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Abstract. The stress-strain state of a thick-walled spherical shell is considered under the 

conditions of compressibility of the material and the nonlinear law of hardening. Using the 

equations of the relationship between stresses and deformations according to the method of 

variable elasticity parameters, an integral equation of compatibility of logarithmic 

deformations is obtained. When performing numerical calculations using the method of 

simple iterations, the moment of unstable deformation of the spherical shell is determined. 

The dependences of the relative pressure on the radial displacement of the points of the outer 

surface of the spherical shell are obtained, taking into account the compressibility of the 

material and without taking into account the compressibility for an ideal elastic-plastic 

material and for an elastic-plastic material with nonlinear hardening. According to the results 

of numerical calculation, failure to account for compressibility introduces a significant error 

in the calculation of radial displacements of the outer surface. The results of the study will 

allow us to determine the maximum permissible load of a thick-walled spherical shell 

corresponding to stable deformation. 
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1. Introduction

Thick-walled axisymmetric shells are currently widely used in various engineering structures.

These are high–pressure vessels, ring foundations, pressure pipes, tunnels, and others.

Stresses in such structures are distributed unevenly across the thickness, which must be taken

into account when calculating strength. The issues of modeling the stress-strain state of shells

of various types were considered in [1-7] under conditions of incompressibility of the

material, linear hardening, and ideal plasticity.
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When conducting a literature review on the subject of the study, one of the little-studied 

aspects is taking into account the compressibility of the material in the process of elastic-

plastic deformation. In addition, it should be noted that the issues of assessing the stress-strain 

state of shells were considered in the works [8-10]. The analysis of radial and circumferential 

stresses in a spherical shell was considered in the works [11,12]. The physical nonlinearity of 

materials manifested in the nonlinear relationship between stresses and deformations under 

various types of deformation was considered in the works [13-15]. The features of working 

with the deformation diagram when assessing the stress-strain state were considered in the 

article [16]. The problem of solving elastic-plastic problems under various hardening laws, 

and the evaluation of the methods of the solution was considered in the works [17-21]. 

Aspects of finite element modeling of stamping and shaping problems were investigated in 

the works [22,23]. The application of the method of variable elasticity parameters in finite 

element analysis was considered in the work [24]. The issues of modeling and optimization in 

the field of metallurgy, and mechanical engineering were studied in articles [25-33]. 

2. Methods

The main equations for calculations beyond the limits of elasticity according to the

deformation theory are differential equations of equilibrium, conditions for the compatibility

of deformations, the relationship between deformations and stresses, and boundary

conditions. When determining the stress-strain state of thick-walled shells, it is also necessary

to take into account the physical nonlinearity of the material – the law of hardening during

plastic deformation.

The deformation diagram of a material, as a relationship between the intensity of 

stresses and the intensity of logarithmic deformations, is given by a linear power function [5]: 

𝜎𝑖 = {
3𝐺 𝑒𝑖   , 𝑒𝑖 ≤ 𝑒𝑖т

𝐴 𝑒𝑖
𝑛  , 𝑒𝑖 > 𝑒𝑖т

, (1) 

where 𝐺 = 𝐸/2(1 + 𝜇)  – modulus of elasticity of the second kind, 𝑒𝑖 −  intensity

of logarithmic strains,  𝑒𝑖т −  intensity of logarithmic strains corresponding to the yield

strength, 𝐴,  𝑛 −  approximating coefficients of the power function, 𝐸 −  Young's module, 

 𝜇 − Poisson's ratio. 

Consider the problem of determining the bearing capacity of a spherical thick-walled 

shell, taking into account compressibility and nonlinear plasticity. We will solve the 

problem using the method of variable elasticity parameters. This method is quite universal 

since it allows solving elastic problems, elastic-plastic, and purely plastic problems in 

a single formulation. 

Consider the stress-strain state of a thick-walled spherical shell under the conditions of 

compressibility of the material and the nonlinear law of hardening. For a volumetric 

axisymmetric stress state in a spherical coordinate system 𝜌, 𝜃, 𝜑 at uniform pressure inside 

the sphere, there are no tangential stresses, derivatives with respect to 𝜑 are zero, and the 

equilibrium conditions have the form: 
𝜕𝜎𝜌

𝜕𝜌
+

1

𝜌
[2𝜎𝜌 − (𝜎𝜑 + 𝜎𝜃)] = 0;

𝜎𝜑 = 𝜎𝜃 

or 
𝑑𝜎𝜌

𝑑𝜌
=

2(𝜎𝜃−𝜎𝜌)

𝜌
, (2) 

where 𝜎𝜌, 𝜎𝜃 , 𝜎𝜑 – radial, tangential (circumferential) and meridional stresses.
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Integrating equation (2), we obtain the integral equation of equilibrium in the form: 

𝜎𝜌 = ∫
2(𝜎𝜃−𝜎𝜌)

𝜌

𝜌

𝑅
𝑑𝜌 + 𝜎𝜌𝑅 , (3) 

where 𝑅 – radius of the outer surface of the sphere, 𝜎𝜌𝑅 – radial stress on the outer surface

of the sphere. 

The conditions for the compatibility of logarithmic strains in the case of central 

symmetry are represented as [6]: 
𝑑𝑒𝜃

𝑑𝜌
=

1−exp (𝑒𝜃−𝑒𝜌)

𝜌
; (4) 

𝑒𝜑 = 𝑒𝜃 .

The equations of the relationship between stresses and deformations, in accordance with 

the method of variable elasticity parameters, have the form: 

𝑒𝜌 =
1

𝐸∗ [𝜎𝜌 − 2𝜇∗𝜎𝜃];

𝑒𝜃 =
1

𝐸∗ [𝜎𝜃 − 𝜇∗(𝜎𝜃 + 𝜎𝜌)].
}   , (5) 

where 𝐸∗ and 𝜇∗ – variable elasticity parameters.

In the equation of compatibility of logarithmic deformations (4), we will replace: 
𝑑𝑒𝜃

𝑑𝜌
=

1

exp(𝑒𝜃)

𝑑(exp(𝑒𝜃))

𝑑𝜌
, 

we write this equation in the form: 
𝑑(exp(𝑒𝜃))

𝑑𝜌
=

1

𝜌
exp(𝑒𝜃) −

1

𝜌
exp (2𝑒𝜃 − 𝑒𝜌). (6) 

Considering equation (6) as a nonlinear differential equation of the first degree of the 

form and solving it by the Bernoulli method, we obtain a general solution: 

exp(𝑒𝜃) = −𝜌 ∫
1

𝜌2
exp(2𝑒𝜃 − 𝑒𝜌) 𝑑𝜌 + 𝐶𝜌 . 

Given the boundary conditions: 𝜌 = 𝑅 , 𝑒𝜃 = 𝑒𝜃𝑅 = ln (𝑅 𝑅0) ,⁄  then:

𝑒𝜃 = ln (−𝜌 ∫
1

𝜌2
exp (2𝑒𝜃 − 𝑒𝜌)𝑑𝜌

𝜌

𝑅

+ 𝜌 𝑅0⁄ ) .

Using the equations of the relationship between stresses and deformations (5), we obtain 

an integral equation of the compatibility of logarithmic strains in stresses: 

𝜎𝜃 =
𝜇∗

(1−𝜇∗)
𝜎𝜌 +

𝐸∗

(1−𝜇∗)
ln (−𝜌 ∫

1

𝜌2 exp (
2𝜎𝜃

𝐸∗ −
(1+2𝜇∗)

𝐸∗ 𝜎𝜌) 𝑑𝜌
𝜌

𝑅
+ 𝜌 𝑅0⁄ ) . (7) 

The solution for determining the stress-strain state of a spherical shell, in accordance 

with the method of variable elasticity parameters, is carried out by the method of successive 

approximations according to a recurrent scheme using equations (3) and (7) for given 

boundary conditions, that is, with a known position of the outer edge of the sphere R and 

radial stress on the outer edge 𝜎𝜌𝑅 = 0:

𝜎𝜃
(𝑘+1) =

𝜇∗(𝑘)

(1 − 𝜇∗(𝑘))
𝜎𝜌

(𝑘) +

+
𝐸∗(𝑘)

(1 − 𝜇∗(𝑘))
ln (−𝜌 ∫

1

𝜌2
exp (

2𝜎𝜃
(𝑘)

𝐸∗(𝑘)
−

(1 + 2𝜇∗(𝑘)
)

𝐸∗(𝑘)
𝜎𝜌

(𝑘)) 𝑑𝜌

𝜌

𝑅

+ 𝜌 𝑅0⁄ ) ;

𝜎𝜌
(𝑘+1) = ∫

2(𝜎𝜃
(𝑘+1) − 𝜎𝜌

(𝑘))

𝜌

𝜌

𝑅

𝑑𝜌 , 
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where are the values with the index (k) и (k+1) denote, respectively, their values in the k-th 

and (k+1)-th approximations. Numerical integration is carried out from R to 𝑟(𝑗) , where

𝑟(𝑗) – the inner radius of the pipe in the process of deformation. In the zero approximation,

for 𝑗 = 0, we assume that 𝑟(𝑗) = 𝑟0 , where 𝑟0 is the inner radius of the pipe in the initial

state without load 

As calculations have shown, the results of calculations do not depend on the 

choice of the values of the initial approximation for 𝜎𝜌,   𝜎𝜃 , и 𝜎𝜑 , therefore, in the initial

approximation we take: 

𝜎𝜌
(0) = 0;  𝜎𝜃

(0) = 0;  𝜎𝜑
(0) = 0;  𝐸∗(0) = 𝐸;  𝜇∗(0) = 𝜇,

where 𝐸  – modulus of elasticity of the material from which the sphere is made, 

𝜇 – Poisson's ratio. 

The deformed state in the (k+1)-th approximation is determined by: 

𝑒𝜌
(𝑘+1) =

1

𝐸∗(𝑘)
[𝜎𝜌

(𝑘+1) − 2𝜇∗(𝑘)
𝜎𝜃

(𝑘+1)];

𝑒𝜃
(𝑘+1) =

1

𝐸∗(𝑘)
[𝜎𝜃

(𝑘+1) − 𝜇∗(𝑘)
(𝜎𝜃

(𝑘+1) + 𝜎𝜌
(𝑘+1))].

In the case of the transition of the material to the plasticity zone, the secant modulus in 

(k+1)-th approximations is determined by: 

𝐸𝑠𝑒𝑐
(𝑘+1) =

𝐴 (𝑒𝑖
(𝑘+1))

𝑛

𝑒𝑖
(𝑘+1)

, 

where the strain intensity is determined in the (k+1)-th approximation: 

𝑒𝑖
(𝑘+1) =

2

3
(𝑒𝜌

(𝑘+1) − 𝑒𝜃
(𝑘+1)).

Then the value of the variable elasticity parameters is specified: 

𝐸∗(𝑘+1) =
𝐸𝑠𝑒𝑐

(𝑘+1)

1 +
1 − 2𝜇

3𝐸
𝐸sec

(𝑘+1)
;   𝜇∗(𝑘+1) =

1
2 −

1 − 2𝜇
3𝐸 𝐸sec

(𝑘+1)

1 +
1 − 2𝜇

3𝐸
𝐸sec

(𝑘+1)
. 

To control the convergence of the process, the values of stress intensities are compared: 

𝜎𝑖
(𝑘+1) − 𝜎𝑖

(𝑘)

𝜎𝑖
(𝑘+1)

100% ≤ ∆𝜎𝑖% . 

The calculation is continued until the specified percentage accuracy is reached. After 

achieving the specified accuracy of the calculation of the stress-strain state, the position of the 

inner surface of the spherical shell is clarified: 

𝑟(𝑗+1) = 𝑟0 𝑒𝑥𝑝(𝑒𝜃𝑟
(𝑗)),

where 𝑒𝜃𝑟
(𝑗) – the value of the tangential logarithmic deformation at the upper bound of the

numerical integration, that is, when 𝜌 = 𝑟(𝑗).

After clarifying the inner radius during deformation and changing the upper limit of 

numerical integration, the calculation of the stress-strain state is repeated until the specified 

accuracy of determining the inner radius is reached: 

𝑟(𝑗+1) − 𝑟(𝑗)

𝑟(𝑗+1)
100% ≤ ∆𝑟%. 

After the final determination of the stress-strain state, it is possible to determine the 

internal pressure in the sphere at which a given increase in the outer radius occurred: 

𝑝 = −𝜎𝜌𝑟 ,

where 𝜎𝜌𝑟 – the value of the radial stress on the inner surface of the pipe in the conclusion

of all calculations. 

To determine the bearing capacity of a thick-walled shell, it is necessary to determine 

when the pressure reaches the point of the extremum. To do this, the condition must be met: 
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𝑝 = 𝑃𝑚𝑎𝑥 by  𝑑𝑝 = 0.
Thus, the value of 𝑃𝑚𝑎𝑥 determines the bearing capacity of the sphere. By changing the

outer radius R with a certain step and determining the pressure p at each step, it is possible to 

plot the dependence of p on R. Analyzing the resulting graph, it is possible to determine the 

moment when, with an increase in the outer radius, the deformation pressure begins to fall, 

that is, the pressure reaches a maximum and the pressure increment with an increase in the 

radius becomes less than zero: 

𝑑𝑝 < 0. 
This indicates that the moment of unstable deformation of the shell with subsequent 

destruction has come. The value of the maximum pressure in this case determines the bearing 

capacity of the spherical shell. 

3. Results and Discussion

Let us compare the results of calculations obtained on the example of a thick-walled spherical

shell, performed taking into account the compressibility of the material and in the case

of an incompressible material, for an ideal elastic-plastic material and for an elastic-plastic

material with nonlinear hardening. The inner radius of the shell 𝑟0 = 50 mm , outer

radius 𝑅0 = 100 mm.
In the case of an ideal elastic-plastic material, the deformation diagram of the material is 

given by the equation: 

𝜎𝑖 = {
3𝐺  𝑏𝑦  𝑒𝑖 ≤ 𝑒𝑖т

𝜎𝑇  𝑏𝑦 𝑒𝑖 > 𝑒𝑖т
. 

Figures 1 and 2 show the results of changes in relative internal pressure ( 𝑝̅ =
𝑝 𝜎𝑇 𝑜𝑟  𝑝̅ = 𝑝 𝜎0.2⁄⁄ ) from the radial displacement of the points of the outer surface of the

spherical shell (𝑈𝑅 = 𝑅 − 𝑅0).

Fig. 1. Graph of the relative pressure dependence on the radial displacement of the points of 

the outer surface of the spherical shell. 

1 – taking into account the compressibility of the material (𝜇 = 0.3); 

2 – without taking into account the compressibility of the material ( 𝜇 = 0.5) 
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Fig. 2. Graph of the relative pressure dependence on the radial displacement of the points of 

the outer surface of the spherical shell 

(elastic-plastic material with nonlinear hardening 𝐸=71000 MPa, 𝜎0,2=224 MPa,

𝜎В=400 MPa, 𝛿% = 15)

1 – taking into account the compressibility of the material (𝜇 = 0.3); 

2 – without taking into account the compressibility of the material ( 𝜇 = 0.5) 

As follows from the comparison of curves 2 with curves 1 (see Figs. 1 and 2), the 

assumption of incompressibility of the material gives a very small error in determining the 

bearing capacity of a thick-walled spherical shell. Thus, calculations show that for an 

ideal elastic-plastic material, this error is 0.35%, and for an elastic-plastic material with 

nonlinear hardening – 0.013%. 

A significant error is obtained when calculating radial displacements. Thus, for an ideal 

elastic-plastic material, this error for radial displacements of the outer surface of the sphere 

during destruction is 40%, and for an elastic-plastic material with nonlinear hardening – 7%. 

A deeper analysis of the results obtained for an ideal elastic-plastic material showed that 

they agree very well with the analytical solution for a constrained thick-walled pipe presented 

in books [2,7]. As with the analytical solution, it can be shown that curve 1 in Fig. 1 can be 

obtained from curve 2 by multiplying the radial displacement value by 2(1 − 𝜇). 
This analysis proves the adequacy of the proposed mathematical model and the 

reliability of the results obtained in this article. 

Figures 3 and 4 show the results of changing the effect of the compressibility of the 

material on the calculated value of internal pressure depending on the radial displacement of 

the points of the outer surface of the spherical shell.  

The effect of compressibility was estimated as a percentage of the design pressure in the 

case of compressible material according to the formula 

∆𝑝% =
(𝑝∗−𝑝∗)

𝑝∗
100%, 

where 𝑝∗ −  pressure under the condition of compressibility of the material, 𝑝∗ −pressure

under the condition of incompressibility of the material 
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Fig. 3. Graph of the change in the effect of compressibility of the material on the calculated 

value of internal pressure depending on the radial displacement of the points of the outer 

surface of the spherical shell (ideal elastic-plastic material) 

Fig. 4. Graph of changes in the effect of compressibility of the material on the calculated 

value of internal pressure depending on the radial displacement of the points of the outer 

surface of the spherical shell (elastic-plastic material with nonlinear hardening) 

The analysis of the graphs presented in Figs. 3 and 4 show that the compressibility of 

the material has the maximum effect on the calculated value of the internal pressure during 

elastic deformation. As soon as the radial displacements exceed a certain value at which 

plastic deformations occur in the walls of the spherical shell, the compressibility 

effect decreases sharply, asymptotically approaching zero. Moreover, the nature of the 

change in the influence of compressibility practically does not depend on hardening, but 

depends only on the intensity of deformations and repeats the nature of the change in the 

variable elasticity parameter 𝜇∗.

It can be shown that the maximum value of ∆𝑝%𝑚𝑎𝑥  explicitly depends on the 

Poisson's ratio and is defined by the expression ∆p%max = (1 − 2μ)100%. 

4. Conclusion

Thus, these studies have shown the effectiveness and universality of the application of the

method of variable elasticity parameters for solving complex elastic-plastic problems, taking
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into account the compressibility and nonlinear plasticity of the material. According to the 

presented ratios, the bearing capacity of the sphere is determined by the maximum load that 

the sphere can withstand without destruction. Since the load and the radial stress at the inner 

boundary of the sphere are equal in modulus, the maximum pressure is determined primarily 

by the radial stress, which practically does not depend on the coefficient μ. As a result, the 

compressibility of the material affects the amount of deformation of the neck formation but 

does not affect the bearing capacity. 
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