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ABSTRACT  

The research is devoted to the problem of obtaining an analytical expression for the dependence of stresses 

on strains during unloading and subsequent loading by the reverse sign force, taking into account the 

Bauschinger effect. The assessment of the deformed state was carried out using the use of Hencky strains. 

The mathematical model was developed under the assumption of a cyclically ideal material. To process the 

experimental data, the generalized Masing principle was applied, which is used to describe the ideal 

Bauschinger effect. On the basis of experimental data for the 45HGMA material, curves of changes in the 

coefficients of the Bauschinger effect were obtained using the least squares method. The results obtained 

showed sufficient convergence with experimental data. The results of the study can be used in solving elastic-

plastic problems for various processes of alternating loading using the deformation theory of plasticity, when 

a description of the deformation diagram of the material is required, using the analytical dependence of 

stresses on strains according to the hypothesis of a single curve. 
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Introduction 

The issues of determining stresses and strains in the presence of finite areas of plastic 

strains, in cases where external loads are applied once, are currently well studied, 

especially in the framework of deformation theory and in the theory of ideal plasticity. 

However, in engineering practice, numerous cases can be found when external forces are 

applied repeatedly (including with a sign change) and the behavior of the elastic-plastic 

system differs significantly from the case of a single loading. 

If, during the first loading, plastic strains occurred in the entire body or in some of 

its finite areas, then after the removal of external forces, it will not return to its original 

state, certain residual strains and stresses will occur in it. With subsequent loading by an 

arbitrary system of forces, the body will behave differently than in the case of its loading 

from the initial state. For example, if a sample, previously stretched beyond the elastic 

limit, is compressed, then plastic strains will appear at a lower axial load value than at 

the previous stretching. The elastic limit during subsequent compression decreases to a 
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greater extent, the higher the stress of the previous stretching was. Similar changes are 

observed in the case of stretching after pre-compression. Hysteresis loops are also 

observed during unloading and re-stretching. This behavior of the material is called the 

Bauschinger effect. 

The first successful attempt to explain the Bauschinger effect and the hysteresis 

loops observed during repeated loading was made by G. Masing, who proceeded from the 

fact that individual grains in a polycrystalline body, due to their different orientations and 

the anisotropy of crystals, have different mechanical characteristics and deform 

differently [1]. He proposed an interesting scheme of elastic-plastic deformation of a 

sample made of polycrystalline material, which is quite fully described in the work of 

Moskvitin V.V. [1]. The Masing model or principle is widely used by various authors in the 

analysis of alternating and cyclic loading [2–4]. 

According to the analysis of the current state of the research issue, most of the 

scientific works aimed at studying the Bauschinger effect are of an applied nature, in 

particular, taking into account the Bauschinger effect during experimental research was 

considered in [5]. Experimental studies of the behavior of the material, as well as its 

hardening under cyclic loading are reflected in [6,7]. The issues of deformation under cyclic 

loading, alternating loading in the case of loading and unloading were studied in [8–11]. 

Dynamic models of elastic-plastic deformation, which were studied in the works [12,13], 

also seem to be very relevant in recent years. Taking into account the Bauschinger effect is 

important for fatigue failure problems, as well as for the analysis of damage accumulation 

in the case of isotropic and kinematic hardening, to which the works are devoted [14–17]. 

In addition, the complexity of the study of the Bauschinger effect is due to the need 

to take into account the nonlinearity of the deformation process. Some issues of plastic 

deformation under the nonlinear hardening law require the use of numerical research 

methods, some aspects of the analytical description of the plastic behavior of the material 

are considered in [18]. Also, the problem of solving problems of nonlinear plasticity was 

considered in [19–21]. The deformation hardening that occurs in this case is important 

for assessing the ultimate deformations, which is noted in [22]. 

Taking into account the Bauschinger effect is also used in problems of elastic-

plastic deformation in the calculation of residual stresses. The effect of the Bauschinger 

effect on the picture of the residual stress-strain state is analyzed in [23,24]. 

In this article, we will consider an important issue for the analytical description of 

the Bauschinger effect of obtaining an expression of the stress – strain dependence 

during unloading and subsequent loading by the reverse sign force. To do this, we will 

use the generalized Masing principle [1]. 

 

Generalized Masing principle  

The results of theoretical studies made it possible for Masing to suggest that the curve 

of repeated alternating loading coincides with the corresponding curve at the first 

loading, but constructed in axes with a doubled scale and reverse direction. This 

assumption will be called the Masing principle [1]. If, at the first loading, the stresses and 

the corresponding strains are connected by the equation: 

𝜎(1) = 𝛷(𝑒),                                                                                                                                             (1) 
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then according to the Masing principle, the stress differences 𝜎 = 𝜎′ − 𝜎(2) and the strain 

differences �̅� = 𝑒′ − 𝑒 satisfy the equation (Fig. 1) [1]:  

𝜎 = 2𝛷 (
�̅�

2
),                                                                                                                                             (2) 

or 

𝜎(2) = 𝜎′ − 2𝛷 (
𝑒′ − 𝑒

2
),                                                                                                                 (3) 

where 𝜎(1) – equation relating stresses and Hencky strains at the first loading in the 

coordinate system (𝜎, 𝑒); 𝜎 – equation describing the curve of repeated alternating 

loading in the coordinate system (𝜎, �̅�); 𝜎(2) – equation relating stresses and strains under 

repeated alternating loading in the coordinate system (𝜎, 𝑒); 𝜎′ и e′ – maximum stresses 

and strains obtained during the first loading. 

 

 
 

Fig. 1. Diagram of repeated alternating deformation of Masing [1]  

 

If the diagram of the behavior of the material under the first loading (1) is known, 

then Eq. (3) relates the stresses 𝜎(2) and the corresponding deformations 𝑒 under 

repeated alternating loading. It should be noted that if the maximum stresses 𝜎′  and 

strains 𝑒′ were reached during the first loading, then with repeated loading in the 

opposite direction, the yield strength is determined by the equation (Fig. 1) [1]: 
𝜎𝑇
′′  = 2𝜎𝑇 − 𝜎′.                                                                                                                                       (4) 

Thus, if, after stretching to a plastic state, the sample is unloaded and then compressed, 

then the yield strength decreases, and, as follows from Eq. (4), the sum of the absolute values 

of the maximum tensile stress and the new yield strength during compression is equal to 

twice the yield strength of the undeformed material. In this case, the Bauschinger effect is 

usually called ideal [25] and a classical hysteresis loop is observed. 

Let us consider the important question for the analytical description of the 

Bauschinger effect of obtaining an expression of the stress – strain dependence during 

unloading and subsequent loading by the force of the reverse sign. The difficulties 

encountered in this case are due to the fact that, unlike the primary deformation curve, 

when the stress 𝜎(1) is a function of only 𝑒, with repeated loading, the stress 𝜎 is a 

function not only of �̅�, but also, as experiments have shown, depends on the parameter 

𝑒′  – the maximum strain obtained during the first loading. 
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As one of the possible generalizations of the Masing principle, the assumption is 

introduced that the deformation curve under alternating loading coincides with the curve 

of the previous loading 𝜎(1) = 𝛷(𝑒), but with a change in scale 𝛼𝑒 times along the strain 

axis and ασ  times along the stress axis, and in the general case 𝛼𝑒 and 𝛼σ can be functions 

of the preceding deformation at 𝑒′ ≥ 𝑒𝑇:  𝛼𝑒 = 𝛼𝑒(𝑒
′), 𝛼𝜎 = 𝛼𝜎(𝑒

′) [1]. In this case (Fig. 1): 

𝜎 = 𝛼𝜎𝛷 (
�̅�

𝛼𝑒
),                                                                                                                                        (5) 

or 

𝜎(2) = 𝜎′ − 𝛼𝜎𝛷 (
𝑒′ − 𝑒

𝛼𝑒
).                                                                                                              (6) 

The functions 𝛼𝑒(𝑒
′) and 𝛼σ(𝑒

′)  are called Masing functions and they must satisfy 

certain conditions. If the stretching and compression curves of the source material 

coincide with each other, then for 𝑒′ = 𝑒𝑇 there should be [1]: 
𝛼𝑒(𝑒𝑇) = 2,  𝛼σ(𝑒𝑇) = 2.                                                                                                                      (7) 

If we take into account the deformation anisotropy of elastic constants, then before 

the appearance of plastic strains during repeated alternating loading: 
𝜎 = �̅�(𝑒′) �̅�, 
where �̅�(𝑒′) – variable modulus of elasticity, depending on the previous strain. In this 

case, according to [1]: 

𝜎 = 𝛼𝜎𝐸
�̅�

𝛼𝑒
,

𝛼𝜎
𝛼𝑒

=
�̅�(𝑒′)

𝐸
 .                                                                                                           (8) 

Therefore, if the function of changing the Young's variable modulus �̅�(𝑒′) is known, 

then from experiments on alternating loading it remains to determine only one function 

depending on the parameter 𝑒′ – α𝑒(𝑒
′). If the deformation anisotropy of elastic 

constants is not taken into account, then �̅� = 𝐸. In this case, according to [1] it follows 

from Eq. (8) that: 
𝛼𝜎(𝑒

′) = 𝛼𝑒(𝑒
′) = 𝛼(𝑒′).                                                                                                                     (9) 

As experimental data [26] show, the changes in the Young's modulus under 

alternating loading are insignificant and, as calculations show, these changes are 

commensurate with the errors in determining elastic constants, which is introduced by 

the hypothesis of incompressibility of the material. In the future, when considering 

alternating loading, we will not take into account the anisotropy of elastic constants. 

 

Definition of Masing functions  

The Bauschinger effect is defined as a decrease in the yield strength of a material under 

compression as a result of previous tensile strain. The majority of researchers agree that 

the degree of preliminary strain has a significant impact on the Bauschinger effect 

[27,28]. To quantify the Bauschinger effect, we take the ratio of the yield strength 𝜎𝑇
′′(𝑒′)  

observed during compression to the maximum stress in the previous loading σ′ (Fig. 1).  

We call it the coefficient of the Bauschinger effect and denote 𝛽𝑇: 

𝛽𝑇 = 𝛽𝑇(𝑒
′) =

𝜎𝑇
′′(𝑒′) 

𝜎′(𝑒′)
,                                                                                                                     (10) 

where 𝑒′ – the maximum strain obtained during the first loading; 𝜎′(𝑒′) – the maximum 

stress corresponding to this strain. 
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In accordance with the generalized Masing principle, by analogy with Eq. (4), we 

can write σ𝑇
′′(𝑒′) = α(𝑒′)σ𝑇 − σ

′(𝑒′), or taking into account Eq. (10): 

𝛼 = 𝛼(𝑒′) =
𝜎′(𝑒′)

𝜎𝑇
(1 + 𝛽𝑇(𝑒

′)).                                                                                                   (11) 

 

Determination of the Masing function based on experimental data 

For the calculations, we take the experimental results presented in [29]. In this work, the 

results of tests on steels of grades St3, SHL-4 (10HCND), 09G2 and on alloy steels having 

𝜎0.2 = 600 ÷ 1200  MPa are presented. The research was carried out by the method of 

"probing". The sample was loaded to a certain specified strain, determined by the residual 

strain 𝜀long
res   and the stress σ𝐷, then unloading and loading of the opposite sign was carried 

out to a residual strain of 0.2 %, determined by the stress 𝜎0.2
С . Then the direct loading 

was repeated until the next level of the specified strain was reached, "probing" was 

carried out again, etc. The Bauschinger effect in this case was characterized by the ratio 

𝜎0.2
С 𝜎𝐷⁄  and we will denote it 𝛽0.2

𝐷 . 

To display the test results on the deformation diagram (σ𝑖, 𝑒𝑖) we will use the 

hypothesis of a single curve, put forward by Ludwik and described in a scientific 

work [25], and recalculate relative strains into logarithmic, and conditional stresses into 

true stresses according to the formulas: 𝜀𝐷 = (𝜀𝑙𝑜𝑛𝑔
𝑟𝑒𝑠 +

𝜎𝐷

𝐸
), 𝑒𝑖

′ = 𝑙𝑛(1 + 𝜀𝐷),  

𝜎𝑖
′ = 𝜎𝐷(1 + 𝜀𝐷), 𝜎𝑖0.2

′′ = 𝜎0.2
С (1 − (0.002 +

𝜎0.2
С

𝐸
)). 

Calculations have been carried out for 45HGMA steel, which has 𝜎0.2 = 800  MPa, 

which corresponds to the data given in [29]. The calculation results are presented in Table 1. 

 
Table 1. Steel σ0,2 = 800  MPa (45HGMA - GOST 4543-2016) 

εlong
res  ε𝐷 𝑒𝑖

′ σ𝐷 , MPa σ𝑖
′ , MPa σ0,2

С , MPa σi0,2
′′ , MPa β0,2

𝐷 =
σ0,2
𝐶

σ𝐷
 β0,2 =

σ𝑖0,2
′′

σ𝑖
′  

0.0022 0.0061 0.0061 825 830.1 675 671.5 0.82 0.81 

0.0072 0.0113 0.0112 863 872.8 488 485.9 0.57 0.56 

0.0140 0.0182 0.0181 888 904.2 450 448.1 0.51 0.50 

0.0216 0.0259 0.0256 900 923.3 425 423.3 0.47 0.46 

0.0288 0.0332 0.0327 925 955.7 438 436.2 0.47 0.46 

0.0358 0.0402 0.0394 925 962.2 400 398.4 0.43 0.41 

0.0432 0.0477 0.0466 938 982.7 413 411.4 0.44 0.42 

0.0504 0.0549 0.0534 938 989.5 425 423.3 0.45 0.43 

0.0572 0.0617 0.0598 938 995.8 425 423.3 0.45 0.43 

0.0644 0.0689 0.0666 938 1002.6 388 386.5 0.41 0.39 

0.0716 0.0761 0.0733 938 1009.4 388 386.5 0.41 0.38 

0.0800 0.0845 0.0811 938 1017.2 425 423.3 0.45 0.42 

0.0858 0.0902 0.0864 925 1008.4 400 398.4 0.43 0.40 

 

To describe the deformation diagram of the material, we apply a linear-power 

approximation [30] in the form: 

𝜎𝑖 = 𝛷(𝑒𝑖) = {
𝐸𝑒𝑖 , 𝑖𝑓 𝑒𝑖 ≤ 𝑒𝑖𝑇

 𝐴(𝑒𝑖 − 𝑒0𝑖)
𝑛 , 𝑖𝑓 𝑒𝑖 > 𝑒𝑖𝑇

,                                                                                     (12) 
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where 𝜎𝑖 – intensity of stresses; 𝑒𝑖 – intensity of Hencky strain; 𝑒𝑖𝑇 – the value of the 

strain intensity corresponding to the transition point of the linear dependence to the 

power-law (yield strength); 𝑒0i – the magnitude of the displacement of the power 

function along the strain axis; 𝐴 и 𝑛 – power function parameters. 

 

 
 

Fig. 2. Approximation of the deformation diagram of 45XGMA steel (E=210000 MPa, 𝑒𝑖𝑇 = 0.00367, 

σ𝑖𝑇 =771.14 MPa, 𝐴 =1301.29 MPa, 𝑛 =0.0933) and experimental data for steel σ0,2=800 MPa (Table 1):  

1 – diagram constructed according to equation (12); 2 – diagram of conditional stresses σ𝐷; 3 – diagram 

of true stresses σ𝑖
′; 4 – tangent, characterizing the property of the deformation diagram of the III kind [30] 

 

Figure 2 shows the results of the approximation of the 45HGMA steel deformation 

diagram and experimental data. As you can see, the results match quite well. In the case 

of approximation of the deformation diagram by Eqs. (5), (6), and (12), taking into account 

Eq. (9), will be written as: 

𝜎𝑖 = 𝛼(𝑒𝑖
′)𝛷 (

�̅�𝑖
𝛼(𝑒𝑖

′)
) =

{
 
 

 
 𝛼(𝑒𝑖

′)𝐸 (
�̅�𝑖

𝛼(𝑒𝑖
′)
) , 𝑖𝑓 0 ≤ �̅�𝑖 ≤ 𝛼(𝑒𝑖

′)𝑒𝑖𝑇

𝛼(𝑒𝑖
′) 𝐴 (

�̅�𝑖
𝛼(𝑒𝑖

′)
− 𝑒0𝑖)

𝑛

 , 𝑖𝑓  �̅�𝑖 > 𝛼(𝑒𝑖
′)𝑒𝑖𝑇

,                                 (13) 

and 

𝜎𝑖
(2) = 𝜎𝑖

′(𝑒𝑖
′) − 𝛼(𝑒𝑖

′)𝛷 (
(𝑒𝑖
′ − 𝑒𝑖)

𝛼(𝑒𝑖
′)

) =                                                     

=

{
 
 

 
 𝜎𝑖

′(𝑒𝑖
′) − 𝛼(𝑒𝑖

′)𝐸 (
(𝑒𝑖
′ − 𝑒𝑖)

𝛼(𝑒𝑖
′)

) , 𝑖𝑓 𝑒𝑖
′ ≥ 𝑒𝑖 ≥ 𝑒𝑖

′ − 𝛼(𝑒𝑖
′)𝑒𝑖𝑇

𝜎𝑖
′(𝑒𝑖

′) − 𝛼(𝑒𝑖
′) 𝐴 (

(𝑒𝑖
′ − 𝑒𝑖)

𝛼(𝑒𝑖
′)

− 𝑒0𝑖)

𝑛

, 𝑖𝑓 𝑒𝑖 < 𝑒𝑖
′ − 𝛼(𝑒𝑖

′)𝑒𝑖𝑇

,                                              (14) 

where σ𝑖
′ и 𝑒𝑖

′ – accordingly, the intensity of stresses and the intensity of strains obtained 

during the first loading. 

To determine the Masing function α(𝑒′), we use the Eq. (11), replacing, in 

accordance with the hypothesis of a single curve 𝑒′ and σ′(𝑒′)  on 𝑒𝑖
′ and σ𝑖

′(𝑒𝑖
′): 

𝛼(𝑒𝑖
′) =

𝜎𝑖
′(𝑒𝑖

′)

𝜎𝑇
(1 + 𝛽𝑇(𝑒𝑖

′)).                                                                                                            (15) 

According to the available experimental data, we obtained the Bauschinger effect 

coefficient (Table 1) β0.2(𝑒𝑖
′) = σ𝑖0.2

′′ σ𝑖
′⁄ . To analytically describe the Bauschinger effect 
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using Masing functions (15), we need to determine the Bauschinger effect coefficient 

β𝑇(𝑒𝑖
′) = σ𝑖𝑇

′′ σ𝑖
′⁄ . 

If we determine the difference between σ𝑖0.2
′′  and σ𝑖𝑇

′′ , then we can obtain an 

equation connecting β𝑇 and β0.2: 

𝛽𝑇(𝑒𝑖
′) =

𝜎𝑖𝑇
′′

𝜎𝑖
′ =

𝜎𝑖0,2
′′

𝜎𝑖
′ −

(𝜎𝑖0,2
′′ − 𝜎𝑖𝑇

′′)

𝜎𝑖
′ = 𝛽0,2(𝑒𝑖

′) −
(𝜎𝑖0,2

′′ − 𝜎𝑖𝑇
′′)

𝜎𝑖
′ .                                             (16) 

Considering that (σ𝑖0,2
′′ − σ𝑖𝑇

′′ ) = (σ̅𝑖0,2 − σ̅𝑖𝑇) we define σ̅𝑖𝑇 and σ̅𝑖0,2 when 

unloading and subsequent loading of the opposite sign in accordance with Eq. (13): 

𝜎𝑖𝑇 = 𝛼(𝑒𝑖
′)𝛷 (

�̅�𝑖𝑇
𝛼(𝑒𝑖

′)
) =  𝛼(𝑒𝑖

′)𝐸 (
�̅�𝑖𝑇
𝛼(𝑒𝑖

′)
) = 𝐸�̅�𝑖𝑇 ,                                                                    (17) 

𝜎𝑖0,2 = 𝛼(𝑒𝑖
′)𝛷 (

�̅�𝑖0,2
𝛼(𝑒𝑖

′)
) =  𝛼(𝑒𝑖

′) 𝐴 (
�̅�𝑖0,2
𝛼(𝑒𝑖

′)
− 𝑒0𝑖)

𝑛

,                                                                 (18) 

where �̅�𝑖𝑇 и �̅�𝑖0.2 – strains corresponding to the stress σ̅𝑖𝑇 and σ̅𝑖0.2 when describing the 

deformation diagram by the function (12). 

Thus, it is possible to write 

(𝜎𝑖0.2
′′ − 𝜎𝑖𝑇

′′ ) = 𝛼(𝑒𝑖
′) 𝐴 (

�̅�𝑖0.2
𝛼(𝑒𝑖

′)
− 𝑒0𝑖)

𝑛

−  𝐸�̅�𝑖𝑇 .                                                                         (19) 

Moreover, �̅�𝑖𝑇 = α(𝑒𝑖
′)𝑒𝑖𝑇, and �̅�𝑖0,2 is determined numerically from the equation: 

𝛼(𝑒𝑖
′) 𝐴 (

�̅�𝑖0.2
𝛼(𝑒𝑖

′)
− 𝑒0𝑖)

𝑛

= 𝐸(�̅�𝑖0.2 − 0.002).                                                                                (20) 

It follows from Eqs. (16), (19), and (20) that the function 𝛽𝑇(𝑒𝑖
′)  depends on α(𝑒𝑖

′). 

Since initially the value of the Masing function is not known, we take 𝛼(𝑒𝑖
′) = 2 for 

calculations in the first approximation, as for the ideal Bauschinger effect. Next, using 

Eqs. (16) and (18), we determine the Masing function α(𝑒𝑖
′) by Eq. (15). 

As calculations show, in the first approximation, the values of σ𝑖0,2
(2)

 calculated by 

Eq. (14) differ significantly from the values of σ𝑖0.2
′′  obtained experimentally (Table 1).  

In this case, the average arithmetic error of determining σ𝑖0.2
(2)

 is 9.5 %, and the maximum 

is 20.7 %. To improve the result, a second approximation is carried out. In this case, the 

Masing function α(𝑒𝑖
′) obtained in the first approximation is substituted into Eqs. (19), 

(20) and using Eqs. (15) and (16), the Masing function α(𝑒𝑖
′) is refined in the second 

approximation. 

Figure 3 shows the functions β𝑇 = β𝑇(𝑒𝑖
′) and β0.2 = β0.2(𝑒𝑖

′) obtained in the second 

approximation by processing experimental data. Since the Bauschinger effect begins to 

manifest itself only after the 𝑒𝑖𝑇 yield stress deformations or the 𝑒𝑖0,2 conditional yield 

stress deformations are reached during the first loading, the graphs of the function  

𝛽𝑇 = 𝛽𝑇(𝑒𝑖
′)  and 𝛽0.2 = 𝛽0.2(𝑒𝑖

′) were constructed in such a way that 𝛽𝑇 = 𝛽𝑇(𝑒𝑖𝑇) = 1 

and 𝛽0.2 = 𝛽0.2(𝑒𝑖0.2) = 1. In addition, when constructing the curve 𝛽𝑇(𝑒𝑖
′), the 

experimental points 𝛽0.2(𝑒𝑖
′) shifted not only along the ordinate axis down by an amount 

(σ̅𝑖0.2 − σ̅𝑖𝑇), but also along the abscissa axis to the left by an amount (�̅�𝑖0.2 − �̅�𝑖𝑇). 



56  S.I. Feoktistov, I.K. Andrianov 

 
 

Fig. 3. Curves of changes in the coefficients of the Bauschinger effect 𝛽0.2 = 𝛽0.2(𝑒𝑖
′) and 𝛽𝑇 = 𝛽𝑇(𝑒𝑖

′) 

obtained on the basis of processing experimental data (Table 1) and approximation by equations of the 

form (21): 1 – experimental values 𝛽0,2 (Table 1); 2 – 𝛽𝑇 values obtained by processing experimental 

data; 3 – function 𝛽0.2 = 𝛽0.2(𝑒𝑖
′); 4 – function 𝛽𝑇 = 𝛽𝑇(𝑒𝑖

′) 

 

To approximate the curves obtained experimentally, an equation of the form 

𝛽(𝑒𝑖
′) = 𝑎/(𝑒𝑖

′ + 𝑏)𝑐 + 𝑑 was used. Provided that the curve passes through a given point 

(𝑒𝑖
′0;  β0), the equation will take the form: 

𝛽(𝑒𝑖
′) =

𝑎

(𝑒𝑖
′ + 𝑏)𝑐

−
𝑎

(𝑒𝑖
′0 + 𝑏)𝑐

+ 𝛽0.                                                                                           (21) 

In our case 𝛽0 = 1 and 𝑒𝑖
′0 = 𝑒𝑖0.2 when determining 𝛽0.2(𝑒𝑖

′) and 𝑒𝑖
′0 = 𝑒𝑖𝑇 when 

determining 𝛽T(𝑒𝑖
′). The coefficients a, b and c were determined from the given points by 

the least squares method.  

After determining the Bauschinger coefficient 𝛽𝑇 = 𝛽𝑇(𝑒𝑖
′), by the Eq. (15) we 

determine the Masing function α = α(𝑒𝑖
′). Figure 4 shows graphs of these functions, 

constructed from experimental data and according to the Eq. (15). 

 

 
 

Fig. 4. The Masing function α = α(𝑒𝑖
′), determined by experimental data and by Eq. (15):  

1 – the values of α obtained by processing experimental data; 2 – the function α = α(𝑒𝑖
′), obtained by 

Eq. (15); 3 – the values of the Masing function for an ideal Bauschinger effect, α = α(𝑒𝑖
′) = 2 = const 
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Figure 5 shows diagrams of deformation of 45HGMA steel under reverse loading. The 

loading diagram was constructed using Eq. (12). Diagrams of unloading and further loading 

of the opposite sign were constructed on the basis of the generalized Masing principle 

according to Eq. (14) using the resulting Masing function shown in Fig. 4. As can be seen 

from the comparison of the calculation results with experimental data on the definition of 

σi0.2
′′ , good convergence is obtained. The average arithmetic error of determining 𝜎𝑖0.2

(2)
 is 

4.8 %, and the maximum is 15.1 %. Moreover, the greatest error is observed for the initial 

loading stage at 𝑒𝑖
′ <  0.01, which corresponds to the descending branch of the graph  

α = α(𝑒𝑖
′) (Fig. 4). In addition, a comparison of the results obtained with the calculated data 

for the ideal Bauschinger effect shows (Fig. 4) that the application of the generalized 

Masing principle allows get more accurate results. 

 

 
 

Fig. 5. Diagrams of deformation of 45HGMA steel under reverse loading: 1 – experimental data of the 

initial loading level σ𝑖
′; 2 – experimental data on the definition of σ𝑖0,2

′′  under reverse loading;  

3 – calculated data on the definition of σ𝑖0.2
(2)

 under reverse loading; 4 – calculated diagrams of forward 

and reverse loading; 5 – calculated diagrams of reverse loading for the ideal Bauschinger effect 

 

Conclusion 

The possibility of an analytical description of the Bauschinger effect using experimental 

data allows us to obtain good convergence of the results and conclude that the 

generalized Masing principle can be applied in the study of various alternating loading 

processes. 

In general, the question of the behavior of the material in the plastic region during 

repeated compression requires separate experimental studies, but to solve problems 

when repeated plastic strains are insignificant, it is possible to successfully apply the 

generalized Masing principle to describe the Bauschinger effect. Such tasks include, for 

example, calculations related to the determination of the stress-strain state and residual 

stresses during autofrettage of thick-walled pipes and high-pressure vessels. 
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