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Abstract. The nonlocal theory of elasticity is applied to formulate the governing equations of 

nonlocal micropolar piezoelectric material in a rotating frame. The governing equations are 

specialized for a plane and solved to show the existence of three coupled plane waves. 

Reflection of a coupled longitudinal displacement wave is considered at a stress-free surface 

of half-space containing the micropolar piezoelectric material. For the incidence of coupled 

longitudinal displacement waves, the expressions of reflection coefficients and energy ratios 

for reflected waves are derived. A quantitative example is set up to illustrate the effects of 

rotation and nonlocal parameters on the reflection coefficients and energy ratios in a given 

range of the angle of incidence. 
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Introduction 

Plane wave reflection and refraction phenomenon are extensively used to conduct non-

destructive testing or non-destructive evaluation of composites for characterizing/mapping 

subsurface defects and assessing the in-situ condition of structural components without 

reforming the original features of the composites in a non-tarnish way. Elastic wave 

propagation problems in layered media have been discussed by several authors. Prominent 

among them are Knott [1], Jeffreys [2], Gutenberg [3], Ergin [4], Ewing et al. [5], and 

Achenbach [6].  

Piezoelectric materials find their utility as sensors and actuators in many applications 

involving signal transmission. Various analytical studies on wave characteristics in 

piezoelectric materials were investigated (Kyame [7], Pailloux [8], Cheng and Sun [9], Auld 

[10], Alshits et al. [11], Parton and Kudryavtsev [12], Every and Neiman [13], Alshits and 

Shuvalov [14], Wang [15], Yang [16], Pang et al. [17], Darinskii et al. [18], Burkov et al. 

[19], Abd-alla and Al-sheikh [20], Singh [21], Kuang and Yuan [22], Yuan and Zhu [23], Guo 

and Wei [24], Guo et al. [25], Othman et al. [26], Singh and Singh [27], Jiao et al. [28], 

Sahu et al. [29], Singh et al. [30], Liu et al. [31].  

The translation and rotation of a moving object can be sensed by accelerometers and 

gyroscopes, respectively. These motion sensors are used as an important tool in smart weapon 

systems, video cameras, automobiles, robotics, navigation, and machine control. Recently, 

vibratory gyroscopes made up of piezoelectric materials have been a centre of research. The 

governing equations with Centrifugal and Coriolis accelerations for a rotating piezoelectric 

body are responsible for observing the fundamental nature of the piezoelectric gyroscope. The 
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rotational effects on plane waves in an isotropic medium were observed by Schoenberg and 

Censor [32]. According to White [33], the rotational effect on frequency or wave speed 

provides valuable inputs for acoustic sensors design. In particular, the rotation-induced 

frequency shifts have been applied to manufacture the gyroscopes (Tiersten et al. [34], 

Tiersten et al. [35], Wren and Burdess [36]).  

In recent years, the materials and structures have been considered on a nano-scale to 

meet the requirement of various acoustic devices to have greater sensitivity and storage within 

the smaller structure. The applications of nonlocal theory help to explain and predict physical 

phenomena at small length scales. Edelen et al. [37], Eringen and Edelen [38], and Eringen 

[39] developed the nonlocal elasticity theory characterized by the presence of nonlocality 

residuals fields like body force, mass, entropy, and internal energy. Eringen [40,41] applied 

the nonlocal elasticity theory to investigate plane waves in elastic media. Thereafter, various 

researchers investigated wave propagation problems by using nonlocal elasticity theories. 

More recent works are cited as Roy et al. [42], Khurana and Tomar [43,44], Singh [45,46], 

Kaur and Singh [47], Liu et al.[31] and Tung [48]. 

The micropolar elasticity extends classical elasticity with extra independent degrees of 

freedom for local rotation. Eringen [49-51] introduced linear micropolar elasticity, where the 

motions of the particles are represented by the displacement and micro-rotation vectors. The 

theory of micropolar elasticity was further applied by various researchers in piezoelectric 

materials. For example, the works of Cracium [52], Ciumasu and Vieru [53], Vieru and 

Ciumasu [54], Zhilin and Kolpakov [55], Aouadi [56], and Gales [57] are cited for reference. 

Recently, the piezoelectricity of micropolar materials was used to explore the plane and 

surface wave characteristics by Singh and Sindhu [58,59], Sangwan et al. [60], Singh et al. 

[61] and Bijarnia et al. [62]. The main motivation of this paper is to apply the nonlocal 

elasticity theory for the investigation of rotational effects on plane waves in the micropolar 

piezoelectric medium.  

In section 2, the governing equations of a transversely isotropic, rotating, nonlocal 

micropolar piezoelectric medium are specialized for a plane. In section 3, the existence of 

three coupled plane waves is discussed. In section 4, a reflection phenomenon of coupled 

longitudinal displacement wave from a traction-free boundary of a semi-infinite space is 

considered. The expressions for reflection coefficients and energy ratios are derived. In 

section 5, some special cases are discussed. In section 6, a quantitative example of the model 

is set up to graphically illustrate the effects of rotation and nonlocality on the speeds, 

amplitude ratios, and energy ratios in a given range of propagation angles. 

 

Governing equations 

We consider a nonlocal rotating micropolar piezoelectric solid material with constant angular 

velocity n̂,=  where n̂  is a unit vector along the axis of rotation. The fixed coordinate 

system in the rotating solid introduces Centripetal acceleration ( )u  by virtue of time-

changing motion only and Coriolis acceleration ( )2 u . According to Schoenberg and 

Censor [32], Eringen and Edelen [38], Eringen [39], and Aouadi [56], the fundamental system 

of field equations without body forces and body couples for the linear theory of rotating 

nonlocal micropolar piezoelectric solids are formulated as 

(a) The equations of the motion 

( )  ( ), 2 , = +   + 
  ji j i

ii
u u u                              (1)                                                                                                                                                                                                

, ,i k i i j k i j km j   + =
                                                          

(2)                                                                                                    

(b) The equations of the electric fields 
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, ,, ,j j e k kD q E = = −
                                                                

(3)                               

(c) The constitutive equations 

( )2 21 ,i j i j k l k l i j k l k l i j k kc e b E   −  = + +
       

(4) 

( )2 21 ,i j k l i j k l i j k l k l i j k km b e a E  −  = + +
                                                    

(5) 

,k i j k i j i j k i j k j jD e E   = − − +
                                                                    

(6) 

(d) The geometrical equations 

, ,, ,i j j i i j k k i j j ie u    = + =  (7) 

where   is the mass density,   is the nonlocal parameter, u  is the displacement vector,   

is the microrotation vector, 
ij  is the stress tensor, 

ijm  is the couple stress tensor, j  is the 

micro-inertia, 
ijk  is the alternating symbol, kD  is the dielectric displacement vector, eq  is 

the volume charge density, 
jE  is the electric field vector,   is the electrostatic potential, 

ije  

and 
ij  are kinematic strain measures and , , , ,ijkl ijkl ijkl ijk ijka b c    and 

jk  are constitutive 

coefficients. The symbol 2  is the Laplace operator. Subscripts preceded by a comma 

denote space partial derivatives. The superposed dot denotes time partial derivatives. The 

constitutive coefficients satisfy the following symmetry relations 

, ,i j k l k l i j i j k l k l i j i j j ic c a a  = = = . (8) 

Now, we consider an infinite linear, homogeneous, and transversely isotropic nonlocal 

rotating micropolar piezoelectric solid half-space. We take the origin of the rectangular 

Cartesian coordinate system ( )1 2 3, ,x x x on the free surface 3 0x =  and 3x -axis is taken normal 

to the half-space. The plane of isotropy is taken perpendicular to 3x -axis and the rotation is 

assumed with constant angular velocity  about 2x -axis. For a two-dimensional problem, we 

consider the following components of displacement vector u , microrotation vector  , and 

angular velocity   

( ) ( ) ( )1 3 2,0, , 0, ,0 , 0, ,0 .u u u  = =  = 
                                      

(9) 

Using Equation (9) in Equations (1-8), the governing equations for transversely 

isotropic rotating nonlocal micropolar piezoelectric medium in 1 3x x−  plane reduce to the 

following system of four partial differentials equations in 1 3 2, ,u u  and   

( ) ( )

( )

22 2 2

31 1 2
11 13 56 55 1 15 312 2

1 1 3 3 3 1 3

2
2 2 21

1
3

2
1 2

uu u
A A A A K

x x x x x x x

uu
u

t t

 
 

 

   
+ + + + − +

      

 
= −  − +  

  

 (10)                                                                            

( )

( )

2 22 2 2

3 31 2
66 13 56 33 2 15 332 2 2 2

1 1 3 3 1 1 3

2
2 3 12 2

32
1 2

u uu
A A A A K

x x x x x x x

u u
u

t t

  
 

 

    
+ + + + − −

      

  
= −  − −  

  

    (11) 

( )
2 2 2

2 232 2 1 2
77 66 2 1 22 2 2

1 3 3 1

1
uu

B B K K j
x x x x t

  
  

   
+ − − − = − 

    
                                      

(12) 

( )
2 2 2 2 2

3 3 1
1515 33 11 332 2 2 2

1 3 1 3 1 3

31 0
u u u ψ ψ

λ λ λ λ γ γ
x x x x x x

    
+ + + + + =

     
                                              

(13) 



Wave propagation in a nonlocal rotating micropolar piezoelectric solid  45 

where 
2 2

2

2 2
1 3

,
x x

 
 = +

 
 

11 1111 55 3131 13 1133 3311 56 3113 1331 66 1313 33 3333, , , , , ,A C A C A C C A C C A C A C= = = = = = = =  

1 56 55 3113 3131 2 66 56 1313 1331 2 77 12121,, , ,K A A C C K A A C C BK a= = −− = − = − = − =  

66 3232 31 311 33 333 15 131 113 35 313 331, , ,, .B a λ λ λ λ λ λ λ λ λ λ= = = = = = =  

 

Plane waves   

The plane harmonic solutions of Equations (10-13) are considered as 

   ( ) * * * *

1 3 2 1 3 2 1 3, , , , , , exp sin cos ,u u u u ik x x i t      = + −
                  

(14) 

where i 1= − , k is the wave number,  is the circular frequency,  is propagation angle, 

and v is the propagation speed. 

Using Equation (14) in Equations (10-13), we obtain a homogenous system of four 

equations in * * *

1 3 2, ,u u  and *  the non-zero solutions of which require the following 

condition 
3 2

0 1 2 3 0,D D D D −  + − =
                                                                   

(15)   

where 

2
v




 
 =  

 
 and the expressions for ( )0,1,2,3jD j =  are given as 

( )2 2

0 5 3 1 2 ,D M M M= +  

( ) ( ) ( ) ( )

( ) ( )

2 2
* * 2 2

1 5 1 3 1 2 5 1 1 2 1 3 3 3

2 2

5 2 3 2 1 4 5 1 2 ,

D M M M K K M M B

M M B B M M

    

  

 = + + + + +
  

− − − +

 

( )( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2
2 * 2 * * *

2 2 5 3 1 1 5 3 2 3 3 5 1 5 2 1 2

2 2

4 1 3 3 4 5 1 1 2 1 2 3 3 3

2 2

1 3 2 3 3 1 2 1 2 5 3 4 5 2 2 1

2

,

D K B K B B B K K

M B M B B B M

B M B B M M B B

       

      

       

= + + + − + +

− + − + − +

+ + + − + −

 

( ) 2 2

3 4 5 1 2 1 2 3 4 3 1 4 3 2 4 3 1 2 4 5D B B B B B B ,=   + +   −   −  −     

where 

( )
2

2 2 * 2 2

1 11 55sin cos 1 ,A A     = + − + 
  

( )
2

2 2 * 2 2

2 66 33sin cos 1 ,A A     = + − + 
  

2 2

3 15 33sin cos ,    = +

2 2 2 2

4 77 66sin cos ,B B j     = + − 2 2

5 11 33sin cos ,    = +
 

( ) * 2 2

1 13 56 sin cos 2 ,B A A i   = + −  ( ) * 2 2

2 13 56 sin cos 2 ,B A A i   = + +   

( )3 15 31 sin cos ,B    = + * *

1 1 2 2cos , sin ,K iK K iK = =  

( )
2

* * 2

1, 1 ,M 


   = = + 
  

* 2 2

2 32 , .M i M j   =  = −  

The dispersion Equation (15) is a cubic equation in
2v . Three roots 1 2,v v  and 3v of 

Equation (15) are found to be real and positive with inequality 1 2 3v v v  .  These three roots 

suggest the existence of three plane waves, namely, Coupled Longitudinal Displacement 
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(CLD), Coupled Transverse Displacement (CTD), and Coupled Transverse Microrotational 

(CTM) waves with distinct speeds 1 2,v v  and 3v , respectively.  

 

Reflection of Coupled Longitudinal Displacement (CLD) wave 

An incident CLD wave propagating with velocity 1v  through the transversely isotropic 

rotating nonlocal micropolar piezoelectric solid half-space (M) strikes the free surface 

3  = 0x making an angle o  with negative 3x -axis. The incident CLD wave will generate 

three reflected waves as CLD, CTD, and CTM waves in medium M. The geometry showing 

the directions of striking waves and reflected waves is illustrated in Fig. 1.  

 

 
Fig. 1. Geometry of the problem illustrating the striking and reflected waves 

 

The appropriate displacement components 1 3,u u , microrotation component 2 , and 

electric potential   for the incident and reflected waves in medium M are  

( ) 

( ) 

1 1 1 3

3

1 3

1

exp sin cos

        exp sin cos ,

o o o

j j j j

j

u A ik x x i t

A ik x x i t

  

  
=

= + − +

− −        

(16) 

( ) 

( ) 

*

3 1 1 1 3

3

1 3

1

exp sin cos

        exp sin cos ,

o o o

j j j j j

j

u A ik x x i t

A ik x x i t

   

   
=

= + − +

− −
                                                            (17) 

( ) 

( ) 

*

2 1 1 1 3

3

1 3

1

exp sin cos

        exp sin cos ,

o o o

j j j j j

j

A ik x x i t

A ik x x i t

    

   
=

= + − +

− −
 (18)          

( ) 

( ) 

*

1 1 1 3

3

1 3

1

exp sin cos

         exp sin cos ,

o o o

j j j j j

j

A ik x x i t

A ik x x i t

    

   
=

= + − +

− −
 (19) 

where the explicit expressions for coupling coefficients * * *

1 1 1, , , ,j j      and ( )1,2,3j j =

are provided in Appendix. 

The mechanical boundary conditions applied at 3 0x =  are vanishing of the normal force 

stress component, tangential force stress component, and tangential couple stress component 

i.e., 

 

CLD wave 

 

1  

CTM wave 

CLD wave 

3x

 

CTD wave 

1x  

2  3  

3 0x =  

o  

Transversely Isotropic 

Rotating Nonlocal 

Micropolar Piezoelectric 

Solid Half-Space 

(Medium M) 
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33 31 320, 0, 0,m = = =
                                                   

(20) 

where 

( ) 31
33 13 33 35

2

33

1 3 1 3

21 ,
uu

A A
x x x x

 
  

  
= + − −

   
−  

( ) ( )3 1
31 56 55 56 55 2 31 35

1 3 1 3

2 2 ,1
u u

A A A A
x x x x

 
   

   
= + + − − −

   
−   

( )2 2 2
32 66

3

1 .m B
x




=


−  

The displacement components, microrotation component, and electric potential 

functions given by Equations (16) to (19) satisfy the boundary conditions (20) with the 

following relations (analogous to Snell's law)  

1 1 1 2 2 3 3sin sin sin sin ,ok k k k   = = = 1 1 2 2 3 3k v k v k v= =
                  

(21) 

and the following three relations in amplitude ratios of reflected waves are derived as 

( )
3

1

, 1,2,3 ,i j j i

j

a Z h i
=

= =
                                                                  

(22) 

where ( ), 1,2,3
j

j

o

A
Z j

A
= =  are amplitude ratios of reflected CLD wave, reflected CTD wave, 

and reflected CTM wave, respectively and 

( ) ( )
( ) ( )

( )
*

13 35 33 33

1 * * *

13 35 1 33 1 33 1

sin
, 1,2,3

sin cos

j o j j j

j

o o

A A f
a j

A A

     

      

− − −
= =

− + −
 

( ) ( ) ( )

( ) ( ) ( )
( )

* 1
56 31 55 35 56 55

2 *
* * * 1

56 1 31 1 55 35 1 56 55

1

sin

, 1,2,3

sin cos

j

j j o j j

j j

j

o o

v
A A f i A A

v k
a j

A A i A A
k


     


      

  
− − − − −     

  = =
 

− + − − −  
 

 

( )

*1

3 *

1

1

, 1, 2,3

cos

j

j

j j

j

o

v
f

k v
a j

k






  
    
  = =
 
 
 

 

1 2 31, 1, 1,h h h= − = − =  

where 
2

* 21 sin , ( 1,2,3)j o

j

v
f j

v


 
= − =  

 

. 

Following Achenbach [6], the rate of energy transmission at the interface 3 0x =  is   

( ) ( ) ( )2* 3 1 2
33 1

2 2 2

3

2

3 2

2 .1 1 1
u u

P m
t t t

  


 
  

= + +


−  − 


−


 (23)                                                                        

The time rate of average energy transmission for the respective wave to that of the 

incident wave, denoted by ( )1,2,3jE j = for reflected CLD, reflected CTD, and reflected 

CTM, respectively, are given as  

( )
*

*

0

, 1,2,3 ,
j

j

P
E j

P
= =

                          

(24) 
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where 
*

0P  denotes the average energy transmission per unit surface area per unit time for 

incident CLD wave in rotating nonlocal micropolar piezoelectric medium M. 

The expressions for energy ratios at the interface 3 0x =  are given as  

( )1 2 3 2

0

, 1, 2,3
j j j

j jE Z j
+ − 

= = 
                   

(25) 

where 

( )1 13 56 35 31 sin ,j j j j j j oA A       = + − −  

( )
2

2 2 21
2 55 33 33 35 66 sin ,j j j j j j o

j

v
A A B

v
       

 
= − + − − + −  

 

 

( ) 1
3 56 55 ,

j

j

j j

v
i A A

v k

  
= −     

  

 

( )

( )

* * * * *

13 1 56 1 35 1 1 31 1

*
0

*2 * * * *2 1
55 33 1 33 1 1 35 1 66 1 56 55

1

sin

.
( )cos

o

o

A A

A A B i A A
k

       


       

 + − − +
 

=   
+ − − + − −  

  

 

 

Particular cases 

(a) In the absence of nonlocal parameter ( 0 = ), the above theoretical analysis reduces for 

the case when a plane wave is incident at a traction-free boundary of a transversely isotropic 

rotating micropolar piezoelectric solid half-space. 

(b) In the absence of rotation rate ( * 0 = ), the above theoretical analysis reduces for the 

case when a plane wave is incident at a traction-free boundary of a transversely isotropic 

nonlocal micropolar piezoelectric solid half-space. 

(c) In absence of rotation and nonlocality ( * 0, 0 = = ), the above theoretical analysis 

reduces for the case when a plane wave is incident at a traction-free boundary of a micropolar 

piezoelectric solid half-space of transversely isotropic type.  

 

Numerical results and discussion 

For illustrations of speeds, amplitude ratios, and energy ratios, the following physical 

constants of a micropolar piezoelectric material are considered (Singh and Sindhu [59], 

Sangwan et al. [60]) 
10 -2 10 -2 10 -2 10 -2

11 33 13 56

10 -2 10 -2 10 10

55 66 77 66

5 -2 -2 -2 -2 5

15 31 33 35

17.8 10 , 18.43 10 , 7.59 10 , 1.89 10 ,

4.357 10 , 4.42 10 , 2.78 10 , 2.68 10 ,

1 10 , 3.9 , 1.33 , 0.23 ,  10

A Nm A Nm A Nm A Nm

A Nm A Nm B N B N

Cm Cm Cm Cm H    −

=  =  =  = 

=  =  =  = 

=  = = = =

2 -1 -2 2 -1 -2 -3 2

11 33

,

85.2 , 28.7 , 1740 , 0.196 .

z

C N m C N m Kg m j m  = = = =

 

For the above physical constants, Equations (15), (22), and (25) are solved numerically 

with the help of programming in MATLAB. The propagation speeds, the modulus of 

amplitude ratios, and energy ratios of various reflected waves are computed for different 

values of nonlocal parameter  and rotation rate
* . The CLD and CTM waves are observed 

as the fastest and slowest waves, respectively.  

 

 



Wave propagation in a nonlocal rotating micropolar piezoelectric solid  49 

Speeds of plane waves 

Speeds versus rotation parameter. To illustrate the effects of rotation and nonlocal 

parameters, the speeds of CLD, CTD, and CTM waves are plotted against rotation rate *   

( *0 1   ) in Fig. 2 for three distinct nonlocal parameters when the angle of incidence o  is 

fixed as 45 . The solid, dashed, and dotted curves in Fig. 2 correspond to the speed variations 

of CLD, CTD, and CTM waves for the nonlocal parameter 0, 0.007, 0.008 = , respectively. 

For 0, 0.007 = and 0.008, the speed of CLD wave as shown in Fig. 2(a) is approximately 
40.96×10 ms-1 at *= 0 and it increases uniformly as the rotation parameter * increases 

from 0 to 0.9. Beyond * = 0.9, the speed of CLD wave increases very sharply to a maximum 

value 58.045×10 ms-1 at * = 0.99 . The speeds of CTD and CTM waves as illustrated in 

Fig. 2 decrease uniformly as * increases from 0 to 0.99. However, the rate of decrease in 

speed of CTM wave is very low as compared to CTD wave. From Figure 2, it is noticed that 

the speeds of CLD, CTD, and CTM waves become slow in the presence of nonlocal 

parameters. 

 

 
Fig. 2. The speed variations of CLD, CTD, and CTM waves against rotational rate for distinct 

nonlocal parameters 

 

Speeds versus nonlocal parameters. To validate the rotation and nonlocality effects 

shown in Fig. 2 the speeds of CLD, CTD, and CTM waves are also plotted against nonlocal 

parameter  shown in Fig. 3 for three different values of *  when 45o
= . The solid, 

dashed, and dotted curves in Fig. 3 correspond to variations in speeds of reflected CLD, CTD, 

and CTM waves for
* 0.1, 0.4, 0.8 = , respectively. For each value of * , the speeds of 

CLD, CTD and CTM waves decrease as nonlocal parameter  increases. Beyond the critical 
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values of nonlocal parameters, these waves do not exist. The range of nonlocal parameters for 

the propagation of these waves depends on the rotation parameter * . The range of nonlocal 

parameters for the existence of CLD increases as * increases, whereas the range of nonlocal 

parameters for the existence of CTD decreases as * increases. The CTM wave is little 

affected due to nonlocal as well as rotation parameters.  

 

  
Fig. 3. The speed variations of CLD, CTD, and CTM waves against nonlocal parameters for 

distinct rotation rates 

 

Speeds versus propagation angle. The speeds of CLD, CTD, and CTM waves are 

plotted against the propagation angle in Fig. 4 for three different nonlocal parameters when 

rotation rate * 0.8 = . The solid, dashed and dotted curves in these figures correspond to 

speed variations for 0, 0.007 =  and 0.008, respectively. For 0 = , the speed of CLD wave 

decreases from 44.0571 10 ms-1 at  0.01o
=  (near normal incidence) to value  

44.0060 10  ms-1 at 89.99o
= (near grazing incidence). For 0 = , the speed of CTD wave 

first increases from 3533.74 ms-1 at  0.01o
=  to its maximum value 4051.05 ms-1 at

45.30o
=  and then decreases to value 3542.78 ms-1 at 89.99o

= . For 0 = , the speed of 

CTM wave increases slightly from 891.08 ms-1 at  0.01o
= to 907.48 ms-1 at 89.99o

= . 

Similar speed variations of CLD, CTD, and CTM waves are also obtained for 0.007 =  and 

0.008 as shown in Fig. 4. The comparison of solid, dotted and dashed curves in these figures 

show the nonlocal effects on the speed of these waves at each propagation angle. A similar 

analysis of speed variations of CLD, CTD, and CTM waves is also shown in Fig. 5 to 

illustrate the effect of rotation in a given range of propagation angle when 0.001 = . 

 



Wave propagation in a nonlocal rotating micropolar piezoelectric solid  51 

 
Fig. 4. The speed variations of CLD, CTD, and CTM waves against the incident angle of 

CLD wave for distinct nonlocal parameters when Ω* = 0.8 

 

 
Fig. 5. The speed variations of CLD, CTD, and CTM waves against the incident angle of 

CLD wave for distinct rotation rates when  = 0.001 
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Amplitude and energy ratios versus angle of incidence of CLD wave  

The amplitude ratios 
1 2,Z Z , and 

3Z of reflected CLD, CTD, and CTM waves are plotted 

against the incident angle θo of CLD wave in Fig. 6 for 0 =  (solid curve), 0.007 = (dashed 

curve), and 0.008 = (dotted curve) when * 0.8 = .  

 

 
Fig. 6. The amplitude ratio variations of CLD, CTD, and CTM waves against the incident 

angle of CLD wave for distinct nonlocal parameters when Ω* = 0.8 

 

For 0 = , the amplitude ratio of reflected CLD wave decreases from 0.9999 at

 0.01o
=  to its minimum value 0.9328 at 64.36o

=  and then increases to a value 0.9999 at

89.99o
= . For 0 = , the reflected CTD wave amplitude ratio increases from 52.1279 10−

at  0.01o
= to its maximum value 0.1015 at 60.23o

=  and then decreases to value 
58.6324 10− at 89.99o

= . For 0 = , the amplitude ratio of the reflected CTM wave 

oscillates in the given range of incident angle. In the presence of nonlocality, the amplitude 

ratio of reflected CLD wave drops, and the amplitude ratios of CTD and CTM waves rise at 

each angle of incidence except the normal and grazing incidences. The maximum effect of 

nonlocality on these amplitude ratios is observed in the range between 60  to 80 of the 

incident angle. Similar amplitude ratio variations of reflected CLD, CTD, and CTM waves are 

also shown in Fig. 7 to illustrate the effect of rotation at each incident angle. The amplitude 

ratio of CLD wave rises and the amplitude ratios of CTD and CTM waves drop at each 

incident angle except the normal and grazing incidences.       
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Fig. 7. The amplitude ratio variations of CLD, CTD, and CTM waves against the incident 

angle of CLD wave for distinct rotation rates when  = 0.001 

 

 
Fig. 8. The energy ratio variations of CLD, CTD, and CTM waves against the incident angle 

of CLD wave for distinct nonlocal parameters when Ω* = 0.8 
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The energy ratio variations of the reflected CLD, CTD, and CTM are shown in Figs. 8 

and 9 are observed similar to those of amplitude ratios. The nonlocality and rotation 

parameters affect the energy ratios of these reflected waves in a similar pattern as these 

parameters affect the amplitude ratios. The main aim of illustrating the energy ratio in Figs. 8 

and 9 is to validate the numerical correctness of the amplitude ratio variations. From these 

figures, it is also noticed that the reflected CLD wave shares the maximum part of the energy 

ratio, and the reflected CTM wave shares the minimum and very little share of the energy 

ratio compared to other reflected waves. However, the energy shares of each reflected wave 

change with the incident angle.     

 

 
Fig. 9. The energy ratio variations of CLD, CTD, and CTM waves against the incident angle 

of CLD wave for distinct rotation rates when  = 0.001 

 

Conclusions 

Plane waves in a rotating nonlocal micropolar piezoelectric medium are investigated. There 

exist three coupled waves, namely Coupled Longitudinal Displacement (CLD) wave, Coupled 

Transverse Displacement (CTD) wave and Coupled Transverse Microrotational (CTM) wave. 

The CLD and CTM waves are observed as the fastest and slowest waves, respectively. A 

reflection phenomenon of incident CLD wave from a tractions-free surface is considered. The 

relations between various reflected waves amplitude ratios are derived. The energy ratio 

expressions of these reflected waves are also derived. A numerical example is considered to 

illustrate the dependence of the speeds, amplitude, and energy ratios on the nonlocality and 

rotation parameters in a given range of the angle of incidence. Some specific observations 

from the numerical example are derived as follows: 

1. For given rotation parameter *  and propagation angles, the speeds of CLD, CTD, 

and CTM waves decrease as the nonlocal parameter  increases. 

2. For given nonlocal parameter  and propagation angle, the speed of CLD wave 

increases, and the speeds of CTD and CTM waves decreases. 
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3. Beyond the critical values of the nonlocal parameter, the CLD, CTD, and CTM waves 

do not propagate. The range of nonlocal parameters for the propagation of these waves 

depends on the rotation parameter * . The range of nonlocal parameters for the 

existence of CLD increases as * increases, whereas the range of nonlocal parameters 

for the existence of CTD decreases as * increases. The CTM wave is little affected 

due to nonlocal as well as rotation parameters. 

4. The speeds, amplitude ratios, and energy ratios vary with the change in propagation 

angle and the nonlocal and rotation effects are also found dependent on the 

propagation angle.   

The present theoretical and numerical analysis may be used to estimate the possible 

nonlocal parameters for various nonlocal micropolar piezoelectric materials.    
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Appendix 

The expressions for * * *

1 1 1, , , ,p p      and ( )1,2,3p p =  using Snell's law are given as 
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