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Abstract. A kinetic model of stress-induced vacancy diffusion in pentagonal whiskers and rods 

is suggested to investigate the void evolution there. In the framework of the model, the Gibbs-

Thompson boundary conditions are employed to identify the free surface effect on the vacancy 

flux while the elastic fields of the wedge disclination are involved to reveal the contribution of 

the bulk effect. It is shown that the void evolution mode in the hollow pentagonal whiskers and 

rods is strongly determined by the initial internal and external radii as well as the materials 

parameters describing the response of both the residual stress and the surface tension. The void 

evolution diagram and kinetic curves are demonstrated to elucidate the critical and optimal 

parameters of this phenomenon. 
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Introduction 

Pentagonal crystal (PC) structures are deemed to be essential for enhanced performance in 

photonic, plasmonic and catalytic applications [1,2]. Their properties, prescribed not only by 

{111} faceting but also by cyclic twinning, evince more effective performance than their single-

crystal analogs [3–5]. For most PCs such as pentagonal whiskers (PWs) or rods [6], plates [7], 

and decahedral particles (DhPs) [8], the five-fold cyclic twinning is common. The more complex 

multiply cyclic twinning corresponds to the class of icosahedral particles (IcPs) [9]. Besides, the 

cyclic twinning is responsible for inhomogeneous residual stress-strain states in PCs that 

significantly impact upon their functional properties [10–12].  

Recently, much attention has been focused on the fabrication of hollow PC structures 

with tunable properties [13–17]. The fact that the hollowing process in PCs is strongly affected 
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by the residual stress caused by multiply twinning has been demonstrated in series of 

experiments [18–21]. For instance, Romanov et al. [18] observed voids in large CdTe PWs with 

diameter 1-10 mm. Later Yasnikov and Vikarchuk [19] employed the electrodeposition 

technique to produce both hollow and solid Cu PCs to investigate the size effect in the void 

formation. They observed the voids in relatively large PCs, while relatively small PCs remained 

free of voids. These experiments were explained by the higher level of the strain energy stored 

by the inhomogeneous residual stress in the larger PCs. Another example of stress-induced 

process of hollowing was described by Lu et al. [20] investigating the galvanic replacement 

reaction of both single-crystalline and multiply twinned Ag nanoparticles with H Au Cl4 in 

organic medium. The authors demonstrated that, under the galvanic replacement process, the 

single-crystalline Ag nanocubes evolved into nanoboxes while the multiply twinned Ag 

nanoparticles evolved into either pentagonal nanorings or nanocages of decahedral and 

icosahedral shapes. Similar results were obtained by Huang et al. [21] in examining the void 

growth phenomenon in single-crystalline and multiply twinned Pd nanoparticles placed in the 

Cu-acetylacetonate atmosphere. The authors reported that they synthesized hollow PdCu 

alloyed particles from the multiply twinned precursors in contrast to the void-free Pd/Cu core-

shell particles produced from the single-crystalline precursors. Thus, to control the void 

evolution in PCs, it is essential to incorporate the residual stress effects into both the synthesis 

protocols and theoretical modeling. 

The residual stress in PCs can be described within the disclination concept [22–24]. 

According to this concept, PWs and DhPs are considered as elastic bodies containing a positive 

partial wedge disclination with strength  0.128 rad, while IcPs as elastic spheres containing a 

Marks-Ioffe stereo disclination with strength  0.0613 sr that models the presence of six 

positive partial wedge disclinations with strength  0.128 rad. It is worth noting that, within the 

disclination concept, various stress relaxation phenomena in PCs such as dislocation generation 

[25,26], crack initiation [27], formation of the phase inhomogeneities [28] and the misfit layers 

[29] has received the theoretical description in [30–35]. The phenomenon of the void evolution 

in the PCs has been elucidated in the large volume of the theoretical works as well. 

Historically, the theoretical research concerning the void evolution phenomenon in PCs has 

focused on the interaction of point defects with wedge disclinations. The stress-induced diffusion 

of vacancies in vicinity of wedge disclinations was elucidated in the pioneer works [36–38].  

Latter Mikhailin and Romanov [39] employed an elastic model and a molecular dynamic 

simulation to investigate the bulk vacancy migration to the disclination core placed in the center 

of a circular crystal plate. The numerical simulation demonstrated that the initial amorphization 

of the disclination core occurs and subsequently results in the nucleation of a cavity. Besides, it 

was revealed that incorporating the surface effects in the energy balance of the elastic plate leads 

to appropriate agreement with computer simulation results for the cavity formation phenomenon.  

Romanov and Samsonidze [40] suggested a kinetic model of the point defects diffusion 

driven by the stress state of a wedge disclination in an elastic cylinder. The disclination core 

was considered as a perfect sink for point defects while the cylinder surface as a perfect source 

of them. The original profile of the point defects concentration inside the body was presumed 

to be relevant to the elastic disturbance of the disclination to introduce the initial and boundary 

conditions. The asymptotic expression for the point defects diffusion flux toward the 

disclination core was obtained in two limiting cases of (i) the initial stage, when the absorption 

of point defects in vicinity of the disclination prevails, and (ii) the final stage, when the steady-

state condition is achieved. 

Osipov and Ovid’ko [41] investigated the migration of substitutional atoms to triple 

junction disclinations in alloyed materials. The concentration of substitutional atoms in vicinity 

of a disclination core was derived with the assumption of the parabolic growth. It was inferred 
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that the split of the disclination, which was induced by the diffusion process, is one of the main 

factors responsible for the growth of a nucleus of amorphous phase under mechanical alloying.  

Nazarov [42] analyzed the grain boundary diffusion affected by triple junction 

disclinations. He demonstrated that the stress gradients, induced by the disclination 

configurations, may explain anomalously high values of grain boundary diffusivity in 

nanocrystalline materials. To better understand the effects of a disclination on the grain 

boundary diffusion, Murzaev and Nazarov [43,44] implemented the molecular dynamic 

simulation of the grain boundary containing a partial disclination. They showed that the 

numerically calculated grain boundary diffusivity in disclinated nanocrystalline materials is at 

least two orders higher than in the disclination-free polycrystals.   

Romanov et al. [18] examined the void formation in PWs and IcPs as a channel of residual 

stress relaxation. Within the quasi-equilibrium energetic approach, the critical conditions of a 

void formation in PCs were determined in terms of the change of surface and disclination strain 

energies due to the void growth. Using the stress fields of wedge disclinations in elastic bodies 

with spherical surfaces that were found by Kolesnikova at al. [45], Krasnitckii et al. [46] later 

considered a similar problem for DhPs. In spite of the fact that the energetic approach has quite 

limited applications (as it does not include the kinetic aspects of the problem), the optimal size 

of voids prescribed by the stress relaxation models in [18,46] is in agreement with experimental 

observations of hollow PCs [18,19]. 

Vlasov et al. introduced the most thorough formulation of non-steady stress-induced 

diffusion problems concerning the formation of impurity atmospheres in vicinity of triple 

junction disclinations [47,48] as well as the growth of void and phase nuclei in PWs [49,50] 

and IcPs [51,52]. For the case of void growth in PWs, Vlasov et al. [49] managed to derive the 

strict analytical solutions for the void radius rate. Besides, it was demonstrated [52] that, at the 

initial stage, when the disturbance induced by the body external surface is negligible, the 

nucleus radius rate in vicinity of wedge and stereo disclinations varies as  t1/2 (hereinafter t is 

the time of the process) in contrast to that in vicinity of edge dislocations and tips of mode I 

cracks, varying as t1/3 and t2/5, respectively.  

Later Tsagrakis et al. [53] considered the void growth phenomena in IcPs with accounting 

for size effects within the gradient elasticity theory. The gradient solution for a stereo 

disclination was found to provide nonsingular profiles of the vacancy velocity and the vacancy 

concentration inside IcPs. The authors showed that the gradient elastic effects are essential to 

consider when the internal length parameter is of the same order of magnitude as the particle 

radius, otherwise these effects can be neglected. 

It is worth noting that the aforementioned kinetics models have a serious limitation. In 

fact, they are unable to incorporate the influence of surface tension in the void evolution process 

in PCs. Recently Krasnitckii et al. [54] have overcome this limitation by involving the surface 

tension on the inner and outer surfaces of hollow IcPs in the form of the linearized Gibbs-

Tompson conditions. The corresponding stress-assisted diffusion problem under the steady-

state approximation was solved to consider the void evolution kinetics driven by both the 

surface and bulk stress effects. It was shown that the void evolves in either the shrinking mode, 

if the vacancy flux induced by the Gibbs-Tompson effects is predominant, or the growing mode, 

if the pressure-induced vacancy flux prevails, or the stabilizing mode, if the contributions of 

these fluxes are equal. 

The present work is aimed at extending the general formalism of the model suggested 

in [54] to investigate the stress-induced vacancy diffusion as well as the void evolution 

phenomena in PWs under the Gibbs-Tompson curvature effects. It represents (i) a solution of the 

steady-state problem of vacancy diffusion for a hollow cylindrical body, (ii) an analysis of the 

void evolution kinetics in a PW, and (iii) an evaluation of the critical and optimal parameters of 

the void equilibrium state. 
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Model 

Consider a hollow PW as a long hollow cylindrical body containing a positive partial wedge 

disclination of strength ω  0.128 rad (Fig. 1(a)). The wedge disclination is responsible for the 

hydrostatic compression in the inner region of the cylinder and for the hydrostatic tension in its 

outer region. This volumetric strain stimulates both the generation of vacancies at the stretched 

surface of the PW and subsequent migration of the vacancies inward the compressed region, where 

they can coagulate with formation of a central cylindrical void. The stress-assisted vacancy 

diffusion can be described by the second Fick low with a drift term [54]: 

1 1
int int

C C
C C W W

D t kT kT


=  +   + 


, (1) 

where C is the relative (dimensionless) concentration of vacancies inside the cylinder, D is the 

diffusivity of vacancies, k is the Boltzmann constant, T is the absolute temperature, Wint = P δv 

is the interaction energy of a vacancy with the wedge disclination, P is the hydrostatic pressure 

exerted by the wedge disclination stress tensor  (P = –1/3 tr ), and v is the vacancy 

relaxation volume (v < 0). The hydrostatic pressure P reads [24]: 
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where G is the shear modulus,  is the Poisson coefficient, av and a are the internal and external 

radii, respectively, of the hollow cylinder, and r is the radial coordinate.   

 

 
(a) (b) 

Fig. 1. (а) Continuum model of a PW with a central cylindrical void. (b) The radial flux of 

vacancies jv (ap) through the void surface in dependence of the normalized void radius p for 

 = 0 (single-crystalline tubes) and  = –1 (PWs). The radial flux is given in units of C0 D /  

 

Substituting Eq. 2 in the diffusion equation Eq. 1, for the steady-state process (C/t  0) 

in the case of the cylindrical symmetry, one can come to the following equation:  
2
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1
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where  is the dimensionless complex which defines the disclination stress contribution to the 

diffusion process: 
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In addition to the bulk effects accompanying the void growth in PWs, the surface effects 

viz. surface tension should be also taken into consideration. Actually, the surface tension 

produces a negative pressure (positive hydrostatic stress) on the inner surface while the outer 

surface is affected by a positive pressure (negative hydrostatic stress). From this point of view, 

the vacancy concentration at the inner surface can be bigger than at the outer one. It means that 

the vacancy flux inside PWs can be either inhibited or even inversed by the surface tension. 

The latter phenomenon exerts the void shrinking with its subsequent collapse. The impact of 

the surface tension on the void evolution can be taken into account in the linearized form of the 

Gibbs-Thompson boundary conditions as follows [55]: 
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where C0 is the equilibrium concentration of vacancies near the flat surface,  =   / (kT) is the 

length parameter,  is the specific surface energy,  is the atomic volume. 

The solution of the diffusion equation (Eq. 3) with regard to the boundary conditions 

(Eqs. 5) is given by 
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It is worth noting that Eq. 6 coincides with the solution of the diffusion problem for the 

defect-free cylindrical shells given in [55], if the parameter  tends to zero. 

  

Results 

The void evolution phenomenon in hollow PWs is strongly determined by the migration of 

vacancies. Inside the PWs, the migration of vacancies can be described in terms of the radial 

flux as follows: 

jv = jc + j , (7) 

where  jc is the vacancy flux caused by the vacancy concentration gradient between the inner 

and outer surfaces of the PWs, 

Ω
c

D
j C= −  , (8) 

and j is the stress-induced vacancy flux caused by the elastic field of the wedge disclination, 

σ
Ω

int

D C
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The radial vacancy flux in Eq. 7 can be rewritten with respect to the concentration profile 

(given by Eq. 6) in the following form:  
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To investigate the void evolution phenomenon, one can consider the dependencies of the 

radial vacancy flux through the inner surface jv (av) on the radii ratio p = av / a shown in Fig. 1(b) 

for different values of . The void evolution mode is defined by the sign of the total vacancy 

flux at the void surface in Eq. 10. If the flux is negative, the inward stress-induced flux prevails 

so that vacancies are absorbed by the void, thus provoking the void growth mode. When the 

flux is positive, the outward concentration flux is predominant so that vacancy emission from 

the void evincing the void shrinkage mode is expected. Besides, if the vacancy flux turns to 
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zero, the contributions of the concentration and stress-induced fluxes are equal in magnitude so 

that the void gets an optimal size p = popt evincing the equilibrium mode.  

According to Fig. 1(b), the relatively small voids (when p < peq) in hollow PWs with  = –

1 tend to grow until reaching the optimal radius popt. On the contrary, the relatively large voids 

(when p > peq) tend to shrink to the optimal radius popt. In the case of defect-free single-

crystalline tubes with  = 0, the vacancy flux is positive for any radii ratio p, hence the void 

growth mode occurs to transform tubes into solid rods. 

Since the void evolution mode in PWs is mainly determined by the sign of the vacancy 

flux at the void, one can derive the critical mode condition from the vanishing flux equation 

jv (av) = 0 in the form: 
1

v va a

a a
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Introducing dimensionless variables, one can rewrite Eq. 11 with regard to the mass 

conservation law [54], 2 2 2

0va a a− = , as follows: 
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where p = av / a, 
2 1/2Δ (1 )p= − , b0 = a0 / , and a0 is the radius of a solid PW. 

 

 
(a) (b) 

Fig. 2. (а) Dependence of the parameter  on the normalized void radius p for different 

values of b0 = 5, 20 and 100. The inset in the upper right corner indicates the regions A, B, C 

and D corresponding to different scenarios of void evolution. (b) Dependence of the 

normalized void radius p on the dimensionless time   given for different values of the initial 

void radius p0 = 0.05 and 0.5, and the parameter  = 0.0, –0.5, –0.61, –0.62, and   –0.611 

 

Figure 2(a) demonstrates the curves  = f (p) given by Eq. 12 for different values of the 

parameter b0 = 5, 20 and 100. These curves define the parameters  and p of hollow PWs for 

which jv (av) = 0, i.e. the void equilibrium mode takes place. The area below the curves 

( < f (p)) corresponds to the void growth mode when jv (av) < 0, while the area above them 

( > f (p)) to the void shrinkage mode when jv (av) < 0. It is worth noting that the area above 

curves reduces if the parameter b0 increases.  

The void evolution scenarios in the hollow PWs are determined by the roots of the 

equation  = f (p) for a given value of  (see Fig. 2(a)). For example, the equation  = f (p) has 
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no roots for cr <   0 so the void shrinkage mode is valid for any p, and hence the void of any 

 

size is unstable. For  = cr, there is the only root p = pextr corresponding to the unstable 

equilibrium state of the void, i.e. any perturbation of its radius results in the transition to the 

shrinkage mode. The cases of p = pcr and p = popt can be elucidated as the unstable and stable 

equilibrium void states, respectively. For  < –1, the equation  = f (p) has the only one root, 

p = popt, relating to the stable equilibrium state of the void. To obtain the stable equilibrium, the 

voids with p from the range of 0 < p < popt must grow, while those with p from the range of 

popt < p < 1 must shrink. 

Thus, the voids in PWs should be unstable and have a tendency to shrinkage if either 

cr <   0 for any void radius (see region A in Fig. 2(a)) or –1   < cr for pre radius less than 

a critical one (see region B in Fig. 2(a)). In contrast, the stable void can evolve via either 

shrinkage or growth if  < –1 for any void radius and –1   < cr for void radius larger than the 

critical value (see regions C and D in Fig. 2(a)). 

Turning now to the kinetic aspects of the void evolution in hollow PWs, the growth rate 

is defined by the vacancy flux at the void surface:  

( )v
v v

da
j a

dt
= − . (13) 

The Eq. 13 can be derived as follows: 
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where  = С0 D t / a0
2 is the dimensionless time. 

The numerical solution of the void evolution equation (Eq. 14) is illustrated in Fig. 2(b) for 

b0 = 5 (in this case, cr  –0.558, see Fig. 2(a)). According to Fig. 2(b), for the given initial 

normalized radius p0 = 0.05 of the void, some different scenarios of its evolution can occur. For 

 = 0.0 and –0.5 (> cr  –0.558), the void tends to shrink with subsequent collapse (see region 

A in Fig. 2(a)). Similar pathway is expected in the case when   = –0.61 (< cr  –0.558) and the 

initial radius p0 of the void is less than critical value pcr  0.051 (region B). Moreover, the time 

for the void collapse is mainly determined by : the smaller the value of , the longer the void 

shrinking process. As is seen from Fig. 2(b), for even smaller  = –0.62, the void tends to take 

the optimal size via either its growth (for p0 = 0.05 corresponding to region C) or shrinkage (for 

p0 = 0.5 corresponding to region D). It is worth noting that, for   –0.611, the normalized 

radius p0 = 0.05 of the void coincides with the critical one, pcr, so the void occurs in the state of 

unstable equilibrium when any perturbation of its radius causes either shrinking or growing. 

Let us now examine the critical and optimal conditions of the void evolution process in 

PWs. As was mentioned above, the nucleation of stable voids in solid PWs is possible if the 

absolute value of parameter  exceeds that of some critical value cr only. The latter one 

strongly depends on the ratio of the solid PW radius a0 to the length parameter . The parameter 

 characterizes the bulk effects in solid PWs attributed to the wedge disclination stress while 

the parameter   describes the role of surface effects (the bigger the surface energy   the bigger 

 ). Fig. 3(a) illustrates the dependence of cr on the solid PW radius a0 for different values of 

the length parameter  = 5, 10, and 20 nm. As is seen from Fig 3(a), the critical value cr first 

sharply increases for 0 < a0 < 200 nm and then gradually tends to zero for a0 > 200 nm. Besides, 

for a given value of the solid PW radius a0, the critical value cr decreases with an increase in 

. It means that, in PWs of the same size (for example, at a0 = 100 nm), the void nucleation is 

more likely to occur in the PWs with smaller surface tension (cr  –0.15 for  = 5 nm whereas 

cr  –0.55 for  = 20 nm). 
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(a) (b) 

Fig. 3. (а) Dependence of the critical value cr on the solid PW radius a0 for different 

values of the parameter  = 5, 10 and 20 nm. (b) The dependences of the normalized void 

radii pcr (solid curves), popt (dushed curves), and pextr (dushed-and-dotted curve) on the 

dimensionless parameter b0 for  = –0.16, –0.31, and –0.56 

 

In contrast to the case of cr <   0, when the void initiation failed, the barrier-controlled 

nucleation of voids in solid PWs can occur if the normalized radius of void nucleus exceeds its 

critical value pcr at –1   < cr. In this case, the void nucleus tends to grow until it reaches the 

optimal size and p = popt. As it was mentioned above, the values of parameters pcr and popt are 

strongly determined by the material parameters  and b0 = a0 /  demonstrating the role of size 

effect in the void evolution phenomenon. The dependences of the characteristic normalized 

radii of voids in PWs, pcr, pextr, and popt, on the value of b0 are shown in Fig. 3b for different 

values of . As is seen from Fig. 3(b), the critical and optimal normalized radii coincide with 

the extremal value pextr if  takes the critical value. When b0 increases, pcr decreases while popt 

increases. In the limiting cases, when  → –1 or b0 → +, the critical normalized radius of the 

void vanishes, the optimal one tends to 1.0 (the case of an infinitely thin-wall tube), and the 

extremal one tends to a constant value  0.3. 

In the case of  < –1, the barrier-less nucleation of voids in PWs should occur. Indeed, 

the contribution of the surface tension to void evolution is negligible with regard to the impact 

of the disclination stress field. As a result, the void nucleus is expected to grow in order to take 

a stable state with its optimal normalized radius popt. 

 

Conclusions 

In summary, the void evolution kinetics in PWs has been reconsidered with regard to the 

curvature surface effect. In doing so, the linearized Gibbs-Thompson boundary conditions are 

incorporated in the boundary-value problem of stress-assisted vacancy diffusion inside a hollow 

cylindrical body. It is shown that the vacancy flux is mainly determined by the dimensionless 

parameters  indicating the impact of the bulk stress state of the wedge disclination, and  

describing the effect of the surface tension on the vacancy diffusion. With assuming that the 

direction of the vacancy flux completely prescribes the void shrinkage or growth modes in 

hollow PWs, various void evolution scenarios have been revealed with respect to the initial 

void radius av,0 and the dimensionless parameters  and b0 = a0 / (where a0 is the radius of a 
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solid PW) which reflect the contributions of the bulk stress and surface effects, respectively, to 

the void evolution process.  

According to the first scenario, in PWs with cr <  < 0, the void of any size is unstable, 

i.e. it tends to shrink with the subsequent collapse. Hence, the void nucleation is completely 

inhibited by the surface effects.  

In PWs with –1   < cr , the voids of size smaller than a critical one are not stable and 

tend to shrink, in contrast to the voids of size larger than the critical one tend to reach the stable 

state with the optimal radius av,opt.  

When  < –1, the voids of any size have the tendency to reach the stable state via either 

growing (if av < av,opt) or shrinking (if av > av,opt). Hence, the bulk stress effect prevails and 

stimulates the void nucleation to occur.  

Finally, the critical and optimal parameters of the void evolution scenarios are identified 

with respect to the bulk and surface effects. It is shown that the critical parameter cr increases 

with an increase in the solid PW radius a0 as well as with a decrease in the length parameter . 

That is the bigger the PW size the less the influence of the surface tension and hence the barrier 

for void nucleation. Besides, the critical radius of void nucleus av,cr also declines with an 

increase in the solid PW size. As for the optimal radius av,opt of a stable void, the rise of both 

the parameters b0 and |  | leads to an increase in the optimal radius of the void. Moreover, in 

the limiting cases when b0 → + and  →  –, the hollow PWs could evolve in thin-wall 

pentagonal tubes.  

One of the most significant findings to emerge from this model is that the surface effects 

such as surface tension is essential to incorporate in the problem of the void evolution in PWs 

if the material parameter  > –1. When  < –1, the surface effect on the void nucleation can be 

neglected.   
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