
 

Submitted: June 13, 2023 Revised: October 31, 2023 Accepted: March 25, 2024 

© R.Z. Kiseleva, N.A. Kirsanova, A.P. Nikolaev, Yu.V. Klochkov, V.N. Yushkin, 2024. 

Publisher: Peter the Great St. Petersburg Polytechnic University  

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/li-censes/by-nc/4.0/) 

MATERIALS PHYSICS AND MECHANICS                                                  RESEACH ARTICLE 

 

 

Variants of physical equations in a curvilinear coordinate system 

and their comparison based on mixed FEM 

R.Z. Kiseleva 1 , N.A. Kirsanova 2 , A.P. Nikolaev 1 , Yu.V. Klochkov 1 ,  

V.N. Yushkin 1   

1 Volgograd State Agrarian University, Volgograd, Russia 

2 Financial University under the Government of the Russian Federation, Moscow, Russia 

 rumia1970@yandex.ru 

ABSTRACT  

In arbitrary curvilinear coordinate system under elastoplastic deformation, a comparative analysis of three 

variants of the constitutive equations at the loading step was performed. In the first variant, the equations of 

the theory of plastic flow were used, according to which the strain increment had been divided into elastic 

and plastic parts. The cumbersomeness of the algorithm for obtaining expressions for the components of the 

plastic strain increments tensor in an arbitrary curvilinear coordinate system is shown, which leads to the lack 

of the possibility of obtaining the matrix dependence of physical equations at the loading step. In the second 

variant, to obtain plastic strain increments, the hypothesis of their proportional dependence on the 

components of the stress increments deviator was used. The constitutive equations were also obtained by 

summation of the elastic strains increment and plastic strains increment. In the third variant, the hypothesis 

of the division of strain increments into elastic and plastic parts was not used. The physical equations were 

written using the assumption that there was a proportional dependence between the components of the strain 

increment deviators and stress increment deviators. Using the example of calculating the shell of revolution, 

the preference of the third variant of the constitutive equations for elastoplastic deformation is shown. 
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Introduction 

When calculating structures taking into account elastoplastic deformations, it is necessary 

to take into account the behavior of the material, including the formation of residual 

deformations. Determining the values of the stress-strain state during deformation beyond 

the elastic limit makes it possible to establish the maximum load and assign a safety factor. 

Therefore, calculations of structural elements taking into account zones of elastoplastic 

deformation are an urgent engineering problem for mechanical engineering, aircraft 

structures, hydraulic structures, etc. Currently, the most used theories for finding the 

strength parameters of deformed objects are the deformation theory of plasticity and the 

theory of plastic flow [1–15]. Numerical implementation of the defining equations of the 

theories of plasticity is widely carried out using the finite element method (FEM) in the 
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displacement method formulation [16–23] and in the mixed formulation [22,24–30]. 

Widely used theories of plasticity (the theory of small elastoplastic deformations and the 

theory of plastic flow) use the hypothesis of dividing strain increments into elastic and 

plastic parts. In the theory of plastic flow, for the components of the plastic strain 

increment tensor are determined based on the assumption of their proportionality to the 

components of the total stress deviator with the coefficient of proportionality, which is a 

function of the stress intensity increment. To obtain physical equations at the loading 

step, it is necessary to represent the stress intensity increment through the increments of 

the components of the stress increment tensor, which is very difficult in a curvilinear 

coordinate system. The authors considered three variants of defining equations as 

physical ratios. In the first variant, equations of the theory of plastic flow were used. In 

the second variant, defining relations were used based on the assumption proposed by 

the authors about the proportional relation between the components of the plastic strain 

increments tensor and the components of the stress increments deviator. In the third 

variant, the defining equations were obtained without dividing the strain increments into 

elastic and plastic parts. The proportionality assumption was applied directly to the strain 

increments and stress increments deviator components. The coefficient of proportionality 

turned out to be a function of the tangent modulus of the strain diagram. For the 

numerical implementation of the equations, mentioned above, a hybrid finite element 

developed by the authors with nodal unknowns in the form of displacement increments 

and stress increments was used. 

 

Materials and Methods 

Relations of the theory of plastic flow 

According to this theory, strain increments at the loading step consist of elastic strain 

increments 𝛥𝜀𝑖𝑗
𝑒  and plastic strain increments 𝛥𝜀𝑖𝑗

𝑝 : 

𝛥𝜀𝑖𝑗 = 𝛥𝜀𝑖𝑗
𝑒 + 𝛥𝜀𝑖𝑗

𝑝 .              (1) 

Elastic strain increments are determined by Hooke's law [5–7]: 

𝛥𝜀𝑖𝑗
𝑒 =

1

2𝜇
𝛥𝜎𝑖𝑗 −

𝜆

2𝜇
𝑔𝑖𝑗

1−2𝜈

𝐸
𝑃𝛥𝜎;  (𝑖, 𝑗 = 1,2,3),          (2) 

where λ, µ are the Lamé parameters, ν is the Poisson’s ratio, 𝛥𝜎𝑖𝑗 are normal and tangential 

stresses increments, 𝑔𝑖𝑗 are the covariant components of the metric tensor at the loading 

step, 𝐸 is the elastic modulus, 𝑃𝛥𝜎 = 𝛥𝜎𝑚𝑛𝑔𝑚𝑛 = 𝛥𝜎𝑚𝑛𝑔𝑚𝑛 is the first invariant of the 

stress increments tensor. 

The components of the plastic strain increments tensor in the theory of flow are 

determined [1] based on the hypothesis of a proportional relation between the 

components of the plastic strain increments tensor and the components of the stress 

deviator: 

𝛥𝜀𝑖𝑗
𝑝 =

3

2

𝛥𝜀𝑖
𝑝

𝜎𝑖
 (𝜎𝑖𝑗 −

1

3
𝑔𝑖𝑗𝑃𝜎),            (3) 

where 𝛥𝜀𝑖
𝑝 is the increment of the plastic strain intensity, 𝜎𝑖 is the stress intensity;  

𝑃𝜎 = 𝜎𝑖𝑗𝑔𝑖𝑗 = 𝜎𝑖𝑗𝑔𝑖𝑗 . 

The value of the intensity of plastic strain increments included in Eq. (3) is 

determined by the difference: 
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𝛥𝜀𝑖
𝑝

= 𝛥𝜀𝑖 − 𝛥𝜀𝑖
𝑒 =

𝛥𝜎𝑖

𝐸𝑘
−

𝛥𝜎𝑖

𝐸1
,            (4) 

where 𝛥𝜀𝑖
𝑝, 𝛥𝜎𝑖 are the increments of the intensities of plastic strain and stress 

increments, 𝐸1 is the modulus of the initial section of the strain diagram, 𝐸к is the tangent 

modulus at the considered point of the strain diagram. 

Relations (3) taking into account Eq. (4) are written as: 

𝛥𝜀𝑖𝑗
𝑝 = 𝛥𝜎𝑖

1

𝜎𝑖
(

1

𝐸𝑘
−

1

𝐸1
) (𝜎𝑖𝑗 −

1

3
𝑔𝑖𝑗𝑃𝜎).           (5) 

To obtain relations between the values 𝛥𝜀𝑖𝑗
𝑝  and 𝛥𝜎𝑖𝑗 the value 𝛥𝜎𝑖 should be 

presented generally like: 

𝛥𝜎𝑖 =
𝜕𝜎𝑖

𝜕𝜎𝑘𝑙
𝛥𝜎𝑘𝑙 ,              (6) 

where the stress intensity is determined in a curvilinear coordinate system by the 

expression [5]: 

𝜎𝑖 = √
3

2
𝑆𝑖𝑗𝑆𝑖𝑗.               (7) 

The components of the stress deviator included in Eq. (7) are determined by the 

following formulas [5]: 

𝑆𝑖𝑗 = 𝜎𝑖𝑗 −
1

3
𝑔𝑖𝑗𝜎𝑚𝑛𝑔𝑚𝑛;  𝑆𝑖𝑗 = 𝑔𝑖𝑚𝑔𝑖𝑛𝑆𝑚𝑛.          (8) 

Expression (6) taking into account Eq. (7) will take the form: 

𝛥𝜎𝑖 =
√3

2√2

1

𝜎𝑖

𝜕

𝜕𝜎𝑘𝑙
(𝑆𝑖𝑗𝑆𝑖𝑗)𝛥𝜎𝑘𝑙 .            (9)

 The plastic strain increments (5) taking into account Eq. (9) will be written as: 

𝛥𝜀𝑖𝑗
𝑝 = 𝛾1

𝜕

𝜕𝜎𝑘𝑙
(𝑆𝑖𝑗𝑆𝑖𝑗)𝛥𝜎𝑘𝑙 ,            (10) 

where 𝛾1 =
√3

2√2

1

𝜎𝑖
2 (

1

𝐸к
−

1

𝐸1
) (𝜎𝑖𝑗 −

1

3
𝑔𝑖𝑗𝑃𝜎).  

By summation of Eqs. (2) and (10), the matrix is formed: 
{𝛥𝜀}
6×1

= {С1
П}

6×6
{𝛥𝜎}

6×1
,            (11) 

where 
{𝛥𝜀}
1×6

Т = {𝛥𝜀11 𝛥𝜀22 𝛥𝜀33 2𝛥𝜀12 2𝛥𝜀13 2𝛥𝜀23 };  

{𝛥𝜎}
1×6

Т = {𝛥𝜎11 𝛥𝜎22 𝛥𝜎33 𝛥𝜎12 𝛥𝜎13 𝛥𝜎23 }. 

Due to the cumbersomeness of expressing the derivative in relation (9), the work 

on forming the matrix relation (11) in an arbitrary curvilinear coordinate system was not 

carried out in this research. 

 

The second variant of plastic flow 

It is proposed to determine the plastic strain increments based on the hypothesis of their 

proportionality to the components of the stress increments deviator [24]: 

𝛥𝜀𝑖𝑗
𝑝 =

3

2

𝛥𝜀𝑖
𝑝

𝛥𝜎𝑖
(𝛥𝜎𝑖𝑗 −

1

3
𝑔𝑖𝑗𝑃𝛥𝜎).          (12) 

When taking Eq. (4) into account, Eq. (12) will be written in the form: 

𝛥𝜀𝑖𝑗
𝑝 =

3

2
(

1

𝐸к
−

1

Е1
) (𝛥𝜎𝑖𝑗 −

1

3
𝑔𝑖𝑗𝑃𝛥𝜎).          (13) 

By summation of Eqs. (2) and (13), the relation is formed: 

𝛥𝜀𝑖𝑗 = [
1

2𝜇
+

3

2
(

1

𝐸к
−

1

Е1
)] 𝛥𝜎𝑖𝑗 − 𝑔𝑖𝑗𝑃𝛥𝜎 [

1

2𝜇

1−2𝜈

𝐸
−

1

2
(

1

𝐸к
−

1

Е1
)],      (14) 
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as the matrix: 

{𝛥𝜀}
6×1

= [С2
П]

6×6
{𝛥𝜎}

6×1
.            (15) 

It should be noted that when obtaining the components of the plastic strain 

increment tensor, the hypothesis of the incompressibility of the material during plastic 

deformation was accepted. 

 

The third variant of physical relations at the loading step 

The relations between the stress and strain increments are obtained based on the 

assumption of a proportional relation between the components of the deviators of the 

stress and strain increments without dividing the increments of strain into elastic and 

plastic parts: 

𝛥𝜀𝑖𝑗 −
1

3
𝑔𝑖𝑗𝑃𝛥𝜀 =

3

2𝐸к
(𝛥𝜎𝑖𝑗 −

1

3
𝑔𝑖𝑗𝑃𝛥𝜎),         (16) 

where 𝑃𝛥𝜀 = 𝛥𝜀𝑚𝑛𝑔𝑚𝑛 is the first invariant of the strain increments tensor. 

The relation between the values of 𝑃𝛥𝜀 and Р𝛥𝜎 should be determined 

experimentally in the form of functional dependence 𝑃𝛥𝜀 = 𝜙Р𝛥𝜎. It is assumed in this 

research that the relation between the first invariants of the strain increments tensors 

and stress increments in the process of elastic and plastic deformation remains 

unchanged: 

𝑃𝛥𝜀 = 𝑃𝛥𝜎
1−2𝜈

𝐸
.            (17) 

After substituting Eq. (17) into Eq. (16), the strain increments through the stress 

increments can be written in the form: 

𝛥𝜀𝑖𝑗 =
3

2𝐸к
𝛥𝜎𝑖𝑗 − 𝜓𝑔𝑖𝑗 ⋅ 𝑃𝛥𝜎,           (18) 

where 𝛹 =
1

2𝐸к
−

1

3
  

1−2𝜈

𝐸
. 

Using Eq. (18), a matrix dependence is formed: 

{𝛥𝜀}
6×1

= [С3
П]

6×6
{𝛥𝜎}

6×1
.            (19) 

 

Shell geometry 

The radius vector of an arbitrary point located at a distance t from the middle surface is 

written by the expression: 

𝑹0𝑡 = 𝑹0 + 𝑡𝒂0,            (20) 

where 𝑹0 = 𝑥𝒊 + 𝑟(𝑥) 𝑠𝑖𝑛 𝜃 𝒋 + 𝑟(𝑥) 𝑐𝑜𝑠 𝜃 𝒌  is the radius vector of the corresponding 

point of the middle surface of the shell of revolution, 𝒂0
 is the normal to middle surface, 

t is the distance of a point from the middle surface. 

At an arbitrary point, the basis vectors are determined by differentiation Eq. (20): 

𝒈𝑚
0 = 𝑹,𝑚

0𝑡 = 𝑹,𝑚
0 + 𝑡𝒂0.           (21) 

The derivatives with respect to 𝑥, 𝜃, 𝑡 of the basis vectors of the point М0t are 

determined by the components in the same basis [23]: 
{𝒈0,х }

3×1
= [𝑚]

3×3
{𝒈0}
3×1

;  {𝒈0,𝜃 }
3×1

= [𝑛]
3×3

{𝒈0}
3×1

; {𝒈0,𝑡 }
3×1

= [𝑙]
3×3

{𝒈0}
3×1

,      (22) 

where {𝒈0,𝜆 }𝑇

1×3
= {𝒈1

0,𝜆 𝒈2
0,𝜆 𝒈3

0,𝜆 };  𝜆 = 𝑥, 𝜃, 𝑡.  

The displacement of the shell point М0t at the loading step is determined by the vector: 

𝛥𝑽 = 𝛥𝑣𝑖𝒈𝑖
0.

              

(23) 
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Derivatives (23) of the vector will be written as: 

𝛥𝑽,𝜆 = 𝑓𝜆
𝑖𝒈𝑖

0,             (24) 

where  

𝑓1
1 = 𝛥𝑣,𝑥

1+ 𝛥𝑣1𝑚11 + 𝛥𝑣2𝑚21 + 𝛥𝑣3𝑚31;        (25) 
𝑓3

3 = 𝛥𝑣,𝑡
3+ 𝛥𝑣1𝑙13 + 𝛥𝑣2𝑙23 + 𝛥𝑣3𝑙33. 

When the shell of rotation is deformed in a geometrically linear formulation, an 

arbitrary point М0t will take the position M t, determined by the radius vector: 

𝑹 = 𝑹0𝑡 + 𝛥𝑽.            (26) 

The basis vectors of the point M t are determined by the differentiation Eq. (26): 

𝒈𝑖 = 𝒈𝑖
0 + 𝛥𝑽,𝑖.            (27) 

The strain increments at the loading step are determined by the difference in the 

covariant components of the metric tensors [5]: 

𝛥𝜀𝑖𝑗 =
1

2
(𝑔𝑖𝑗 − 𝑔0

𝑖𝑗
) =

1

2
(𝒈𝑖

0 ⋅ 𝛥𝑽,𝑗+ 𝒈𝑗
0 ⋅ 𝛥𝑽,𝑖 ).        (28) 

The strain increments 𝛥𝜀𝑖𝑗 taking into account Eqs. (24) and (25) could be presented 

through the vector components (23) in a matrix: 

{𝛥𝜀}
6×1

= [𝐿]
6×3

{𝛥𝑣}
3×1

,            (29) 

where {𝛥𝑣}Т

1×3
= {𝛥𝑣1 𝛥𝑣2𝛥𝑣3} is the string of the displacement vector, [𝐿] is the matrix 

of differential and algebraic operators. 

 

Strain matrix of the finite element at the loading step 

A hexahedral finite element with eight nodal points w = i, j, k, l, m, n, p, h, the strain matrix 

of which is obtained in a mixed FEM formulation when choosing as nodal unknowns in 

the form of displacement increments and stress increments. The coordinates of the 

hexahedron through the coordinates of the nodes were determined by trilinear functions 

of local coordinates 𝜉,  𝜂,  𝜁, varying within −1 ≤  𝜉,  𝜂𝜁 ≤  1.  

𝜆 = {𝑓(𝜉, 𝜂, 𝜁)}
1×8

𝑇{𝜆𝑦}
8×1

,           (30) 

where 𝜆 is a global coordinate 𝑥, 𝜃, 𝑡, {𝜆𝑦}
8×1

Т
 is the string of nodal coordinate values 𝜆. 

Displacement increments were also approximated using Eq. (30):  

{𝛥𝑣}
3×1

= [𝐴]
3×24

{𝛥𝑣𝑦}
24×1

,            (31) 

where {𝛥𝑣𝑦}
1×24

𝑇
= {𝛥𝑣1𝑖. . .  𝛥𝑣1ℎ𝛥𝑣2𝑖. . . 𝛥𝑣2ℎ𝛥𝑣3𝑖 . . . 𝛥𝑣3ℎ} is the string of hexahedral nodal 

displacement. 

Taking Eq. (31) into account, strains (29) will be written by the matrix expression: 

{𝛥𝜀}
6×1

= [𝐿]
6×3

  [𝐴]
3×24

 {𝛥𝑣𝑦}
24×1

= [𝐵]
6×24

 {𝛥𝑣𝑦}
24×1

.         (32) 

Stress increments in the vicinity of the internal point of the hexahedral are 

approximated by Eq. (30): 

𝛥𝜎𝑠𝑟 = {𝑓(𝜉, 𝜂, 𝜁)}
1×8

𝑇{𝛥𝜎𝑠𝑟
𝑤}

8×1
,           (33) 

where {𝛥𝜎𝑠𝑟
𝑤}

1×8

𝑇 = {𝛥𝜎𝑠𝑟
𝑖 𝛥𝜎𝑠𝑟

𝑗
 𝛥𝜎𝑠𝑟

𝑘  𝛥𝜎𝑠𝑟
𝑙 𝛥𝜎𝑠𝑟

𝑚 𝛥𝜎𝑠𝑟
𝑛  𝛥𝜎𝑠𝑟

𝑝 𝛥𝜎𝑠𝑟
ℎ }. 
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Using Eq. (33), the matrix relation is formed [8]: 

{𝛥𝜎𝑠𝑟}
6×1

= [𝑆]
6×48

{𝛥𝜎𝑦}
48×1

,            (34) 

where {𝛥𝜎𝑠𝑟}
1×6

𝑇 = {𝛥𝜎11𝛥𝜎22𝛥𝜎33𝛥𝜎12𝛥𝜎13𝛥𝜎23};  

{𝛥𝜎𝑦}
Т

1×48

= {𝛥𝜎11
𝑖 𝛥𝜎11

𝑗
𝛥𝜎11

𝑘 𝛥𝜎11
𝑙 𝛥𝜎11

𝑚𝛥𝜎11
𝑛 𝛥𝜎11

𝑝 . 𝛥𝜎11
ℎ . . . 

. . . 𝛥𝜎23
𝑖 𝛥𝜎23

𝑗
𝛥𝜎23

𝑘 𝛥𝜎23
𝑙 𝛥𝜎23

𝑚𝛥𝜎23
𝑛 𝛥𝜎⬚23

𝑝 𝛥𝜎23
ℎ }. 

To obtain the stress-strain state matrix at the loading step, a mixed functional was 

used [25]: 

П ≡ ∫ {𝛥𝜎𝑠𝑟}
1×6

𝑇 [𝐿]
6×3

{𝛥𝑣}
3×1

𝑑𝑉 −
𝑉

1

2
∫ {𝛥𝜎𝑠𝑟}

1×6

𝑇[𝐶к
П]

6×6
{𝛥𝜎𝑠𝑟}

6×1
𝑑𝑉 −

𝑉

1

2
∫ {𝛥𝑣}

1×3

𝑇{𝛥𝑞}
3×1

𝑑𝑆 −
𝑆

  

− ∫ {𝛥𝑣}
1×3

𝑇{𝑞}
3×1

𝑑𝑆 +
𝑆

∫ {𝜎𝑠𝑟}
1×6

𝑇{𝛥𝜀}
6×1

𝑑𝑉;  (к = 1,2,3)
𝑉

.        (35) 

 

Taking into account approximating Eqs. (31), (32) and (34), Eq. (35) will be written as: 

П ≡ {𝛥𝜎у}
1×48

𝑇
∫ [𝑆]

48×6𝑉

𝑇

[𝐺]
6×6

𝑇 [𝐵]
6×24

𝑑𝑉{𝛥𝑣𝑦}
24×1

−
1

2
{𝛥𝜎𝑦}

1×48

𝑇
∫ [𝑆]

48×3

𝑇[𝐺]
6×6

𝑇[Ск
П]

6×6
[𝑆]

6×48
𝑑𝑉{𝛥𝜎𝑦}

48×1

−
𝑉

 

−
1

2
{𝛥𝑣𝑦}

1×24

𝑇
∫ [𝐴]

24×3

𝑇{𝛥𝑞}
3×1

𝑑𝑆 − {𝛥𝑣𝑦}
1×24

𝑇

𝑆
∫ [𝐴]

24×3

𝑇{𝑞}
3×1

𝑑𝑆 + {𝛥𝑣𝑦}
1×24

𝑇

𝑆
∫ [𝐵]

24×6

𝑇{𝜎𝑠𝑟}
6×1

𝑑𝑉
𝑉

,  (36) 

where the following relation is used {𝛥𝜎𝑠𝑟}
6×1

= [𝐺]
6×6

{𝜎𝑠𝑟}.

 By varying Eq. (36) according to the nodal unknowns, the stress-strain state matrix 

[K] is formed at the loading step [8]: 

[𝐾]
72×72

{𝑍у}
72×1

= {𝐹𝑦},
72×1

                 (37) 

where {𝑍у}
1×72

Т
= {{𝛥𝜎𝑦}

1×48

𝑇
{𝛥𝑣𝑦}

1×24

𝑇
} is the vector of finite element nodal unknowns;  

 

{𝐹у}
1×72

Т
= { {0}

1×48

𝑇 ⋮ {𝛥𝑓𝑞}
1×24

𝑇
+ {𝑅}

1×24

𝑇} is the vector of nodal loads with residual {𝑅}𝑇. 

Using the developed strain matrix of a hexahedral finite element, it is possible to 

perform calculations during elastoplastic deformation with any hardening law, except for 

the horizontal section of the strain diagram (Ek = 0). 

 

Results and Discussion 

Example 1. The stress state of a shell of revolution with the middle surface of a truncated 

ellipsoid (Fig. 1) under the influence of internal pressure was considered. The following 

input data was used: а = 0.15 m; в = 0.10 m; h = 0.01 m; 𝑙𝑘 = 0.14 m;

 

𝑧𝑘 =  0.0359 m; 

Е = 2‧105 MPa; 𝜈 = 0.3. 

When discretizing the shell, the bases of the hexahedral elements were located in 

the shell surfaces located at distances t = t1 and t = t2 from the middle surface. The edges 

of the elements accepted the normals to the middle surface. 

The strain diagram was accepted with a section of nonlinear hardening (Fig. 2) with 

the following values of its characteristics: 𝜎𝑖Т = 200 MPa; 𝜀𝑖Т = 0.866667‧10-3;

 𝜀𝑖𝑘 =  0.019; 𝜎𝑖𝑘 =  400 MPa. 

The function 𝜎𝑖 = 𝑓(𝜀𝑖) is taken in the form of a parabola 𝜎𝑖 = 𝑎1𝜀𝑖
2 + 𝑏1𝜀𝑖 + 𝑐1 with 

numerical values of the constants: а = -6612835.5282 MPa; b = 242231.47902 MPa; 

с = 1795.0330258 MPa. 
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Fig. 1. Design diagram of a truncated ellipsoid 

 

           Fig. 2. Material strain diagram 

 

To verify the convergence of the computational process based on the finite element 

used for different quantities, the problem was solved for elastic strain. 

The function 𝜎𝑖 = 𝑓(𝜀𝑖) is taken in the form of a parabola 𝜎𝑖 = 𝑎1𝜀𝑖
2 + 𝑏1𝜀𝑖 + 𝑐1 with 

numerical values of the constants: а = -6612835.5282 MPa; b = 242231.47902 MPa; 

с = 1795.0330258 MPa. 

To verify the convergence of the computational process based on the finite 

element used for different quantities, the problem was solved for elastic strain. 

The numerical values of normal stresses at internal pressure q = 8 MPa (elastic 

strain) in the initial section (S = 0.0) and the end section of the elliptical shell are given 

in Table 1 for various options for discretizing the structure along the meridional 

coordinate S (number of nodes NM) and along shell wall thickness h (number of nodes 

NT). Table 1 shows the normal stresses of the internal and external fibers. 

 
Table 1. Values of normal stresses of the internal and external fibers, where 𝜎11

𝑖𝑛, 𝜎11
𝑒𝑥 are the meridional stresses 

of the internal and external fibers and 𝜎22
𝑖𝑛 , 𝜎22

𝑒𝑥 are the circumferential stresses in internal and external fibers 

NM 
× 

NT 

Stresses, MPa 

𝜎11
𝑖𝑛 𝜎22

𝑖𝑛 𝜎11
𝑒𝑥 𝜎22

𝑒𝑥 𝜎11
𝑖𝑛 𝜎22

𝑖𝑛 𝜎11
𝑒𝑥 𝜎22

𝑒𝑥 

20×3 32.18 65.97 34.06 60.61 2.05 62.65 1.08 46.90 

40×5 32.08 65.86 34.22 60.60 0.64 62.43 0.367 47.12 

80×7 
32.05 65.83 34.28 66.60 0.18 62.36 0.113 47.15 

S = 0.0 S = 16.06 cm 

 

Table 1 shows the values of physical stresses obtained using Hooke's law (2). 

Analysis of the results given in Table 1 indicates the convergence of the computational 

process and emphasizes the tendency towards zero meridional stresses in the end section 

(S = 16.06 cm).  

Example 2. The structure shown in example 1 was loaded with pressure 

q = 45.6 MPa for a different number of steps (ns = 10, 20, 40, 80). The calculation results 

based on Eqs. (15) and (19) turned out to be almost identical. 

Meridional and circumferential stresses in internal (𝜎11
𝑖𝑛 , 𝜎22

𝑖𝑛) and external fibers 

(𝜎11
𝑒𝑥 , 𝜎22

𝑒𝑥) of the support section, as well as stress intensity (𝜎𝑖
𝑖𝑛, 𝜎𝑖

𝑒𝑥) based on Eq. (19) 

are given in Table 2.  
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Table 2. Values of meridional and circumferential stresses in the internal and external fibers of the support 

section, and stress intensity 

ns 

Stresses, MPa 

𝜎11
𝑖𝑛 𝜎22

𝑖𝑛 𝜎𝑖
𝑖𝑛 𝜎𝑖

𝑒𝑥 𝜎22
𝑒𝑥 𝜎𝑖

𝑒𝑥 

10 158.19 340.19 319.18 249.67 418.11 355.56 

20 160.97 343.45 327.56 215.71 367.71 310.98 

40 161.22 343.77 333.43 223.05 380.12 327.36 

80 162.36 345.88 336.72 216.65 369.98 319.58 

 

Analysis of the results of Table 2 indicates the convergence of the computational 

process with an increase in the number of loading steps. 

Meridional and circumferential stresses along the thickness of the shell support 

section are given in Table 3 under the load q = 45.6 MPa and ns = 40. 

 
Table 3. Values of meridional and circumferential stresses along the thickness of the shell support section 

σ11, MPa
 

161.22 170.99 178.54 187.85 196.65 205.61 223.05 

σ22, MPa
 

343.77 349.08 352.42 356.99 362.09 365.82 380.12 

 

Diagrams of meridional (𝜎11
𝑖𝑛) and circumferential (𝜎22

𝑖𝑛) stresses are presented in 

Figs. 3 and 4 respectively. Numerical values of circumferential stresses shown in Fig. 4 

are in adequate agreement with the numerical values of meridional stresses. 
 

 
 

Fig. 3. Diagram of meridional stresses 𝜎11 along the height of the support section 
 

 
 

Fig. 4. Diagram of circumferential stresses 𝜎22 of the support section 
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Table 4. Values of meridional and circumferential stresses in the internal and external fibers along the 

length of the meridian arc 

Stresses, 

MPa 

Length of meridian S, m 

0.00 1.16 3.38 5.19 7.03 10.98 12.06 13.22 13.72 14.24 14.79 15.4 16.06 

𝜎11
𝑖𝑛 161.22 160.29 161.09 159.08 156.27 144.30 135.55 117.86 106.79 91.31 70.62 41.28 -0.014 

𝜎22
𝑖𝑛 343.77 341.67 339.76 331.62 319.41 290.67 284.24 280.08 280.17 277.79 276.19 275.29 274.25 

𝜎𝑖
𝑖𝑛

 
333.43 331.39 329.36 322.28 312.00 286.34 280.74 276.52 277.12 275.95 277.01 282.28 294.63 

𝜎11
𝑒𝑥 223.05 219.91 207.46 192.69 172.94 110.58 88.83 67.77 58.64 51.57 42.361 29.10 1.365 

𝜎22
𝑒𝑥 380.12 377.38 362.98 363.61 346.49 293.49 287.99 274.81 275.65 270.61 275.55 275.38 274.31 

𝜎𝑖
𝑒𝑥

 
327.36 324.53 311.09 310.69 296.18 252.12 251.61 243.90 247.64 245.02 253.12 258.15 269.64 

 

Table 4 shows the values of meridional and circumferential stresses, as well as stress 

intensities along the length of the meridian, in the internal and external fibers of the shell. 

Based on the results of Table 4, graphs of meridional 𝜎11, circumferential 𝜎22 and 

stress intensity  𝜎𝑖 were constructed (Fig. 5). 

 

                       
 

Fig. 5. Graphs of changes in meridional and circumferential stresses in fibers along the length of the 

meridian arc 

 

From the values of stress intensities in the internal and external fibers on Fig. 5, it 

is clear that under conditions of plastic strain the material is near the surfaces. And since 

the meridional (𝜎11) and circumferential (𝜎22) stresses are tensile, it means that the 

material between the surfaces is under conditions of plastic strain. There are no areas of 

elastic strain at q = 45.6 MPa along the section thickness. 

Based on Fig. 3 for meridional stresses, a static check of the equilibrium condition 

of the structure was performed (Fig. 1) ∑ х = 𝑄𝑞 − 𝑄𝜎 = 0, where 𝑄𝜎 is a stress endeavor; 

𝑄𝑞 is a pressure endeavor q. 
 

The error is 𝛿 = 0.6 %. From the values of stress intensities in the internal and 

external fibers in Fig. 5, it can be seen that the entire body of the shell is under conditions 

of plastic strain 𝜎𝑖 > 𝜎𝑖𝑇 = 200 MPa along the entire thickness. 
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Conclusions 

In the second variant of the physical equations (Eq. (14)) the following relations are 

accepted 𝑃𝛥𝜀 = 𝑃𝛥𝜀
𝑒 + 𝑃𝛥𝜀

𝑝 =
1−2𝜈

𝐸
+ 0, in other words, it is assumed that during 

elastoplastic deformation (𝜎𝑖 > 𝜎𝑖𝑇) the first invariant of the strain increment tensor 

changes according to the law of elastic deformation.  

In the third variant of the defining equations (Eq. (18)) the relations  

𝑃𝛥𝜀 = 𝑃𝛥𝜀
𝑒 + 𝑃𝛥𝜀

𝑝 = 𝜙𝑃𝛥𝜎 are used, which can be accepted either on the basis of experiment 

or on the basis of some hypothesis. In the first and second variants of the defining 

equations, the value 𝑃𝛥𝜀
𝑝 = 0, and the value 𝑃𝛥𝜀

𝑝 =
1−2𝜈

𝐸
 is used in the increments of elastic 

deformation throughout the entire process of elasto-plastic deformation. 

In this work, in order to compare the variants of the defining equations, the 

expression 𝑃𝛥𝜀 = 𝑃𝛥𝜀
𝑒 + 𝑃𝛥𝜀

𝑝 =
1−2𝜈

𝐸
, is used, in which the results of the calculation of the 

presented example based on the second and third variants of the physical equations 

turned out to be almost identical. 

When calculating structures for which the material dependence 𝑃𝛥𝜀 = 𝜙𝑃𝛥𝜎 is not 

linear, the third variant of physical equations should be used. 
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