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Abstract. The paper considers seven types of lattice structures of different topologies, which 

are periodic unit cells of metamaterials to be manufactured by additive technologies. We carried 

out finite-element analysis of lattice structures with varying thicknesses of elementary beams 

comprising the cells and varying initial symmetric shapes. The effective elastic properties of 

metamaterials as continuous media were calculated by the method of direct numerical 

homogenization with periodic boundary conditions. The dependences between elastic 

properties and characteristic parameters determining the topology of cells were established. 

Some types of lattices were found to exhibit auxetic properties in a certain range of topological 

parameters. 
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Introduction 

Over the last decade, additive technologies, as a group of manufacturing technologies with a 

wide range of capabilities and few limitations, have made it possible to produce complex metal 

and polymer parts and components that could not previously be produced by conventional 

material processing technologies [1]. Metamaterials, whose physical and mechanical properties 

can be controlled by changing the shape and parameters of a unit cell, are an example of such 

structures. 

Metamaterials are understood as artificially designed multiscale structures formed by 

periodically repeating basic cells of relatively small size, fine-tuned to ensure that the physical 

and mechanical behaviour of the structure at the macro-level is that of a continuous material.  

A characteristic example of a metamaterial is a periodic lattice structure, which is formed by 

duplicating a unit cell in the directions of three non-coplanar vectors on which a parallelepiped 

describing the boundary of the unit cell is built [2]. Such a structure has a three-dimensional 

periodic topology, whose step of repetition depends on the geometric dimensions of the unit 

cell. The metamaterials can also include porous media with a complicated multiscale system of 

pore channels [3]. 
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Since typical unit cells have complex topology, the parts integrating metamaterials can 

only be manufactured by additive technologies, primarily powder-based laser 3D printing. It is 

the specific topology and variable shape of the elementary structural cell that gives the 

metamaterial unique physical and mechanical properties at the macro-level, unattainable for 

conventional homogeneous materials. In this case, the elastic properties of the metamaterial at 

the macro-level are assumed to be the effective properties of the structural cell as a part of a 

periodic array along three axes of the global coordinate system. Thus, a metamaterial can be 

characterized as an additively produced material consisting of a large number of unit cells 

whose size is much smaller than the size of a part made of the metamaterial. 

The effective physical and mechanical properties of the metamaterial, which are 

considerably different from the properties of the solid material from which the periodic 

structure is fabricated, can be determined using the homogenization procedure performed for 

the representative volume element (RVE) of the metamaterial [4]. In the case of a metamaterial 

formed by arrays of unit cells along three Сartesian axes, the RVE is a structure of minimal 

volume, containing the characteristic geometry of the material repeating with a certain step, so 

it can be regarded as a periodicity cell from the standpoint of theory of heterogeneous and 

composite materials. 

The dependences of effective elastic properties of metamaterials on the topological 

features of the structure at the meso-level are a popular subject for research in mechanics of 

heterogeneous continuous media [5]. The main objective of this research is to establish the 

approaches to designing the mechanical properties of the structure by varying the topology of 

the unit cell by new unconventional techniques [6]. In particular, the numerical analysis of the 

mechanical properties of the unit cell was carried out in [7] by the homogenization method with 

varying topological parameters of the unit cell. 

Recent developments in the field of metamaterials for special applications are outlined in [8], 
covering ultra-lightweight, ultra-stiff and ultra-strong materials, with emphasis placed on 

metamaterials with negative compressibility and negative stiffness. The current understanding 

of the structure and mechanical behaviour of cellular materials with low effective density, and 

how they can be used in the design of engineering structures, is discussed in [9]. 

Numerous studies deal with the influence of topological properties of metamaterials on 

their mechanical performance, considering different types of unit cells with varied effective 

porosity [10]. Some papers introduce hypotheses about the analytical dependences between the 

mechanical constants and the effective porosity obeying a power law [11]. However, such 

dependencies do not take into account a wide range of parameters of the unit cell. 

Beam theories based on the Bernoulli–Euler model have been applied to evaluating the 

macroscopic properties of lattice struts, allowing to predict some of the properties without virtual 

tests [12]. The analytical description of the mechanical behaviour of unit cells using the 

Timoshenko beam theory is presented in [13]. However, the applicability of these approaches is 

strongly limited to regular cells of relatively simple shape represented in the beam formulation. 

An important point in the study of additively manufactured metamaterials is the influence of 

technological processes during their fabrication. In particular, a significant decrease in the 

mechanical strength was detected for samples built diagonally with respect to the printing direction, 

accompanied by transformation of the material microstructure during heat treatment [14]. 

A notable trend in research is to determine the effective distribution of topological 

parameters of a metamaterial over the volume of a product. In this case, the focus shifts from 

the search for the optimal shape and size of the unit cell to the search for the optimal distribution 

of the physical and mechanical parameters within the product to achieve their smooth spatial 

variation [15]. This approach allows to tailor certain areas of the product to the given operating 

conditions and control the macroscopic properties of the material depending on the internal 

forces in a particular area of the structure [16]. 
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A separate extremely interesting class is represented by metamaterials with negative 

effective Poisson’s ratio, the so-called auxetics [17]. According to [18], unit cells capable of 

generating the auxetic effect are divided into three main groups based on the mechanism 

underlying that effect: re-entrant cells, chiral cells, and rotating cells. Importantly, the first 

group is the most promising from the standpoint of manufacturing technologies, including 

additive manufacturing, since the cells of the second group have a more complex structure, and 

the cells of the third group comprise structures connected through hinges, so they should be 

produced by other types of manufacturing technologies. A detailed analysis of the approaches 

to design of cell struts for auxetic metamaterials and examples of numerical analysis of their 

mechanical behaviour are given in [19]. 

As evident from the reviewed literature, interest in metamaterials has been growing steadily 

over the recent years, and the directions of research are diverse. While there are multiple 

approaches to studying the mechanical characteristics in this type of structures, the main issue 

has not been fully resolved. Building on our previous works on lattice structures [20], in this 

paper, we adopt homogenization methods to carry out numerical calculations of elastic 

anisotropic properties of metamaterials formed by different types of unit cells, subsequently 

analysing the relationship between the metamaterial’s elastic moduli and topology parameters. 

 

Materials and Methods 

The geometry of metamaterials has a periodic structure similar to conventional metallic 

materials grains formed by crystal lattices. We focus on metamaterials formed by typical lattice 

structures in this study, and the research methods are based on composite mechanics, elasticity 

theory of anisotropic media and computational mechanics. 

Theoretical aspects of homogenization. Homogenization is a method for estimating the 

equivalent macroscopic properties of a homogeneous material in such a way that at the global 

level they are equivalent to the properties of the heterogeneous metamaterial. Such properties 

of the metamaterial are called effective properties. The results obtained for one cell can be 

generalized for the whole material due to its periodic structure. 

The stresses and strains averaged over a representative volume element are determined 

by the following formulas: 

〈𝜎𝑖𝑗〉 =
1

𝑉
∫ 𝜎𝑖𝑗𝑑𝑉𝑉

, 〈𝜀𝑖𝑗〉 =
1

𝑉
∫ 𝜀𝑖𝑗𝑑𝑉𝑉

,  〈𝛾𝑖𝑗〉 =
1

𝑉
∫ 𝛾𝑖𝑗𝑑𝑉𝑉

, (1) 

where 𝑉 is the volume of the RVE. 

The stresses and strains averaged over the RVE of the metamaterial as assumed to be a 

homogeneous orthotropic material are related by the equations of generalized Hooke’s law 

written in terms of the principal axes of material symmetry X, Y and Z of the stress and strain 

tensors: 

𝐸𝑥〈𝜀𝑥𝑥〉 = 〈𝜎𝑥𝑥〉 − 𝜈𝑥𝑦〈𝜎𝑦𝑦〉 − 𝜈𝑥𝑧〈𝜎𝑧𝑧〉, 

𝐸𝑦〈𝜀𝑦𝑦〉 = −𝜈𝑦𝑥〈𝜎𝑥𝑥〉 + 〈𝜎𝑦𝑦〉 − 𝜈𝑦𝑧〈𝜎𝑧𝑧〉, 

𝐸𝑧〈𝜀𝑧𝑧〉 = −𝜈𝑧𝑥〈𝜎𝑥𝑥〉 − 𝜈𝑧𝑦〈𝜎𝑦𝑦〉 + 〈𝜎𝑧𝑧〉, (2) 

𝐺𝑥𝑦〈𝛾𝑥𝑦〉 = 〈𝜎𝑥𝑦〉, 

𝐺𝑦𝑧〈𝛾𝑦𝑧〉 = 〈𝜎𝑦𝑧〉, 

𝐺𝑥𝑧〈𝛾𝑥𝑧〉 = 〈𝜎𝑥𝑧〉, 
here 𝐸𝑥, 𝐸𝑦 and 𝐸𝑧 are the effective Young’s moduli of the unit cell; 𝜈𝑥𝑦,  𝜈𝑦𝑥,  𝜈𝑦𝑧,  𝜈𝑧𝑦,  𝜈𝑥𝑧 

and 𝜈𝑧𝑥 are the effective Poisson’s ratios; 𝐺𝑥𝑦,  𝐺𝑦𝑧 and 𝐺𝑥𝑧 are the effective shear moduli. 

The expressions of the effective Poisson’s ratios can be formulated as follows: 

𝜈𝑥𝑦 =
〈 𝑦𝑦〉

〈 𝑥𝑥〉
, 𝜈𝑦𝑥 =

〈 𝑥𝑥〉

〈 𝑦𝑦〉
, 𝜈𝑦𝑧 =

〈 𝑧𝑧〉

〈 𝑦𝑦〉
, 𝜈𝑧𝑦 =

〈 𝑦𝑦〉

〈 𝑧𝑧〉
, 𝜈𝑧𝑥 =

〈 𝑥𝑥〉

〈 𝑧𝑧〉
, 𝜈𝑥𝑧 =

〈 𝑧𝑧〉

〈 𝑥𝑥〉
. (3) 
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According to the properties of orthotropic material models, only nine of the twelve 

material constants are independent, since there are three additional relationships between 

Poisson’s ratios and Young’s moduli: 

𝐸𝑥𝜈𝑦𝑥 = 𝐸𝑦𝜈𝑥𝑦, 𝐸𝑦𝜈𝑧𝑦 = 𝐸𝑧𝜈𝑦𝑧, 𝐸𝑧𝜈𝑥𝑧 = 𝐸𝑥𝜈𝑧𝑥. (4) 

The compliance matrix [C] relating strains and stresses is based on material constants 𝐸𝑥, 

 𝐸𝑦,  𝐸𝑧, 𝐺𝑥𝑦,  𝐺𝑦𝑧, 𝐺𝑥𝑧,  𝜈𝑥𝑦,  𝜈𝑦𝑧 and 𝜈𝑥𝑧 and has the form: 

[𝐶] =

(

 
 
 
 
 
 
 
 

1

𝐸𝑥
−
𝜈𝑦𝑥

𝐸𝑦
−
𝜈𝑧𝑥

𝐸𝑧
0 0 0

−
𝜈𝑥𝑦

𝐸𝑥

1

𝐸𝑦
−
𝜈𝑧𝑦

𝐸𝑧
0 0 0

−
𝜈𝑥𝑧

𝐸𝑥
−
𝜈𝑦𝑧

𝐸𝑦

1

𝐸𝑧
0 0 0

0 0 0
1

𝐺𝑥𝑦
0 0

0 0 0 0
1

𝐺𝑦𝑧
0

0 0 0 0 0
1

𝐺𝑥𝑧)

 
 
 
 
 
 
 
 

. (5) 

In addition to form (2), Hooke’s law can be written in the form, which is more common 

for continuum mechanics as an expression of stress through strain: 

(

 
 
 
 

⟨𝜎𝑥𝑥⟩

⟨𝜎𝑦𝑦⟩

⟨𝜎𝑧𝑧⟩

⟨𝜎𝑥𝑦⟩

⟨𝜎𝑦𝑧⟩

⟨𝜎𝑥𝑧⟩)

 
 
 
 

=

(

 
 
 

𝐷11 𝐷12 𝐷13 0 0 0
𝐷21 𝐷22 𝐷23 0 0 0
𝐷31 𝐷32 𝐷33 0 0 0
0 0 0 𝐷44 0 0
0 0 0 0 𝐷55 0
0 0 0 0 0 𝐷66)

 
 
 
∙

(

 
 
 
 

⟨𝜀𝑥𝑥⟩

⟨𝜀𝑦𝑦⟩

⟨𝜀𝑧𝑧⟩

⟨𝛾𝑥𝑦⟩

⟨𝛾𝑦𝑧⟩

⟨𝛾𝑥𝑧⟩)

 
 
 
 

, (6) 

where [𝐷] is the stiffness matrix that corresponds to the 4th-rank tensor of elastic moduli and is 

the inverse of the compliance matrix: 

[𝐷] = [𝐶]−1. (7) 

Six numerical tests are required to determine the independent constants: three uniaxial 

tension tests and three shear tests. When each test is considered separately, relation (6) takes a 

simplified form, where ⟨𝜎𝑖𝑗
𝑥⟩, ⟨𝜎𝑖𝑗

𝑦⟩ and ⟨𝜎𝑖𝑗
𝑧 ⟩ are the stresses in uniaxial tensile tests along axes 

X, Y and Z  respectively, ⟨𝜎𝑖𝑗
𝑥𝑦⟩, ⟨𝜎𝑖𝑗

𝑦𝑧⟩ and ⟨𝜎𝑖𝑗
𝑥𝑧⟩ are the stresses in the shear tests in planes XY, 

YZ and ZX respectively (here 𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧}): 

𝐴

(

 
 
 

𝐷11
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0
0
0 )
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⟨𝜎𝑥𝑥
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0
0
0 )

 
 
 

, 𝐴

(
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𝐷32
0
0
0 )

 
 
 
=

(

 
 
 
 

⟨𝜎𝑥𝑥
𝑦 ⟩ 

⟨𝜎𝑦𝑦
𝑦 ⟩

⟨𝜎𝑧𝑧
𝑦 ⟩

0
0
0 )

 
 
 
 

, 𝐴

(

 
 
 

𝐷13
𝐷23
𝐷33
0
0
0 )

 
 
 
=
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⟨𝜎𝑥𝑥
𝑧 ⟩ 
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0
0
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, (8) 

𝐴
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0
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=
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0
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0
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0
0
0
0
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𝐷66)

 
 
 
=
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0 
0
0
0
0

⟨𝜎𝑥𝑧
𝑥𝑧⟩)

 
 
 

, (9) 

where 𝐴 is the value of longitudinal strain along one of the principal orthotropy axes or under 

shear in one of the principal orthotropy planes. The value of 𝐴 here and below is taken equal to 

0.001. 
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The averaged stresses during numerical homogenization are taken as the ratio of the force 

𝐹𝑘, arising under deformation of the unit cell and applied to its face, to the area of this face 𝑆: 

⟨𝜎𝑖𝑗
𝑘⟩ =

𝐹𝑘

𝑆
, (10) 

where 𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧}, 𝑘 ∈ {𝑥, 𝑦, 𝑧, 𝑥𝑦, 𝑦𝑧, 𝑥𝑧}.  
The index 𝑘 in formula (10) corresponds to the test conducted: 𝑥 is the tension along the 

X axis, 𝑦 is the tension along the Y axis, 𝑧 is the tension along the Z axis, 𝑥𝑦 is the shear in the 

XY plane, 𝑦𝑧 is the shear in the YZ plane, 𝑥𝑧 is the shear in the XZ plane. 

The unknown components of the stiffness matrix 𝐷𝑖𝑗 can be obtained based on the results 

of the six tests: 

[𝐷] =

(

 
 
 

𝐷11 𝐷12 𝐷13 0 0 0
𝐷21 𝐷22 𝐷23 0 0 0
𝐷31 𝐷32 𝐷33 0 0 0
0 0 0 𝐷44 0 0
0 0 0 0 𝐷55 0
0 0 0 0 0 𝐷66)

 
 
 

. (11) 

Next, the compliance matrix components can be found in accordance with Eq. (7). After 

that, all unknown elastic constants can be found from Eq. (5): 

𝐸𝑥 =
1

𝐶11
, 𝐸𝑦 =

1

𝐶22
, 𝐸𝑧 =

1

𝐶33
, 

𝐺𝑥𝑦 =
1

𝐶44
, 𝐺𝑦𝑧 =

1

𝐶55
, 𝐺𝑥𝑧 =

1

𝐶66
, (12) 

𝜈𝑥𝑦 = −
𝐶21

𝐶11
, 𝜈𝑥𝑧 = −

𝐶31

𝐶11
, 𝜈𝑦𝑧 = −

𝐶32

𝐶22
. 

Because the metamaterial is a periodic structure, numerical experiments should be 

performed with boundary conditions different from the traditional ones. Periodic boundary 

conditions adequately describe the three-dimensional symmetry of the structure, also providing 

a more physical deformation of the material, since they reflect the direct mutual influence of 

deformation of the given cell on its neighbouring cells. 

The periodic boundary conditions show the same displacements of each pair of nodes on 

opposite faces of the unit cell of size 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 . Three tensile tests and three shear tests were 

conducted to determine the material parameters under the boundary conditions described above. 

The following periodic boundary conditions have to be satisfied on pairs of opposite sides 

of the RVE, respectively, to perform three numerical uniaxial tensile tests sequentially along 

the X, Y, and Z axes. 

Tension along the X axis: 

𝐮|𝑥=0 − 𝐮|𝑥=𝐿𝑥 = 𝐴𝐢, 𝐮|𝑦=0 − 𝐮|𝑦=𝐿𝑦 = 0, 𝐮|𝑧=0 − 𝐮|𝑧=𝐿𝑧 = 0. (13) 

Tension along the Y axis: 

𝐮|𝑥=0 − 𝐮|𝑥=𝐿𝑥 = 0, 𝐮|𝑦=0 − 𝐮|𝑦=𝐿𝑦 = 𝐴𝐣, 𝐮|𝑧=0 − 𝐮|𝑧=𝐿𝑧 = 0. (14) 

Tension along the Z axis: 

𝐮|𝑥=0 − 𝐮|𝑥=𝐿𝑥 = 0, 𝐮|𝑦=0 − 𝐮|𝑦=𝐿𝑦 = 0, 𝐮|𝑧=0 − 𝐮|𝑧=𝐿𝑧 = 𝐴𝐤. (15) 

where 𝐮 is the displacement vector of RVE points; 𝐢, 𝐣 and 𝐤 are the coordinate system basis 

vectors along axes X, Y and Z. 

The following periodic boundary conditions have to be satisfied on pairs of opposite sides 

of the RVE to perform three shear tests sequentially in the XY, YZ and XZ planes. 

Shear in the XY plane: 

𝐮|𝑥=0 − 𝐮|𝑥=𝐿𝑥 = 𝐴𝐣, 𝐮|𝑦=0 − 𝐮|𝑦=𝐿𝑦 = 𝐴𝐢, 𝐮|𝑧=0 − 𝐮|𝑧=𝐿𝑧 = 0. (16) 

Shear in the YZ plane: 

𝐮|𝑥=0 − 𝐮|𝑥=𝐿𝑥 = 0, 𝐮|𝑦=0 − 𝐮|𝑦=𝐿𝑦 = 𝐴𝐤, 𝐮|𝑧=0 − 𝐮|𝑧=𝐿𝑧 = 𝐴𝐣. (17) 
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Shear in the XZ plane: 

𝐮|𝑥=0 − 𝐮|𝑥=𝐿𝑥 = 𝐴𝐤, 𝐮|𝑦=0 − 𝐮|𝑦=𝐿𝑦 = 0, 𝐮|𝑧=0 − 𝐮|𝑧=𝐿𝑧 = 𝐴𝐢. (18) 

Estimation of elastic properties of metamaterial in non-principal axes. Changing the 

direction of the local axes of the unit cell allows estimating the characteristics of the 

metamaterial in a different direction, which can have a positive effect on changing the 

parameters of the unit cell and the metamaterial as a whole. Specifically, the values of the elastic 

characteristics of the unit cell may turn out to be higher along the rotated axes, making it possible 

to arrange the lattice structure more rationally within the designed product and render it more 

resistant to applied loads. This section considers the behaviour of lattice properties when local 

axes of the unit cell are rotated relative to the initial orientation of the metamaterial axes (Fig. 1). 

 

 
Fig. 1. Axis layout and printing direction 

 

We "rotate" the stiffness matrix in the equation, corresponding to the 4th-rank elastic 

moduli tensor. The deformation directions remain unchanged. 

The combination of two rotations around three orthogonal vectors X, Y, Z is taken as the 

rotation tensor. However, it does not seem possible to rotate a 6 × 6 matrix by a 3 × 3 rotation 

matrix. Instead, the 4th-rank tensor must be recovered for this purpose from the 6×6 matrix by 

the Voigt notation rule explained below: 

(

 
 
 

𝐶11 → 𝐶1111 𝐶12 → 𝐶1122 𝐶13 → 𝐶1133 𝐶14 → 𝐶1123 𝐶15 → 𝐶1131 𝐶16 → 𝐶1112
𝐶21 → 𝐶2211 𝐶22 → 𝐶2222 𝐶23 → 𝐶2233 𝐶24 → 𝐶2223 𝐶24 → 𝐶2231 𝐶26 → 𝐶2212
𝐶31 → 𝐶3311 𝐶32 → 𝐶3322 𝐶33 → 𝐶3333 𝐶34 → 𝐶3323 𝐶35 → 𝐶3331 𝐶36 → 𝐶3312
𝐶41 → 𝐶2311 𝐶42 → 𝐶2322 𝐶43 → 𝐶2333 𝐶44 → 𝐶2323 𝐶45 → 𝐶2331 𝐶46 → 𝐶2312
𝐶51 → 𝐶3111 𝐶52 → 𝐶3122 𝐶53 → 𝐶3133 𝐶54 → 𝐶3123 𝐶55 → 𝐶3131 𝐶56 → 𝐶3112
𝐶61 → 𝐶1211 𝐶62 → 𝐶1222 𝐶63 → 𝐶1233 𝐶64 → 𝐶1223 𝐶65 → 𝐶1231 𝐶66 → 𝐶1212)

 
 
 

(19) 

The 4th-rank elastic moduli tensor 𝐶𝑖𝑗𝑘𝑙 is symmetric with respect to the first and second 

pairs of indices: 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘. (20) 

The elements can be written as a 6×6 matrix using the following index substitution: 

11 → 1; 22 → 2; 33 → 3; 23, 32 → 4; 13, 31 → 5; 12, 21 → 6. (21) 

As one Cartesian coordinate system 𝑥1, 𝑥2, 𝑥3 is converted to another Cartesian 

coordinate system 𝑥1
′ , 𝑥2

′ , 𝑥3
′ , the components of the elastic moduli tensor are transformed as 

follows (the Einstein notation for summation over repeated indices is used here): 

𝐶𝑖𝑗𝑘𝑙
′ = 𝑛𝑖𝛼𝑛𝑗𝛽𝑛𝑘𝛾𝑛𝑙𝛿𝐶𝛼𝛽𝛾𝛿, (22) 

where 𝑛𝑚𝑛 are the directional cosines between the m, n axes, which can be determined from 

the formula: 

𝑛𝑚𝑛 =
𝑥𝑚 ∙ 𝑥𝑛

|𝑥𝑚||𝑥𝑛|
. (23) 
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In our case, the axes are rotated by the angle α lying in the range from 0 to 2π with the 

step 0.02π around the Z axis and by the angle β in the range from -π/2 to π/2 with the step 0.01π 

in the case of rotation around the rotated Y axis. The rotation matrices are constructed by the 

angles given at each step: 

𝑃𝑧 = (
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼 0
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0
0 0 1

), (24) 

𝑃𝑦 = (
𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽
0 1 0

−𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽
). (25) 

Thus, the rotated axes can be calculated by the formula: 

𝑥𝑖
′ = 𝑃𝑦 ∙ 𝑃𝑧 ∙ 𝑥𝑖, 𝑖 ∈ {1, 2, 3}. (26) 

The matrix of elastic moduli 𝐶𝑖𝑗𝑘𝑙
′  is calculated from Eq. (22) in the local (rotated) 

coordinate system. After that, the values of elastic constants in the rotated coordinate system 

can be obtained by Eq. (12). 

Calculating the moduli values for each of the specified angle values, we obtain a circular 

diagram reflecting the dependence of the considered mechanical characteristics on the direction 

of local axes. For convenience, matrix transformations, orthogonal rotation and other related 

calculations are performed with the code in MATLAB package. Such transformations were 

performed for each type of unit cell. 

Geometric models for unit cells of the metamaterial. Geometric models of unit cells 

of the metamaterial are designed assuming that the basic cells can be formed by rods of different 

diameters and have different volume fractions of solid material. SolidWorks computer-aided 

design system was used to build the geometric models [21]. 

 

    
(a) (b) (c) (d) 

 

   

 

 (e) (f) (g)  

Fig. 2. Unit cells of metamaterials: (a) cell of type 1, (b) cell of type 2, (c) cell of type 3, 

(d) cell of type 4, (e) cell of type 5, (f) cell of type 6, (g) cell of type 7 

 
Each cell type has the overall dimensions of 10 × 10 × 10 mm. The 3D view of the 

designed unit cells is shown in Fig. 2. The topology of the cells was chosen as the most 

interesting and promising for further research. The designs presented in Fig. 2 are based on a 

single rod 1.0 mm in diameter. 
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Several modifications of the structure geometry are adopted to comprehensively analyse 

the influence of the metamaterial unit cell topology, as well as to correctly compare the lattices 

with each other. 

We primarily focus on the effect of the volume fraction of the lattice structure material 

and the effect of the ratio of the unit cell dimensions 𝐿𝑥, 𝐿𝑦 and 𝐿𝑧 on the macroscopic 

properties of the metamaterial. The analysis in this section aimed to establish the dependence 

of the macroscopic properties of the metamaterial on its effective density for each of the seven 

cell types considered. 

Several modifications of the structure geometry are adopted to comprehensively analyse 

the influence of the metamaterial unit cell topology, as well as to correctly compare the lattices 

with each other. 

We primarily focus on the effect of the volume fraction of the lattice structure material 

and the effect of the ratio of the unit cell dimensions 𝐿𝑥, 𝐿𝑦 and 𝐿𝑧 on the macroscopic 

properties of the metamaterial. The analysis in this section aimed to establish the dependence 

of the macroscopic properties of the metamaterial on its effective density for each of the seven 

cell types considered. 

The effective density of metamaterial is understood as the ratio of the volume of solid 

material contained in a unit cell to the volume of a parallelepiped with the characteristic size 

𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 . The volume fraction varies from 0.01 to 1, where 1 corresponds to solid material. 

The mechanical characteristics were calculated by taking 10 points in the range from 0.01 to 

0.1, and then another 24 points with a constant step of 0.0375. Figures 3–9 show the geometric 

shapes for each of the cell types for the four volume fractions of the material. 

Cells with the characteristic size 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 10 mm are considered above. Departing 

from the traditional understanding of a cubic unit cell, we introduce a range of variation for one 

of the geometrical parameters, the value of length 𝐿𝑥. Let us estimate the variation trends of the 

metamaterial parameters with varying ratio of unit cell sizes. The value of length 𝐿𝑥 varies from 

10 to 1 mm with the step of 1 mm for each cell under consideration. 

 

    
(a) (b) (c) (d) 

 

Fig. 3. Unit cell of type 1 with different volume fractions of the material: (a) 0.01; (b) 0.1; (c) 0.4; (d) 0.7 

 

    
(a) (b) (c) (d) 

Fig. 4. Unit cell of type 2 with different volume fractions of the material: (a) 0.01; (b) 0.1; (c) 0.4; (d) 0.7 
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(a) (b) (c) (d) 

Fig. 5. Unit cell of type 3 with different volume fractions of the material: (a) 0.01; (b) 0.1; (c) 0.4; (d) 0.7 

 

    
(a) (b) (c) (d) 

Fig. 6. Unit cell of type 4 with different volume fractions of the material: (a) 0.01; (b) 0.1; (c) 0.4; (d) 0.7 

 

    
(a) (b) (c) (d) 

Fig. 7. Unit cell of type 5 with different volume fractions of the material: (a) 0.01; (b) 0.1; (c) 0.4; (d) 0.7 

 

    
(a) (b) (c) (d) 

Fig. 8. Unit cell of type 6 with different volume fractions of the material: (a) 0.01; (b) 0.1; (c) 0.4; (d) 0.7 

 

    
(a) (b) (c) (d) 

Fig. 9. Unit cell of type 7 with different volume fractions of the material: (a) 0.01; (b) 0.1; (c) 0.4; (d) 0.7 
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Figures 10–16 show the 3D view for four topologies of each type of unit cells with 

𝐿𝑥 ∈ {10, 7, 4, 1}. For correct analysis of the results, homogenization was performed at a fixed 

volume fraction of 0.05. 

 

    
(a) (b) (c) (d) 

Fig. 10. Unit cell of type 1 with varying dimension 𝐿𝑥: (a) 10 mm, (b) 7 mm, (c) 4 mm, (d) 1 mm 

 

    
(a) (b) (c) (d) 

Fig. 11. Unit cell of type 1 with varying dimension 𝐿𝑥: (a) 10 mm, (b) 7 mm, (c) 4 mm, (d) 1 mm 

 

    
(a) (b) (c) (d) 

Fig. 12. Unit cell of type 1 with varying dimension 𝐿𝑥: (a) 10 mm, (b) 7 mm, (c) 4 mm, (d) 1 mm 

 

    
(a) (b) (c) (d) 

Fig. 13. Unit cell of type 1 with varying dimension 𝐿𝑥: (a) 10 mm, (b) 7 mm, (c) 4 mm, (d) 1 mm 
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(a) (b) (c) (d) 

Fig. 14. Unit cell of type 1 with varying dimension 𝐿𝑥: (a) 10 mm, (b) 7 mm, (c) 4 mm, (d) 1 mm 

 

    
(a) (b) (c) (d) 

Fig. 15. Unit cell of type 1 with varying dimension 𝐿𝑥: (a) 10 mm, (b) 7 mm, (c) 4 mm, (d) 1 mm 

 

    
(a) (b) (c) (d) 

Fig. 16. Unit cell of type 1 with varying dimension 𝐿𝑥: (a) 10 mm, (b) 7 mm, (c) 4 mm, (d) 1 mm 

 

Finite element models of metamaterial unit cells. A series of finite element models 

were developed based on the presented three-dimensional geometric models (Figs. 3–16). The 

models are formed by tetrahedral finite elements with first-order displacement interpolation. 

The classical finite element method in displacements with variational formulation based on the 

weighted residuals method or the principle of minimum potential energy is used for the three-

dimensional problem of elasticity theory [22]. 

The homogenization process for the metamaterial is carried out according to the algorithm 

described above using the finite element analysis system ANSYS Material Designer. The 

characteristic problems of elasticity theory are solved in a static formulation using the 

considered periodic boundary conditions (13)–(18). 

The computational domain of each type of metamaterial represents one unit cell. The 

maximum size of the finite element of the computational mesh is 1 mm. The characteristic mesh 

size depends on the thickness of the rod forming the unit cell, covering the range from 0.005 to 

1 mm and selected for each cell type individually taking into account the volume fraction of the 

solid material. 

Typical examples of finite element meshes are shown in Figs. 17 and 18. The numbers of 

elements and nodes in the numerical models are given in Table 1 for unit cells of types 1–7 with 

0.4 vol. % of the material as a typical example. 
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(a) (b) © (d) 

Fig. 17. Finite element mesh for unit cells of type 1 with different volume fractions of the material: 

(a) volume fraction 0.025, mesh size 0.3 mm, (b) volume fraction 0.05, mesh size 0.4 mm, 

(c) volume fraction 0.1, mesh size 0.45 mm, (d) volume fraction 0.25, mesh size 0.5 mm 

 

    
(a) (b) © (d) 

 

   

 

 © (f) (g)  

Fig. 18. Finite element mesh for unit cells of types 1–7 with 0.4 vol.% of the material:  

(a) type 1, (b) type 2, (c) type 3, (d) type 4, (c) type 5, (f) type 6, (g) type 7 

Table 1. Mesh statistics for finite element models of unit cells with 0.4 vol. % of the material 
Unit cell type Number of elements Number of nodes 

1 40 743 63 706 

2 37 920 59 799 

3 32 162 50 098 

4 28 606 42 551 

5 30 609 45 272 

6 30 245 44 863 

7 33 133 51 415 

 

Representative elements are considered to check the adequacy and correctness of the 

introduced periodic boundary conditions (13)–(18). Provided that the elasticity theory problem 

is well-posed for a periodic composite material with periodic boundary conditions, the 

homogenization problem can be solved numerically for a representative volume element 

consisting of 1 × 1 × 1 basic or unit cells. However, it is certainly possible to study the 
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behaviour of the RVEs consisting of 3 × 3 × 3 and 5 × 5 × 5 unit cells, since they can be 

considered as the representative volume elements of larger size (Fig. 19). 

 

   
(a) (b) © 

Fig. 19. Representative volume elements with different numbers of unit cells:  

(c) 1 × 1 ×1 unit cells, (b) 3 × 3 × 3 unit cells, (c) 5 × 5 × 5 unit cells 

 

This step is necessary for checking whether the periodic boundary conditions adopted are 

well-posed and the overall methodology is sound. Because the RVE is large-sized, a larger number 

of finite elements have to be processed (Table 2), which significantly increases the computational 

cost of the research. Therefore, it seems reasonable to assess the influence of the number of unit 

cells in the RVE on the values of the obtained elastic characteristics of the metamaterial. 

 

Table 2. Mesh statistics for finite element models of representative volume elements formed 

by different numbers of unit cells 
Number of unit cells in RVE Number of elements Number of nodes 

1 × 1 × 1 5 450 10 533 

3 × 3 × 3 119 466 208 914 

5 × 5 × 5 574 758 980 132 

 

Mechanical properties of the material. Finally, to formulate the problem of elasticity theory 

for the case of additively manufactured materials, we should tailor the mechanical properties to 

account for potential anisotropy. Our study considers the metamaterials produced additively from 

AlSi10Mg by selective laser melting (SLM) with the powder particle size less than 150 µm. The 

material and the technique can be used to produce parts with thin structural elements and complex 

geometry, also well suited for manufacturing of lightweight products. 

 

Table 3. Mechanical properties of additively manufactured AlSi10Mg alloy 
Mechanical property type Direction 

X/XY Y/YZ Z/XZ 

Young’s modulus, Gpa 82.5 76.7 76.8 

Shear modulus, Gpa 23.8 27.1 21.4 

Poisson’s ratio 0.32 0.32 0.33 

 

The values of technical elastic properties of the solid material obtained by selective 

melting 0 are given in Table 3. The orientation of coordinate system axes and printing direction 

are shown in Fig. 1. As seen from Table 3, adopting the SLM technology for producing 
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metamaterials yields a slightly pronounced orthotropy of the properties, which is taken into 

account when selecting a non-isotropic model of the material for numerical analysis. 

 

Results and Discussion 

This section presents the computational results for the elastic properties of metamaterials of all 

types with varying volume fraction of solid material within the unit cell. We also carried out an 

analysis of Young’s moduli values depending on the rotation of the local axes relative to the 

principal axes of material symmetry, as well as analysis of the effect of compression of the unit 

cell shape along one of the coordinate axes. 

Verification of boundary conditions. To verify the adequacy and correctness of the 

mathematical formulation of the problem and periodic boundary conditions imposed on pairs of nodes 

of the mesh, the effective mechanical properties of the structures consisting of 1 × 1 × 1, 3 × 3 × 3  

and 5 × 5 × 5 unit cells of type 1 were evaluated (Fig. 19). The volume fraction of the material of the 

analysed cells was taken equal to 0.1. In our opinion, verifying only one type of metamaterial should 

be sufficient to draw the required conclusions, since the results for the rest of the cells should be 

similar due to the uniformity of the used algorithm. The computations are performed on an Intel Core 

i7 CPU (10th generation) workstation with 64 Gb DDR4 RAM. The duration of analysis for the 

models with 1 × 1 × 1, 3 × 3 × 3 and 5 × 5 × 5 cells was 40, 181 and 810 seconds, respectively. 

The computational results for the three cases of the metamaterial RVE are presented in 

Table 4. The relative differences are given in the table compared to the 5 × 5 × 5 structure. 

 

Table 4. Young’s moduli for different numbers of unit cells in representative volumes of type 1 

metamaterial  

Mechanical property type 
RVE with 1 × 1 × 1 

unit cells 

RVE with 3 × 3 × 3 

unit cells 

RVE with 5 × 5 × 5 

unit cells 

𝐸1, Mpa 3 366.2 3 366.1 3 366.4 

𝐸2, Mpa 3 137.8 3 137.9 3 138.2 

𝐸3, Mpa 3 140.2 3 140.6 3 140.9 

Relative difference for 𝐸1, % 0.006 0.009 – 

Relative difference for 𝐸2, % 0.013 0.010 – 

Relative difference for 𝐸3, % 0.022 0.009 – 

 

As seen from Table 4, the relative differences in Young’s moduli between the three RVEs 

is less than 0.03 %, which is within the numerical errors of finite element analysis. At the same 

time, the computations for the RVE consisting of 5 × 5 × 5 unit cells take more than 15 times 

longer compared to the computations for the RVE with 1 × 1 × 1 unit cells. 

Thus, it is safe to assume that the mathematical model is correct and subsequent 

computations can be performed with the periodic boundary conditions (13)–(18) without 

compromising the accuracy of the results for an RVE consisting of one unit cell with the 

characteristic size of 10 × 10 × 10 mm. 

Results for the case of rods with fixed diameter. The computational time for one 

metamaterial unit cell is about 3 minutes depending on the geometric complexity. The results of finite 

element homogenization for unit cells of types 1–7 at fixed diameter of rods are presented in Table 5. 

Since the rod diameters of all unit cells of the metamaterials are the same and equal to 

1 mm, the volume fraction of the material in each of the unit cells is different (Table 6). This 

should be taken into account in the comparative analysis of elastic moduli. We can 

approximately consider Young’s and shear moduli to be proportional to the material volume 

fraction for small values. 

Nevertheless, only the simplest structure of type 1 contains a significantly lower volume fraction 

of the material, while the other cells are filled with the base material by about the same 4.1–6.9 %. 
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Table 5. Effective elastic moduli of metamaterials with different types of unit cells at fixed rod 

diameter (1 mm) 
Mechanical 

property type 
Unit cell 

of type 1 
Unit cell 

of type 2 
Unit cell 

of type 3 
Unit cell 

of type 4 
Unit cell 

of type 5 
Unit cell 

of type 6 
Unit cell of 

type 7 
𝐸1, Mpa 665.4 908.2 80.3 594.3 897.3 59.5 231.3 
𝐸2, Mpa 619.3 863.4 78.9 595 854.7 56 240.2 
𝐸3, Mpa 620 863.9 79.5 593.6 595.8 55.6 234.3 
𝐺12, Mpa 2.7 422.8 82.9 386.9 5.4 372.2 62.2 
𝐺23, Mpa 2.6 428.9 84 421.9 415.4 2.6 62.9 
𝐺31, MPa 2.6 417.5 82.2 359.3 352.6 344.9 61.7 
𝜈12 0.03 0.29 0.47 0.33 -0.2 0.9 0.4 
𝜈13 0.03 0.29 0.46 0.28 0.5 0.9 0.4 
𝜈23 0.03 0.29 0.49 0.37 0.6 -0.9 0.4 

 

Table 6. Volume fraction of material for rod diameter of 1 mm 

Unit cell type 
Unit cell of 

type 1 
Unit cell 

of type 2 
Unit cell 

of type 3 
Unit cell 

of type 4 
Unit cell 

of type 5 
Unit cell of 

type 6 
Unit cell of 

type 7 
Volume 

fraction 
0.022 0.069 0.049 0.059 0.053 0.041 0.059 

 

We can conclude from these preliminary computations that the effective elastic properties 

of the metamaterial depend significantly on the geometry of the unit cell forming the periodic 

structure of the metamaterial. Cells of types 1, 2 and 5 exhibit the highest stiffnesses along the 

principal orthotropy axes. The geometry of these cells contains the rods that are parallel to the 

loading axes, making the material more resistant to tension–compression. 

Cells of types 2 and 4 exhibit the highest shear stiffness, determined by the shear modulus, 

apparently due to the presence of transverse rods connecting the diagonal nodes of the lattice. 

Metamaterials based on type 5 and 6 cells also have rather high shear stiffnesses, but only in two 

planes, which is due to incomplete symmetry of the cells with respect to the coordinate planes. 

Metamaterials based on types 3 and 6 cells have the lowest values of Young’s and shear 

moduli along the axes of the global coordinate system. A possible explanation for this is that 

these cell types are formed mainly by diagonal rods and, therefore, do not have high stiffness 

in the considered directions. Nevertheless, it can be hypothesized that the properties may be 

higher in other directions (this point is discussed below). 

The simplest cell of type 1 exhibits the highest stiffness along the three principal 

directions due to its characteristic cubic shape with no additional diagonal rods. However, its 

shear stiffness as well as its Poisson’s ratio are minimal. The significant difference in Young’s 

moduli along the Z axis for the cell of type 5 compared to the same parameter along the X and 

Y axes is due to the absence of the rod in the unit cell in this direction. 

Interestingly, the metamaterials based on cells of types 5 and 6 have auxetic properties, 

which is confirmed by the negative values of Poisson’s ratio in certain planes. Both positive 

and negative values of Poisson’s ratio are rather high for these cell types. Analysing the 

geometry of these cells, we can assume that diagonally arranged rods lead to the auxetic effect, 

and the metamaterials themselves can be classified as auxetics based on re-entrant cells. 

The computations ultimately confirm that all types of metamaterials exhibit material 

symmetry of elastic properties with respect to the three orthotropy planes. The structural 

anisotropy is in this case apparently complemented by the initial non-isotropy of the material 

properties due to additive manufacturing by selective laser melting. 

The volume fraction of the material in the unit cell of the metamaterial can serve as an 

additional criterion of efficiency along with the elastic properties. We assume that a 

metamaterial with a lower content of initial material but higher stiffness is more efficient than 

a metamaterial with similar elastic properties but lower porosity. We should also note that the 
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presence of a system with branched pore channels in metamaterials can be a crucial factor in 

some applications, in particular for biomedicine [23]. 

Effect of material volume fraction on metamaterial properties. Let us start the analysis 

of the effective properties of the metamaterial formed by different types of cells by considering 

the comparative graphs illustrating the differences in the variation of Young’s moduli, shear 

moduli, and Poisson’s ratio at the same value of the material volume fraction. Figure 20 shows 

the variations of elastic constants of the metamaterial as functions of porosity. The results are 

given as curves of the dependences of Young’s moduli, shear moduli and Poisson’s ratios along 

the principal axes of orthotropy on the volume fraction of the initial material. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Fig. 20. Dependences of elastic constants of metamaterials formed by cells of type 1–7 on the 

volume fraction of solid material: (a) Young’s modulus 𝐸1, (b) Young’s modulus 𝐸2,  
(c) Young’s modulus 𝐸3, (d) shear modulus 𝐺12, (e) shear modulus 𝐺23,  

(f) shear modulus 𝐺31, (g) Poisson’s ratio 𝜈12, (h) Poisson’s ratio 𝜈13, (i) Poisson’s ratio 𝜈23 
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The dependences for most cell types have a typical nonlinear character, generally 

corresponding to the behaviour of porous structures with varied porosity 0. This behaviour, 

however, is apparently inverted, since by definition porosity and volume fraction of the material 

sum to 1. As follows from the theory of composites, the Young’s and shear elastic moduli of 

the metamaterial vary from zero to the corresponding values of the solid material following 

some nonlinear relationship. The degree of non-isotropy associated with additive 

manufacturing increases slightly with increasing relative density. 

The values of the mechanical characteristics of metamaterials strongly depend on the type 

of unit cell. We can observe from the computations that the nature of the dependence coincides 

with the intuitive understanding of the metamaterial behaviour, correlated with the basic 

concepts of deformable solid mechanics. The mechanical characteristics grow with an increase 

in the volume fraction, tending to the values of the moduli in the solid AlSi10Mg alloy. 

However, as seen from Figure 20, the mechanical characteristics vary at a different rate in each 

of the unit cells given the same variation rate of effective density. 

Analysing the curves, we see a distinct dependence of the mechanical characteristics of 

the metamaterial on the volume fraction of the base material. When comparing the elastic 

moduli in each direction for all the considered cell types, the cells with the highest and the 

lowest elastic modulus along each of the axes are distinguished. In particular, the largest 

Young’s modulus along the axes X and Y is observed in the cell of type 1, along the axis Z – by 

the cell of type 1 (at lower values of volume fraction) and by the cell of type 5 (at medium 

values of volume fraction) and by the cells of types 5 and 6 (at volume fraction close to 1). The 

lowest elastic modulus along each of the axes is observed in the cell of type 3. 

The dependence of the parameters on the relative density of the material is similar for all 

of the cell types, but due to the lack of complete symmetry of some types of basic cells, some 

differences occur, mainly when considering the Young’s modulus along Z axis. It is also 

important to mention that metamaterials based on the cells of types 3 and 4 demonstrate the 

effect of "sagging" of Young’s modulus values at the volume fractions of 0.3–0.8. This effect 

might be useful in terms of selecting the optimal combination of mass and stiffness properties. 

It is also interesting to note that auxetic behaviour occurs for the metamaterials of types 

5 and 6, and this effect takes place over the whole considered range of the volume fraction. 

Effect of unit cell asymmetry on metamaterial properties. The effect of gradual 

contraction of the cell along one coordinate axis (X) is demonstrated in Fig. 21 in the form of 

dependences of Young’s and shear moduli and Poisson’s ratio on the side length of the 

periodicity cell along the X axis. The effect of the difference of the sides of the unit cell is shown 

above in Figs. 10–16. 

The results of finite element homogenization of the cells with different aspect ratios 

suggest that Young′s modulus evidently decreases along the X axis with the decrease in the 

value of the unit cell side 𝐿𝑥. The reason for this is the decrease in the effective cross-sectional 

area perpendicular to the X axis due to the decrease in the thickness of the rod. The values of 

elastic moduli along the other two axes increase. This fact can be explained, on the contrary, 

by the increase in the effective cross-sectional area perpendicular to the Y and Z axes. The rate 

of decrease of 𝐸𝑥  is higher than the rate of increase of 𝐸𝑦 and  𝐸𝑧. In the cells of types 1 and 2 

the character of Young’s modulus variation along each of the axes is close to linear. 

It is important to mention that the basic mechanical characteristics of the metamaterial 

are close to isotropic before the decrease in 𝐿𝑥. The cell of type 6 shows a significant increase 

in Young’s moduli along the Y and Z axes, with a slight decrease in Young’s moduli along the 

X axis. In contrast, the cells of types 3 and 7 exhibit a relatively low growth of Young’s moduli 

𝐸2 and 𝐸3 and a significant decrease of 𝐸1 with a less than twofold decrease in the parameter 

𝐿𝑥. However, a decrease in Young’s moduli along each of the three axes occurs with a further 

decrease in the parameter 𝐿𝑥. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

 

Fig. 21. Dependences of elastic properties on the length of cell side 𝐿𝑥 for metamaterial 

formed by unit cells of types 1–7: (a) Young’s modulus 𝐸1, (b) Young’s modulus 𝐸2,  
(c) Young’s modulus 𝐸3, (d) shear modulus 𝐺12, (e) shear modulus 𝐺23,  

(f) shear modulus 𝐺31, (f) Poisson’s ratio 𝜈12, (g) Poisson’s ratio 𝜈13, (i) Poisson’s ratio 𝜈23 
 

Since the mechanical characteristics of cells with different values of the parameter 𝐿𝑥 

were computed at a fixed material volume fraction and a constant unit cell mass, an increase in 

Young’s moduli along the Y and Z axes can be achieved without increasing the amount of 

material. Thus, the stiffness of the metamaterial can be tailored to the desired level by varying 

the aspect ratios of the unit cell. 

Elastic moduli of the metamaterial in the rotated coordinate system. Due to their 

geometrical features, metamaterials might have a high degree of anisotropy and have different 

values of mechanical characteristics in different directions. The paper considers unit cells of 
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each type at 0.4 vol. % (Fig. 18), and an algorithm for determining the elastic moduli in different 

directions is developed using Eqs. (12), (22). Surface diagrams are given as a typical example 

for the values of Young’s modulus in different directions of the local coordinate system 

(Fig. 22). Such diagrams can be interpreted as the average stiffness at an arbitrary stretching 

direction of the metamaterial. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

 
(g) 

 

Fig. 22. Young’s modulus of the metamaterial formed by cells of different types  

with 0.4 vol. %: (a) type 1, (b) type 2, (c) type 3, (d) type 4, (e) type 5, (f) type 6, (g) type 7 

As follows from the diagrams (Fig. 22), the character of the modulus distribution depends 

significantly on the type of unit cell. In particular, cells of types 1 and 7 have significantly higher 

Young’s moduli in the directions of the principal axes. Conversely, however, the cell of type 3 

has a higher Young’s modulus value in the diagonal direction. The diagrams for cells of types 5 

and 6 show a lower amount of symmetry planes, reflecting the geometric properties of these cells, 

while the modulus values cover a much wider range compared to other unit cell types. Cell of 

types 2 and 4 have less pronounced anisotropy compared to other types of unit cells. Cells of 

types 5 and 6, demonstrating auxetic properties, also have a characteristic, different from classical 

metamaterials, appearance of circular diagrams of the Young’s modulus. 
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Depending on the cell type, Young’s modulus both increases and decreases in the 

direction of each of the orthogonal axes, which is well-observed in the diagrams above. Thus, 

cells of types 1, 5 and 7 exhibit a decrease in Young’s moduli by 2–11 times in each direction 

when the axes are rotated. Cells of types 2, 3, 4 and 9 exhibit an increase in Young’s moduli by 

1.5–2.5 times for each of the axes. 

Analysing the diagrams presented above for the cells whose rods are aligned with the 

global axes, it is possible notice an interesting feature. If we consider such rotation, which 

makes the axes aligned with the diagonals of the unit cell, the values taken by the diagonal 

components of the elastic moduli tensor decrease significantly, as well as the spread in the 

values of all tensor components. Conversely, a significant increase of some components 

corresponding to the loading direction in the new axes is observed for other cells when the 

direction of the changes, which suggesting that the axes are oriented more rationally under 

homogeneous loading. 

 

Conclusion 

Analysis of the properties of lattice structures is a burgeoning area of research in mechanics. 

This article describes an approach to studying the macroscopic mechanical properties of 

metamaterials. We formulated and verified a number of assumptions about the relationship 

between mechanical properties and topological parameters, such as the type of unit cell, volume 

fraction of material, geometrical parameters of the RVE. 

We aimed to determine the overall influence of the topology of a heterogeneous periodic 

structure on the values of macroscopic mechanical characteristics in a metamaterial. We found 

the topology parameters estimating the influence that each of them has on the results of the 

obtained elastic moduli of the porous material. 

Analysing the influence of the RVE aspect ratios, we found a significant decrease in 

Young’s moduli in the direction of the axis along which the geometric size of the cell varied; 

on the other hand, a significant increase in Young’s moduli along the other two axes was 

observed as well. 

The diagrams illustrate the influence of anisotropy of the additive material used to 

produce the metamaterial cells on the resulting mechanical properties. Varying the direction of 

the local axes allows to better assess the mechanical capabilities of the unit cells by monitoring 

their stiffness in other directions. 

Studies on a range of dependences should allow to design materials with specific 

mechanical properties, required for developing modern advanced industrial products based on 

continuum mechanics, mechanics of heterogeneous media and composites, computational 

mechanics and mathematical modelling, biomedical and advanced manufacturing technologies. 
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