1 = 𝑞2 = 𝑚1 = 𝑚2 = 𝑚3 = 0. 

Introducing auxiliary functions 𝛷1and 𝛷2 by formulas: 

𝑇11 =
1

𝑅

𝜕𝛷1

𝜕𝜃
, 𝑆21 = −

𝜕𝛷1

𝜕𝑥
, 𝑇22 =

𝜕𝛷2

𝜕𝑥
, 𝑆12 = −

1

𝑅

𝜕𝛷2

𝜕𝜃
,                                         (33) 

the first two equilibrium equations (30) are identically satisfied. 

Let us consider the sixth equilibrium equation from the system (30): 
𝜕𝐿13

𝜕𝑥
+

1

𝑅

𝜕𝐿23

𝜕𝜃
+ (𝑆12 − 𝑆21) = 0.                                          (34) 

Function 𝜓 is introduced by formulas: 

𝐿13 =
𝜕𝜓

𝜕𝑥
, 𝐿23 =

1

𝑅

𝜕𝜓

𝜕𝜃
.                                      (35)  

By considering Eq. (33) for 𝑆12 and 𝑆21, as well as by satisfying Eq. (34), we arrive at 

the equality: 
𝜕

𝜕𝑥
(

𝜕𝜓  

𝜕𝑥
+ 𝛷1) =

1

𝑅

𝜕

𝜕𝜃
(𝛷2 −

1

𝑅

𝜕𝜓

𝜕𝜃
).                                 (36)  

Now, if we introduce the function 𝜙 according to the formulas: 

𝛷2 −
1

𝑅

𝜕𝜓

𝜕𝜃
=

𝜕𝜙

𝜕𝑥
,   

𝜕𝜓

𝜕𝑥
+ 𝛷1 =

1

𝑅

𝜕𝜙

𝜕𝜃
.                                 (37) 

Eq. (34) will be identically satisfied. 

For efforts 𝑇11, 𝑇22, 𝑆12, 𝑆21 and moments 𝐿13, 𝐿23, we finally have: 

𝑇11 =
1

𝑅2

𝜕2𝜙

𝜕𝜃2 −
1

𝑅

𝜕2𝜓

𝜕𝑥𝜕𝜃
,   𝑇22 =

𝜕2𝜙

𝜕𝑥2 +
1

𝑅

𝜕2𝜓

𝜕𝑥𝜕𝜃
,  

𝑆21 = −
1

𝑅

𝜕2𝜙

𝜕𝑥𝜕𝜃
+

𝜕2𝜓

𝜕𝑥2 ,   𝑆12 = −
1

𝑅

𝜕2𝜙

𝜕𝑥𝜕𝜃
−

1

𝑅2

𝜕2𝜓

𝜕𝜃2 , (38) 

𝐿13 =
𝜕𝜓

𝜕𝑥
,   𝐿23 =

1

𝑅

𝜕𝜓

𝜕𝜃
.                              

For the indicated forces and moments, by applying Eq. (38), as noted above, the first 

two and the sixth equilibrium equations from the system (30) are identically satisfied. As 

a result of the replacement of forces and moments through generalized displacements 

𝑤, 𝛺1, 𝛺2 and functions 𝜙 and 𝜓,  the other three equations from the system (30), with 

the help of Eq. (38), take the form: 
1

𝑅
(

𝜕2𝜙

𝜕𝑥2 +
1

𝑅

𝜕2𝜓

𝜕𝑥𝜕𝜃
) − 𝐷1𝛥𝑤 − 𝐷1 (

𝜕𝛺2

𝜕𝑥
−

1

𝑅2

𝜕𝛺1

𝜕𝜙
) = 𝑞,  

𝛥𝛺1 + 2𝜂2
𝜕

𝜕𝑥
(

𝜕𝛺1

𝜕𝑥
+

1

𝑅

𝜕𝛺2

𝜕𝜃
) +

𝐷1

𝐷′
(

1

𝑅

𝜕𝑤

𝜕𝜃
− 𝛺1) = 0,  (39) 

𝛥𝛺2 + 2𝜂2
1

𝑅

𝜕

𝜕𝜃
(

1

𝑅

𝜕𝛺2

𝜕𝜃
+

𝜕𝛺1

𝜕𝑥
) −

𝐷1

𝐷′
(

𝜕𝑤

𝜕𝑥
+ 𝛺2) = 0,                                             

where 

𝛥(⋅) =
𝜕2(⋅)

𝜕𝑥2 +
1

𝑅2

𝜕2(⋅)

𝜕𝜃2 .                                                                                                            (40) 
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Now the angles of free rotation 𝛺1and 𝛺2will be represented as follows [19-21]: 

𝛺1 = −
1

𝑅

𝜕𝐺

𝜕𝜃
+

𝜕𝜒

𝜕𝑥
,  Ω2 =

𝜕𝐺

𝜕𝑥
+

1

𝑅

𝜕𝜒

𝜕𝜃
,                                                        (41) 

where 𝐺 and 𝜒 are auxiliary functions to be determined. 

By substituting Eq. (41) into the second and third equations from the system (39), it 

is easy to see that for the function 𝜒 we arrive at the solution of the following Helmholtz 

equation: 

𝛥𝜒 − �̃�2 ⋅ 𝜒 = 0,                                                                                                                  (42)  

where 

�̃�2 =
𝐷1

𝐷′(1+2𝜂2)
.                                                      (43) 

To determine the function 𝐺, we obtain the following equation: 

𝐺 = −
1

𝐷1
(𝐷′𝛥𝑤 + 𝐷1𝑤) +

𝐷′

𝐷1
2 (𝛥𝑘

′ 𝜙 + 𝛥𝑘
″ 𝜓) −

𝐷′

𝐷1
2 𝑞.                    (44) 

In addition, if the second equation from the system (39) is differentiated with 

respect to the operator 
1

𝑅

𝜕

𝜕𝜃
,  while the third one- with respect to 

𝜕

𝜕𝑥
 , the second equation 

is subtracted from the obtained first equality, by using the first equation from system (39), 

we arrive at the following equation: 

𝐷′𝛥𝛥𝑤 +
1

𝑅
(1 −

𝐷′

𝐷1
𝛥) (

𝜕2𝜙

𝜕𝑥2 +
1

𝑅

𝜕2𝜓

𝜕𝑥𝜕𝜃
) = 𝑞 −

𝐷′

𝐷1
𝛥𝑞.                                 (45) 

Thus, instead of system (39), we have obtained a system of two Eqs. (45) and (42), 

which contain four functions 𝑤,  𝜙,  𝜓,  𝜒. We will turn to two equations of continuity of 

deformations (32), by substituting in them the inverse relations of elasticity (9), which 

express 𝛤11, 𝛤22, 𝛤12, 𝛤21through forces 𝑇11, 𝑇22, 𝑆12, 𝑆21 and by using Eq. (38), instead of the 

equations of compatibility of deformations (32), we obtain the following equations: 
𝜕

𝜕𝑥
(𝑙∗

2𝛥 − 1)𝜓 −
𝐵∗

𝐸∗
⋅

1

𝑅

𝜕𝛥𝜙

𝜕𝜃
= 0,  

1

𝑅

𝜕

𝜕𝜃
(𝑙∗

2𝛥 − 1)𝜓 +
𝐵∗

𝐸∗
⋅

𝜕𝛥𝜙

𝜕𝑥
= 𝐵∗

1

𝑅

𝜕𝑤

𝜕𝑥
,                                                             (46)  

where 

𝑙∗
2 =

𝐵∗(𝜇∗+𝛼∗)

4𝜇∗𝛼∗
.                          (47) 

Eq. (45), in conjunction with Eqs. (42) and (46), will form a complete system of 

equations for determining four functions 𝑤,  𝜙,  𝜓,  𝜒: 

𝐷′𝛥𝛥𝑤 +
1

𝑅
(1 −

𝐷′

𝐷1
𝛥) (

𝜕2𝜙

𝜕𝑥2 +
1

𝑅
 

𝜕2𝜓

𝜕𝑥𝜕𝜃
) = 𝑞 −

𝐷′

𝐷1
𝛥𝑞,  

𝜕

𝜕𝑥
(𝑙∗

2𝛥 − 1)𝜓 −
𝐵∗

𝐸∗
⋅

1

𝑅

𝜕𝛥𝜙

𝜕𝜃
= 0,   

1

𝑅

𝜕

𝜕𝜃
(𝑙∗

2𝛥 − 1)𝜓 +
𝐵∗

𝐸∗
⋅

𝜕𝛥𝜙

𝜕𝑥
= 𝐵∗

1

𝑅

𝜕𝑤

𝜕𝑥
,        (48) 

𝛥𝜒 − �̃�2𝜒 = 0.     
The system of resolving equations of the moment-membrane technical theory (48) 

lends itself to further simplifications. 

Based on the second and third equations of system (48), it is easy to obtain the 

following equation: 

𝛥𝛥𝜙 = 𝐸∗
1

𝑅

𝜕2𝑤

𝜕𝑥2 .                (49) 

If we consider the first and third equations of system (48), it will be possible to 

express the mixed derivative of the function 𝜓  through functions 𝑤 and 𝜙: 
1

𝑅
(

1

𝑅

𝜕2𝜓

𝜕𝑥𝜕𝜃
) = −𝐷′𝑐0𝛥𝛥𝑤 −

𝑐0

𝑅
⋅

𝜕2𝜙

𝜕𝑥2 +
1

𝑅
⋅

𝐷′

𝐷1
⋅

𝑐0

𝑎0
𝛥

𝜕2𝜙

𝜕𝑥2 +
𝑑0

𝑅2 𝐵∗ ⋅
𝑑2𝑤

𝑑𝑥2 + 𝑐0𝑞 − 𝑐0
𝐷′

𝐷1
𝛥𝑞,

                                 

(50) 

where 

𝑐0 =
𝑙∗
2

𝑙∗
2−

𝐷′

𝐷1

,   𝑑0 =

𝐷′

𝐷1

𝑙∗
2−

𝐷′

𝐷1

,   𝑎0 =
𝑙∗
2

𝑙∗
2−

𝐵∗
𝐸∗

.                            (51) 
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The substitution of Eq. (50) into the first equation of system (48), will result in the 

following system of equations, instead of the system of equations (48): 

𝐷′𝛥𝛥𝑤 − 𝐷′𝑐0 (1 −
𝐷′

𝐷1
𝛥) 𝛥𝛥𝑤 −

𝑑0

𝑅
(1 −

𝐷′

𝐷1
𝛥)

𝜕2𝜙

𝜕𝑥2 +
1

𝑅
⋅

𝐷′

𝐷1
⋅

𝑐0

𝑎0
(1 −

𝐷′

𝐷1
𝛥) 𝛥

𝜕2𝜙

𝜕𝑥2 +  

+
𝑑0

𝑅2 𝐵∗ (1 −
𝐷′

𝐷1
𝛥)

𝜕2𝑤

𝜕𝑥2 = −𝑑0 (1 −
𝐷′

𝐷1
𝛥) 𝑞 + 𝑐0

𝐷′

𝐷1
(1 −

𝐷′

𝐷1
𝛥) 𝛥𝑞, 𝛥𝛥𝜙 = 𝐸∗

1

𝑅

𝜕2𝑤

𝜕𝑥2 ,  𝛥𝜒 − �̃�2𝜒 = 0.   (52) 

Accepting, 

𝑤 = 𝛥𝛥𝐹,   𝜙 =
𝐸∗

𝑅
⋅

𝜕2𝐹

𝜕𝑥2,            (53) 

we identically satisfy the second equation of system (52). From the first equation of 

system (52), we obtain a tenth-order equation with respect to the new potential function 

𝐹. As a result, instead of system (52), we arrive at the following twelfth-order system of 

two equations for the functions 𝐹 and 𝜒: 

𝐷′𝛥𝛥𝛥𝛥𝐹 − 𝐷′𝑐0 (1 −
𝐷′

𝐷1
𝛥) 𝛥𝛥𝛥𝛥𝐹 −

𝑑0

𝑅2 𝐸∗ (1 −
𝐷′

𝐷1
𝛥)

𝜕4𝐹

𝜕𝑥4 +
1

𝑅2 ⋅
𝑐0

𝑎0
⋅

𝐷′

𝐷1
⋅ 𝐸∗ (1 −

𝐷′

𝐷1
𝛥) 𝛥

𝜕4𝐹

𝜕𝑥4 +

𝑑0

𝑅2 𝐵∗ (1 −
𝐷′

𝐷1
𝛥) 𝛥𝛥

𝜕2𝐹

𝜕𝑥2 = −𝑑0 (1 −
𝐷′

𝐷1
𝛥) 𝑞 + 𝑐0

𝐷′

𝐷1
(1 −

𝐷′

𝐷1
𝛥) 𝛥𝑞,  𝛥𝜒 − �̃�2𝜒 = 0.                         (54) 

If a closed cylindrical shell is hinged at the ends 𝑥 = 0, 𝑥 = 𝑙, it can be shown that 

in this particular case of boundary conditions, we have: 

𝜒 ≡ 0.              (55) 

In that case, the problem is reduced to solving one equation of the tenth order with 

respect to the function 𝐹: 

𝐷′𝛥𝛥𝛥𝛥𝐹 − 𝐷′𝑐0 (1 −
𝐷′

𝐷1
𝛥) 𝛥𝛥𝛥𝛥𝐹 −

𝑑0

𝑅2 𝐸∗ (1 −
𝐷′

𝐷1
𝛥)

𝜕4𝐹

𝜕𝑥4 + 
1

𝑅2 ⋅
𝑐0

𝑎0
⋅

𝐷′

𝐷1
⋅ 𝐸∗ (1 −

𝐷′

𝐷1
𝛥) 𝛥

𝜕2𝐹

𝜕𝑥2 +

+
𝑑0

𝑅2 𝐵∗ (1 −
𝐷′

𝐷1
𝛥) 𝛥𝛥

𝜕2𝐹

𝜕𝑥2 = −𝑑0 (1 −
𝐷′

𝐷1
𝛥) 𝑞 + 𝑐0

𝐷′

𝐷1
(1 −

𝐷′

𝐷1
𝛥) 𝛥𝑞.        (56)  

We note that the simplified version of the moment-membrane technical theory of a 

cylindrical shell presented here can be used for studying various static problems for a 

carbon nanotube, in particular, for studying problems of its stability. 

 

Stability of an axially compressed closed cylindrical shell according to the 

moment-membrane theory (axisymmetric problem) 

Let us present the basic equations necessary for studying the stability of a cylindrical 

shell according to the moment-membrane theory.  

We consider a case when a closed cylindrical shell is under the action of a uniform 

axial compression (the main momentless state). For stability problems, the general 

equations of the technical theory of a cylindrical shell must be supplemented with terms 

that consider subcritical forces in the shell. 

In this case, in the first equation from the system (48), instead 𝑞we take a "fictitious” 

transverse load: 

𝑞 = −𝑝1
𝜕2𝑤

𝜕𝑥2 ,             (57) 

where 𝑝1 is the axial force that occurs in the shell before buckling. The specified system 

will take the form (further we consider the case when the ends 𝑥 = 0,  𝑥 = 𝑙 of the 

cylindrical shell are hinge supported, i.e. 𝜒 ≡ 0): 

𝐷′𝛥𝛥𝑤 +
1

𝑅
(1 −

𝐷′

𝐷1
𝛥) (

𝜕2𝜙

𝜕𝑥2 +
1

𝑅

𝜕2𝜓

𝜕𝑥𝜕𝜃
) = −𝑝1

𝜕2𝑤

𝜕𝑥2 +
𝐷′

𝐷1
𝑝1𝛥

𝜕2𝑤

𝜕𝑥2 ,   

𝜕

𝜕𝑥
(𝑙∗

2𝛥 − 1)𝜓 −
𝐵∗

𝐸∗
⋅

1

𝑅

𝜕𝛥𝜙

𝜕𝜃
= 0,   

1

𝑅

𝜕

𝜕𝜃
(𝑙∗

2𝛥 − 1)𝜓 +
𝐵∗

𝐸∗
⋅

𝜕𝛥𝜙

𝜕𝑥
= 𝐵∗

1

𝑅

𝜕𝑤

𝜕𝑥
.         (58) 
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Repeating the steps of the previous paragraph, instead of Eq. (58) we obtain: 

𝐷′𝛥𝛥𝑤 − 𝐷′𝑐0 (1 −
𝐷′

𝐷1
𝛥) 𝛥𝛥𝑤 −

𝑑0

𝑅
(1 −

𝐷′

𝐷1
𝛥)

𝜕2𝜙

𝜕𝑥2 +
1

𝑅
⋅

𝐷′

𝐷1
⋅

𝑐0

𝑎0
(1 −

𝐷′

𝐷1
𝛥) 𝛥

𝜕2𝜙

𝜕𝑥2 +  

+
𝑑0

𝑅2 𝐵∗ (1 −
𝐷′

𝐷1
𝛥)

𝜕2𝑤

𝜕𝑥2 = −𝑝1𝑑0 (1 −
𝐷′

𝐷1
𝛥)

𝜕2𝑤

𝜕𝑥2 − 𝑝1𝑐0
𝐷′

𝐷1
(1 −

𝐷′

𝐷1
𝛥) 𝛥

𝜕2𝑤

𝜕𝑥2 ,   𝛥𝛥𝜙 = 𝐸∗
1

𝑅

𝜕2𝑤

𝜕𝑥2 .    (59) 

Based on the second equation from system (59), when studying the stability of a 

cylindrical closed shell, we arrive at the solution of the following 10th order equation 

with respect to 𝑤: 

𝐷′𝛥𝛥𝛥𝛥𝑤 − 𝐷′𝑐0 (1 −
𝐷′

𝐷1
𝛥) 𝛥𝛥𝛥𝛥𝑤 −

𝑑0⋅

𝑅2 𝐸∗ (1 −
𝐷′

𝐷1
𝛥)

𝜕4𝑤

𝜕𝑥4 + 
𝐸∗

𝑅2 ⋅
𝐷′

𝐷1
⋅

𝑐0

𝑎0
(1 −

𝐷′

𝐷1
𝛥) 𝛥

𝜕4𝑤

𝜕𝑥4 + 

+
𝑑0

𝑅2 𝐵∗ (1 −
𝐷′

𝐷1
𝛥) 𝛥𝛥

𝜕2𝑤

𝜕𝑥2 = 𝑝1𝑑0 (1 −
𝐷′

𝐷1
𝛥) 𝛥𝛥

𝜕2𝑤

𝜕𝑥2 − 𝑝1𝑐0
𝐷′

𝐷1
(1 −

𝐷′

𝐷1
𝛥) 𝛥𝛥𝛥

𝜕2𝑤

𝜕𝑥2 .     (60) 

If the curved surface of the shell remains axisymmetric after buckling, the deflection 

𝑤depends only on the coordinate 𝑥, and Eq. (60) looks as follows: 

[
𝐷′2𝑐0

𝐷1
− 𝑝1𝑐0 (

𝐷′

𝐷1
)

2

]
𝜕10𝑤

𝜕𝑥10 + [𝐷′ − 𝐷′𝑐0 −
1

𝑅2 (
𝐷′

𝐷1
)

2
𝑐0

𝑎0
𝐸∗ − 𝐵∗

𝑑0⋅𝐷′

𝑅2⋅𝐷∗
+ 𝑝1(𝑑0 + 𝑐0)

𝐷′

𝐷1
]

𝜕8𝑤

𝜕𝑥8 +  

+ [
𝑑0⋅𝐸∗

𝑅2

𝐷′

𝐷1
+

𝐸∗

𝑅2

𝐷′

𝐷1

𝑐0

𝑎0
+

𝑑0

𝑅2 𝐵∗ − 𝑝1𝑑0]
𝜕6𝑤

𝜕𝑥6 −
𝑑0⋅𝐸∗

𝑅2

𝜕4𝑤

𝜕𝑥4 = 0.

                       

        (61) 

Based on the homogeneous differential Eq. (61), we consider the problem of 

determining the critical force of a carbon nanotube uniformly compressed in the axial 

direction. 

 

 
 

Fig. 2. Graphic definition of the critical force as a result of 𝑝1(𝜆𝑘) dependency minimization 

 

Assuming deflection 𝑤(𝑥) = 𝑓 𝑠𝑖𝑛 𝜆𝑘 𝑥,    𝑓 = 𝑐𝑜𝑛𝑠𝑡,     𝜆𝑘 =
𝜋𝑘

𝑙
,     𝑘 = 1,2,3, . . . ,   

by satisfying the boundary conditions of hinge support at 𝑥 = 0, 𝑥 = 𝑙, we obtain (here 

the data of paragraph 5 of this paper are used):  𝑝1 =
140072+1249,43𝜆𝑘

2+20257,1𝜆𝑘
4+82,93𝜆𝑘

6

(48805+435,34𝜆𝑘
2+0,964𝜆𝑘

4)𝜆𝑘
2   

Let us determine the smallest (critical) value of the compressive force. Equating to 

zero the derivative of 𝑝1 by 𝜆𝑘: 
𝑑𝑝1

𝑑𝜆𝑘
= 0, after determining the corresponding value for 𝜆𝑘, 

for the critical force we obtain the following numerical value: 𝑝𝑐𝑟 = 2.169
nN

nm
. This result 

is also substantiated graphically, by constructing a dependence graph 𝑝1(𝜆𝑘) (Fig. 2). 
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Conclusion 

Based on the three-dimensional moment linear theory of elasticity, with the application of the 

hypotheses’ method, the basic equations, relations and boundary conditions of the moment-

membrane theory of elastic cylindrical shells are constructed, which is interpreted as a continual 

model of the deformation behavior of a single-layer carbon nanotube. The resolving equations 

of the moment-membrane technical theory of elastic cylindrical shells are also constructed. The 

constructed continual theories of a cylindrical shell open new possibilities for studying various 

applied problems of the mechanical behavior of a single-walled carbon nanotube. 

As particular problems, in an axisymmetric formulation, the problems of the static bending 

of a single-layer carbon nanotube and the problem of the stability of its initial axial compressed 

state have been studied. 
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