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ABSTRACT 

Laser surface modification is an advanced technique utilized for the creation of robust coatings on substrates 

by melting and fusing pre-placed or blown powder materials. In some instances, multiple coatings are applied 

to achieve intricate geometries. This method serves the purpose of enhancing substrate surface properties 

and rectifying surface imperfections. Over the past three decades, laser surface modification has garnered 

significant attention due to its capacity to process a wide range of materials, because of its high energy density 

and rapid cooling capabilities. Researchers have extensively explored scientific aspects, including the clad-

substrate inter-face, microstructure, chemical composition, mechanical properties, and tribological 

characteristics of deposited materials, as well as their practical applications. This article primarily focuses on 

the application of laser surface modification to various substrates using suitable cladding materials. 

Furthermore, it delves into the survey of modification parameters, such as microstructural refinement, 

mechanical attributes, and tribological performance, as investigated by previous scholars. Additionally, this 

article presents the findings of past research endeavors and offers insights into potential avenues for future 

investigations within the realm of laser surface modification. 
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Introduction 

Many components of machines used in mining, mineral processing, manufacturing, 

agriculture, and many other industries need to improve their surface performance under 

corrosion, wear, fracture, and oxidation environments, which is unable to be satisfied 

through traditional methods of surfacing and coatings [1]. Due to the effects of corrosion, 

mechanical components often experience premature degradation and fracture before 

reaching their intended operational lifespan [2,3]. The wear process contributes 

significantly to the surface deterioration of these components, leading to increased 

downtime and elevated production expenses. Various types of wear, such as abrasion, 

impact, and corrosion, are responsible for this phenomenon. This problem is commonly 

encountered in the context of agricultural implements, mining machinery, and 

earthmoving equipment when operating on abrasive surfaces [4]. Tool steels, for 

example, are widely used in practically all industries to manufacture molds, dies, and 

other components that are subjected to exceptionally high loads [5]. These tool steels 

must have good wear resistance, whether they are used for cold or hot operations. 

http://dx.doi.org/10.18149/MPM.5242024_4
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Likewise, machinery within the chemical and petroleum sectors grapples with corrosion 

issues. Consequently, laser cladding emerges as a prime method for improving surface 

attributes. Laser cladding, an adept surface modification technique, proves invaluable in 

extending the operational lifespan of both weathered machine components and fresh 

ones, all while maintaining economical feasibility. To cultivate favorable tribological 

characteristics, these cladding methods are employed to amalgamate bulk materials with 

the substrate. In the course of this surface modification procedure, a more durable, wear-

resistant material is incorporated, thereby bolstering the longevity of the component or 

rectifying deteriorated surfaces [6,7]. 

 

 
Fig. 1. Laser cladding process by powder injection 

 

Laser cladding is a technique characterized by the fusion of a dissimilar material 

onto a substrate using a focused laser beam. This process involves selectively melting 

only a minimal layer of the substrate to establish metallurgical bonding, thereby 

preserving the inherent properties of the coating material [8,9]. Figure 1 illustrates the 

process, where a high-intensity laser beam interacts with a metallic specimen while 

powdered material is introduced over the molten pool. Upon solidification, this procedure 

results in the formation of a distinct layer referred to as the "clad". This technique uses a 

concentrated high-powered laser to melt the substrate's thin surface as well as the clad 

materials while simultaneously producing a new layer of material with specified qualities 

following solidification. It can produce a 0.3–5.0 mm thick coating onto a substrate, which 

is joined by a strong fusion bond [10,11]. Some time multi layers of coating are deposited 

to get complex shape geometry. The clad materials are added onto the substrate 

employing laser fusion of pre-placed powder or blown powders. To achieve varied 

qualities, a wide range of powder materials or powder combinations can be efficiently 

deposited onto the substrates. The deposited layer's microstructure is often exceedingly 

fine, resulting in excellent metallurgical characteristics. It is possible to attain excellent 

results, such as enhanced microstructure, mechanical and tribological properties, by 

selecting suitable clad materials and optimized process parameters [12]. Laser cladding 

has gained a lot of attention in extensive research over the past three decades because 
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the fast cooling rates and high-density energy make this technique suited for processing 

a variety of materials [13]. 

In this paper, we present the numerous research investigations conducted on the 

subject of laser cladding. The paper provides an overview of cladding processes involving 

diverse substrates and clad materials, highlighting distinct output parameters. 

Additionally, it synthesizes research outcomes from previous studies, particularly in the 

realms of microstructural analysis, hardness assessment, and wear resistance. The 

comprehensive compilation of earlier research findings is presented in Table 1 for 

reference. Subsequently, the essential facets of each delineated domain are expounded 

upon in subsequent subsections. The paper culminates with a discussion of conclusions 

drawn from the gathered insights and offers perspectives on future directions in the field 

of laser cladding. 

 
Table 1. A Summary of studies on laser cladding (LC) technology 

Authors 

(year) 

[Ref.] 

Substrate 

material 

Clad 

materials 
Investigations 

Variable 

processing 

parameters 

Research findings 

Qian etal. 

(1997) 

[14] 

AISI 1020 
Colmonoy 

88 nickel 

Microstructure, 

dilution, hardness, 

microstructures 

Powder feed 

rate, 

translation 

speed 

Optimal cladding parameters are revealed to 

increase hardness and improve the microstructure of 

the coating. 

Haemers 

etal. 

(2000) 

[15] 

AISI 316L Colmonoy 5 
Microstructure, 

dilution 
 

Microstructural analysis of the coating showed the 

formation of the dendritic and eutectic 

interdendritic phases. 

Sha etal. 

(2001) 

[16] 

K02600 

steel 

S42000 

stainless 

steel 

Microstructure, 

wear, 

microhardness 

 
In comparison to SAW cladding, Laser cladding 

increased the hardness of coating about twice. 

Yao etal. 

(2006) 

[17] 

Medium 

carbon 

steel 

CNTs 

Microstructure, 

microhardness, 

wear 

Beam travel 

speeds, laser 

power 

Resistance to wear of the cladding is increased by 

three times that of the untreated substrate. 

Baldridge 

et al. 

(2013) 

[18] 

Inconel 600 Inconel 690 
Microstructure, 

microhardness 

Laser power, 

scanning 

speed, beam 

overlap, 

powder feed 

rate 

Results revealed an admirable metallurgical bond 

between the substrate and the clad layer with min 

porosity & minute surface contamination. Higher 

laser power may produce the best cladding quality 

with the least amount of porosity and surface 

imperfections. Suggested optimizing Inconel 690 

powder chemistry for future research. 

Tanigawa 

et al. 

(2015) 

[19] 

304 

stainless 

steel 

Ni–Cr–Si–B 

Surface 

roughness, 

hardness 

Overlap ratio 
The hardness and roughness of the coating layer 

inversely depended on the overlap ratio. 

Das et al. 

(2016) 

[20] 

Ti–6Al–4V 
Rare earth 

oxide (Y2O3) 

Microstructure, 

microhardness, 

wear 

Laser power, 

scanning speed 

The addition of Y2O3 improved the coating's micro-

hardness and wear resistance. 

Murzakov 

etal. 

(2016) 

[21] 

C5140 steel TaC and WC 
Microstructure, 

wear 
 

The cladding's microstructure and mechanical 

properties improved as a result of the research. 

When compared to the substrate, wear resistance is 

increased by 2–6 times. 

Stanciu 

etal. 

(2016) 

[22] 

AISI 5140 
NiCrBSi, 

Inconel 718 
Hardness, wear  

Concerning the substrate, the cladding layers' wear 

coefficient and hardness increased. 

Alam 

etal. 

(2017) 

[23] 

AISI 1018 

420 

martensitic 

stainless 

steel 

Microstructure, 

residual stresses, 

microhardness 

Laser speed, 

power, powder 

feed rate 

The rise in laser power and speed led to an 

augmentation in both hardness and residual stress 

levels. 

Liu etal. 

(2017) 

[24] 

Forged 300 

M steel 

AerMet100 

steel 

Microstructure, 

hardness, tensile 

properties 

 

Results revealed a superb clad-to-substrate 

metallurgical bond with enhanced mechanical 

properties. 



44  R. Ranjan, A.K. Das 

Riquelme 

et al. 

(2017) 

[25] 

AA6082 

aluminum 
Al/SiCp 

Microstructure, 

mechanical 

properties 

 
The cladding had better mechanical qualities than 

the substrate, according to the findings. 

Lei et al. 

(2018) 

[26] 

1Cr13 

stainless 

steel 

Carbon 

fibers 

reinforced 

nickel 

Microstructure, 

microhardness, 

wear, corrosion 

Laser scanning 

speed 

Higher laser scanning speeds increase the coatings' 

wear and corrosion resistance. 

Chen et 

al. (2019) 

[27] 

IN718 

Multi-walled 

carbon 

nanotubes 

(MWCNT) 

Microstructure  

The enhancement of graphene structure within 

GNSs and CNRs led to an intensified adverse effect 

on element segregation and the formation of Laves 

phase in the IN718 superalloy. 

He et al. 

(2019) 

[28] 

Ti-6Al-4V TiC, CNT 

Microstructure, 

microhardness, 

wear 

 

According to the findings, the coating had a higher 

microhardness, a lower friction coefficient, and a 

much higher wear resistance than the substrate. 

Sibisi et 

al. (2019) 

[29] 

Ti-6Al-4V CpTi/SiAlON 
Microstructure, 

microhardness 
 

Enhancement in microstructural and hardness 

properties as compared to the substrate. 

Zhao et 

al. (2019) 

[30] 

H13 

mild steel 

Cobalt-

based alloy 

Microstructure, 

microhardness, 

wear 

resistance 

 

Compared Laser cladding with plasma cladding and 

revealed superior wear resistance and 

microhardness of the laser cladding. 

Hulka et 

al. (2020) 

[31] 

S235JR 

steel 

WC-

Co/NiCrBSi(T

i) 

Microstructure, 

corrosion 

resistance 

Laser power, 

Ti-contents 

The results demonstrated an excellent clad-to-

substrate metallurgical bonding with fine 

microstructure, enhanced microhardness, and reduced 

Fe penetration from the substrate to the clad. 

Spranger 

et al. 

(2020) 

[32] 

Tool steel 

X38CrMoV5 
TiB2 

Microstructure, 

hardness 
 

A significant increase in hardness with the 

implantation of TiB2 particles was found. 

Wang et 

al. (2020) 

[33] 

5CrNiMo 

steel 

TiMoB2, 

Ti,MoC, 

Fe7Cr7C3 

with Y2O3 

Microstructure, 

wear 
Y2O3 contents 

The mechanical properties of the cladding were 

enhanced by adding Y2O3 and got optimum values 

with Y2O3 content of 2 wt. %. 

Zhu et al. 

(2020) 

[34] 

Inconel 625 
NiCrAlY/Ag2

O/Ta2O5 

Microstructure, 

microhardness, 

Friction, wear 

performance 

 

Revealed 1.5 times lower coefficient of friction and 

2 times lower wear rate of coating as compared to 

the substrate. 

Chen et 

al. (2020) 

[35] 

IN718 Ni-CNTs 

Microstructure, 

tensile, wear 

properties 

 
The findings revealed effective improvement in the 

tensile and wear quality of the clad. 

Li et al. 

(2020) 

[36] 

A36 mild 

steel 

MSS with 

FeeNb 

powder 

Microhardness, 

Tensile propt., 

Corrosion res. 

 
Found remarkable enhancement in mechanical 

properties of the coating. 

Li et al. 

(2020) 

[37] 

TA1 

titanium 

Deloro22-

Si3N4-B4C 

Microstructure, 

toughness 
 

The result exhibited dense microstructure and 

enhanced the toughness as compared to the 

substrate. 

Luo et al. 

(2020) 

[38] 

1045 steel Fe-Al 

Microstructure, 

compositions, 

tribological 

properties 

 
The coating achieved a low frictional coefficient and 

low rate of wear. 

Ma et al. 

(2020) 

[39] 

316 

stainless 

steel 

C4 coating 
Microstructure, 

corrosion 
 

Because of oxide film formation on the surface due 

to the C4 coating, there was an increase in corrosion 

resistance in sulfuric acid solution. 

Mohamm

ed et al. 

(2020) 

[40] 

Mild steel 

(ASTM A36) 
WT-6 

Dilution ratio, 

hardness 

Laser power, 

scanning 

speed, wire 

feed rate 

Experimentally found optimal process parameters as 

laser power = 3.7–3.9 kW, feed rate = 75 mm/s, and 

scanning speed = 6 mm/s. 

Savrai et 

al. (2020) 

[41] 

Low carbon 

steel 
CoNiCrW 

Microstructure, 

phase 

composition, 

microhardness, 

micromechanical 

properties 

 
Findings revealed remarkable enhancement in the 

mechanical properties of the coating. 
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Xiang et 

al. (2020) 

[42] 

Ti 

CoNiTi  

medium 

entropy 

alloy 

Microstructure, 

hardness 
 

Results revealed a superb metallurgical bond 

between CoNiTi MEA and Ti-substrate. Hardness 

measurements of the clad were found ~5 times 

advanced than the substrate. 

Xiao et 

al. (2020) 

[43] 

Q235 steel Nb10 alloy 

Microstructure, 

microhardness, 

wear 

resistance 

 

An outstanding metallurgical coating, characterized 

by its uniformity and absence of cracks, was 

achieved, resulting in enhanced mechanical 

characteristics. 

Zhang et 

al. (2020) 

[44] 

A3 steel 
Ni-Cu/WC-

12Co 

Microstructure, 

microhardness, 

wear, corrosion 

resistance 

WC-12Co 

contents 

Microhardness directly depended on WC-12Co 

content. Optimal wear resistance was found at WC-

12Co content of 20 wt.%. 

Zhang et 

al. (2020) 

[45] 

Ti6Al4V 

Graphene 

reinforced 

Ti6Al4V 

Microstructure  
When Ti6Al4V was cladding by Graphene/Ti6Al4V, 

feathery TiC was produced. 

Zhao  

et al. 

(2020) 

[46] 

No. 45 

steel 

TiC/B4C/Ni2

04-based 

Microstructure, 

microhardness 
 

Results revealed microhardness and coefficient of 

friction were 3.23 and 0.281 times respectively of the 

initial Ni204 cladding when coated by 30 % TiC. On the 

other hand, microhardness and coefficient of friction 

were 4.38 and 0.752 times respectively of the previous 

layer when coated by 30 % B4C and 5 % TiC. 

Zhou  

et al. 

(2020) 

[47] 

S355 steel 

Cr-&  Mo-

Reinforced 

FeSiB 

Microstructure, 

CoF, corrosive-

wear 

 

The result showed excellent resistance to corrosive 

wear of FeSiBCr coating among the three coatings 

namely, coating of FeSiB, coating of FeSiBCr, and 

coating of FeSiBCrMo. This revealed that wear 

resistance is mainly affected by the phase 

distribution. 

Hu et al. 

(2021) 

[48] 

5Cr5MoSiV1 

steel 

Ni3Ta-TaC 

reinforced 

Ni-based 

Microstructure, 

wear 
 

The wear characteristics of Ni-Ta cladding and Ni-

TaC cladding were found to be 2 and 4-times 

greater than the substrate, respectively. 

Li et al. 

(2021) 

[49] 

Nickel-alu

minum 

bronze 

TaC/Co-

based 

Microstructure, 

microhardness, 

wear, 

electrochemical 

corrosion 

 

When compared to the substrate, the coating 

demonstrated a 6.2-fold increase in microhardness, 

a 0.303-fold drop in frictional coefficient, and  

a 0.4-fold drop in wear rate. 

Liu  

et al. 

(2021) 

[50] 

AISI 304 
AlCoCrFeNiS

ix 

Microstructure, 

microhardness, 

wear 

Si - contents 

The microhardness of the coating was significantly 

enhanced. Increased Si concentration also lowered 

the coating's frictional coefficient and wear rate. 

Tian  

et al. 

(2021) 

[51] 

2Cr13 steel 
Inconel 625/ 

WC 

Microstructure, 

microhardness, 

corrosion 

resistance 

WC-contents Optimal corrosion resistance was found at 10 wt. % WC. 

Yuan  

et al. 

(2021) 

[52] 

AISI 1045 Ni45 

Microstructure, 

microhardness, 

wear, corrosion 

resistance 

 Results revealed better mechanical properties at 

higher-speed lasers. 

Li et al. 

(2021) 

[53] 

5083 

aluminum 

AlxCrFeCoNi

Cu 
Hardness, wear Al-contents 

The hardness and the wear resistance directly 

depended on Al-contents. 

Bartkows

ki et al. 

(2021) 

[54] 

Low carbon 

steel 
Fe/WC 

Macroscopic 

observation, 

microstructure, 

microhardness 

Laser power, 

powder feed 

rate 

The optimal coating was produced based on 

microhardness and corrosion resistance  

at 12.50 g/min powder feeding rate. 

Liu et al. 

(2021) 

[55] 

15CrMn 

steel 

CoCrFeMnTi

0.2 

Microstructure, 

microhardness, 

wear 

 

The coating was enhanced in terms of wear 

resistance and microhardness. When compared to 

the substrate, the microhardness was raised by 

around 3.5 times. 

Riquelme 

et al. 

(2021) 

[56] 

ZE41 

Magnesium 

Alloy 

Al/SiC 

Wear behavior, 

corrosion 

resistance 

 

Result revealed enhancement in wear properties of 

the coating concerning the substrate. Also, it was 

concluded that wear resistance and corrosion 

property are improved by adding Si or Ti. 

Li et al. 

(2022) 

[57] 

40CrNiMo 

Steel 

AlCoCrFeNi-

xTiC 

Microstructure, 

wear resistance 
TiC- contents 

The in-situ generation of TiC particles significantly 

enhances hardness and wear resistance. 
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Ding et 

al. (2023) 

[58] 

U71Mn  rail 

316L 

stainlessstee

l  

Grain size, 

Microhardness 

Scanspeeds, 

laserpower 

Grain size increases with laser power but decreases 

with scan speed, while hardness increases with both 

power and speed. 

Zhang et 

al. (2024)  

[59] 

SS304 NbC 

Microhardness, 

frictioncoefficient, 

corrosionresistanc

e 

Composition of 

coating (A-NbC 

and I-NbC) 

The experimental results could serve as a technical 

guide for enhancing the performance of laser-

cladded iron-based composite coatings. 

Zhang 

et al. 

(2024) 

[60] 

Ti6Al4V FeCrAlMoSix 

Micro-hardness, 

microstructure, 

wear resistance 

Si- contents 
Laser cladding enhances microhardness, decreases wear 

loss, and reduces the coefficient of friction (COF). 

 

Substrates and clad alloys materials 

Substrates 

Steel serves as the predominant choice for substrate materials in the fabrication of clad 

components. The selection of substrates hinges on specific application demands, 

encompassing factors like elevated temperature resilience and resistance to corrosive 

and abrasive wear. Among the varied options are: (i) stainless steels, (ii) diverse grades of 

carbon steels, spanning high, medium, and low carbon content, (iii) high-speed steels,  

(iv) Inconel, (v) titanium alloys, (vi) manganese alloys, (vii) low nickel-chrome steels,  

(viii) cast iron, including both grey and white cast iron varieties. 

 

Clad Alloys 

Surface enhancement through cladding improves the characteristics of a component's 

exterior while leaving its internal properties unchanged. This technique is employed on 

surfaces vulnerable to deterioration, oxidation, and corrosion. Among the frequently 

utilized clad alloys, iron-based, titanium-based, cobalt-based, and nickel-based alloys 

stand out. The applications span a wide spectrum, encompassing tasks such as crushing 

rocks and manufacturing control valves to minimize metal-to-metal wear. In situations 

marked by elevated temperatures and corrosive environments, cobalt and nickel-based 

clad alloys find common usage. 

 

Microstructural characterization 

The composition of both the cladding material and the substrate plays a significant role 

in shaping the microstructural characteristics of the coating. Additionally, laser cladding 

parameters exert influence over these microstructural attributes. Microstructural analysis 

involves the examination of grain size and shape, the composition of the cladding 

material, and the orientation of grain structures in the heat-affected zone (HAZ), all of 

which are crucial for assessing their impact on tribological and mechanical properties. 

Traditional metallographic methods have traditionally been employed to characterize the 

microstructure of these coatings. However, there are various advanced tools available for 

evaluating the microstructure and composition of different phases within the resulting 

coating. These tools encompass techniques such as EPMA (electron probe microanalyzer), 

FESEM (field emission scanning electron microscope) equipped with EDS (energy-

dispersive X-ray spectroscopy), TEM (transmission electron microscope), among others. 

Abrasive sheets were used to polish the samples to a near-mirror finish, followed by 
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diamond polishing. The microstructure was then found out by etching them with either 

vilella or nital solution under the optical microscope (OM). Much of the research is 

centered on inquiries into microstructural aspects. Some recent research concentrated on 

carbon nano-tubes coatings. Chen et al. [35] studied the link between IN718 substrate 

and Nickel-coated carbon nanotubes (Ni-CNTs) coating and found they were bonded 

effectively. The findings revealed that IN718/NiO- 5CNTs composite alloys' tensile and 

wear characteristics can be significantly enhanced. Hu et al. [48] studied Ni3Ta-TaC 

reinforced Ni-based cladding on the substrate 5Cr5MoSiV1 steel. They found Ni-Ta and 

Ni-TaC claddings have two and four-times the wear resistance of 5Cr5MoSiV1 steel, 

respectively. Li et al. [36] examined TA1 titanium cladding by Deloro22-Si3N4-B4C and the 

result exhibited dense microstructure and enhanced the toughness as compared to the 

substrate. Liu et al. [37] studied the effect of Si content on the tribological behavior of 

the cladding and found frictional coefficient and wear rate of the coating were reduced 

with an increase in Si content. Bartkowski et al. [54] produced Fe/WC cladding on low 

carbon steel. They got an optimal coating based on microhardness and corrosion 

resistance at 12.50 g/min powder feeding rate. The study-specific investigations column 

in Table 1 provides a breakdown of research findings derived from microstructural 

analyses. 

 

Mechanical characterization 

The analysis of altered surface mechanical properties was conducted by evaluating micro-

hardness measurements and assessing tribological behavior. 

 

Microhardness analysis 

The term "hardness" denotes the material's resistance to undergoing plastic deformation 

due to processes like indentation, scratching, or friction. To quantify microhardness, a 

Vickers indenter was employed, utilizing a microhardness tester. It is noteworthy that 

approximately 70 % of the collective body of research pertaining to laser cladding 

techniques centers on investigating the hardness characteristics of the coating. Among 

the 43 referenced works, 30 of them specifically delve into the examination of cladding 

hardness behavior. The particulars of these studies predicated on hardness can be found 

in Table 1, within the designated "investigations" section for their respective research 

endeavors. Li et al. [37] studied cladding on the titanium alloy and concluded that 

because of the dense grain strengthening effects of CeO2 coating, wear-resistance and 

microhardness were greatly enhanced. Mohammed et al. [40] investigated the three 

parameters, scanning speed, laser power, and wire feed rate, which have an influence on 

the mechanical properties of mild steel (ASTM A36) cladding. Xiang et al. [42] examined 

cladding of titanium using CoNiTi medium entropy alloy. Results revealed a superb 

metallurgical bond between CoNiTi MEA and Ti-substrate. Hardness measurements of the 

coating were discovered to have hardness 5 times that of the substrate. Li et al. [49] 

researched 5083 aluminum substrate and AlxCrFeCoNiCu clad. The results showed the 

hardness increases with an increase of Al-contents. 
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Tribological properties analysis 

When two solid surfaces interact through sliding or rolling in solid-state contact, they 

undergo a process known as material degradation, which is often referred to as surface 

wear. This phenomenon is a prevalent issue across numerous industrial sectors. Wear 

encompasses various factors, such as oxidation, abrasion, erosion, impact, corrosion, or a 

combination thereof. The pin-on-disk tribometer stands out as the primary and highly 

efficient instrument for conducting tests related to the tribological properties of 

materials. Wang et al. [33] studied the influence of rare earth oxide on the wear quality 

of Fe-based ceramics produced in situ and found an optimum value of Y2O3 content to 

enhance the wear properties of the cladding. Zhu et al. [34] successfully formed coating 

over Inconel 625 substrate and demonstrated that 1.5 times lower coefficient of friction 

and 2 times lower wear rate of coating as compared to the substrate. Hu et al. [48] showed 

the wear characteristics of Ni-Ta cladding and Ni-TaC cladding on IN718 substrate and 

found enhancement in the wear resistance by 2-times and 4-times respectively. Riquelme 

et al. [25] studied experimentally and revealed an admirable metallurgical bond between 

Al/SiC metal matrix composite and ZE41 magnesium alloy substrate with improvement 

in wear properties. Also, it was concluded that wear resistance and corrosion properties 

are improved by adding Si or Ti. The details of the studies are presented in Table 1. 
 

Conclusions and future perspectives 

From a comprehensive review of various research papers on laser cladding techniques, 

several significant observations and recommendations for future research emerge: 

1. Laser cladding is the most suitable technique to produce an excellent metallurgical 

bond between the substrate and clad of thickness 50 µm to 2 mm with low dilution and 

defect-free coatings. 

2. It can be applied to an extensive range of substrates to develop a high-quality coating. 

3. It has been found that Co-based, Ni-based, WC-based, Fe-based alloys, high entropy 

alloy, and many other alloys can be excellently metallurgical bounded with different 

substrates by laser cladding technique. 

4. Laser cladding's effectiveness mostly depends on the laser parameters (wavelength, 

power), process parameters (scan speed, feed rate, assist inert gas type and pressure), 

clad materials and their powder size, and substrate materials.  

5. Researchers have mostly focused on studying characteristics like microhardness, wear 

resistance, and microstructure; relatively few research have examined how well coatings 

function in connection to oxidation and erosion-corrosion behavior. 

6. In-depth research efforts are essential to gain the complex physical and chemical 

interactions that take place between the substrate and the materials utilized in laser 

cladding processes. 

7. Not enough focus has been placed on optimizing the laser cladding technique's 

parameters. Because of this, researchers should work more diligently to optimize these 

parameters through the use of AI-driven modeling and optimization techniques. 
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