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ABSTRACT  
Fabrication of gallium oxide 1–100 µm-thick layers by exfoliation them from single crystals opens up the 
way to provide good thermal management in high-power Ga2O3 devices. Here we propose a lift-off protocol 
based on spalling of homoepitaxial layers from (100) β-Ga2O3 bulk crystal. The process includes sputtering 
of Ni sacrificial mask on β-Ga2O3 substrate and its modification by annealing, prior to epitaxial layer 
deposition in mist-CVD reactor. The separated 4 µm-thick β-Ga2O3 layers have been studied. It is shown 
that implementation of the lift-off protocol allows obtaining high-quality free-standing layers. 
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Introduction 
Growth of the bulk β-Ga2O3 crystals is still a complex task, which only a few research 
groups in the world have successfully accomplished to some extent. This is evidenced by 
the fact that the only company that has achieved a commercial result to date is Tamura 
Corp. [1], whose substrates remain extremely expensive. In fact, bulk Ga2O3 crystals are 
grown exclusively from-melt techniques, which in this case have a number of drawbacks. 
First of all, the temperature distribution in both the crystallization zone and the melt 
region is unstable due to the multifactorial nature of the process, which is difficult to 
model. One of these factors is the step-by-step dissociation of gallium oxide into lower 
oxides and ultimately into O2 and Ga, which is noticeable already at 1200 °C [2]. In 
addition, oxygen released during the decomposition of Ga2O3 deteriorates the growth 
zone equipment during chemical interaction, and free gallium forms an intermetallic 
compound with iridium. For this reason, the extremely expensive iridium used in the 
Czochralski process [3] (CZ) or Stepanov edge-defined film-fed growth (EFG) [4] 
techniques become a consumable. To fabricate epi-ready substrates, expensive bulk 
crystals must be subjected to post-growth processing (cutting, grinding, polishing), during 
which the material is underwent to mechanical and thermal effects. It has been 
experimentally established [5] that the structure of the subsurface layers of epi-ready 
substrates has a lower degree of crystal perfection than the bulk and contains defects, for 
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example, in the form of threading dislocations due to post-growth processing. In addition 
to being highly anisotropic material in its physical properties, gallium oxide suffers from 
low thermal conductivity that emerges for substrate thicknesses of 500 µm and more [4]. 
These are the thicknesses of the substrates cut from the grown ones (in the form of 
boules), which is limited by the cutting capabilities. Obviously, this limits the scope of 
application of the material in power electronic devices. 

Ground on this, an idea of development of bulk free-standing gallium oxide layers 
looks highly attractive. One of the most effective approaches from the collection of lift-
off techniques is the use of a sacrificial interlayer. The main challenge of this layer is to 
form a weakened interface to accomplish detachment.  There are number examples are 
known among such semiconductor materials as: GaAs [6,7], InP [8], GaN [9–23]. The 
majority of authors employ epitaxial growth to obtain the upper layer that will be 
subjected for exfoliation. The novel mist chemical-vapor-deposition is one of the few 
techniques that allows growth of the thick gallium oxide layers at high growth rates [24–
26]. This method is cost-effective and provides flexible doping schemes, precise layer 
thickness control and high crystal perfection. 

In this paper, we report the lift-off procedure by spalling (100) β-Ga2O3 
homoepitaxial layers grown by mist-CVD for the first time. A modified Ni film was used 
as a sacrificial interlayer. Fabrication of a such a Ni-droplet mask pursues two goals: to 
provide further growth process according epitaxial lateral overgrowth (ELOG) technique 
and to employ it as a sacrifice layer that weakens the following exfoliation spalling. 
 
Materials and Methods 

(100) oriented β-Ga2O3 plates were used as the host-substrates. Previously the cylindric 
boule was grown in our lab by Czochralski process (Cz). The setup and the process 
parameters can be found in our recent publications [27–30]. Since (100) is a gallium oxide 
perfect cleavage plane, blocks splitting occurs precisely along it. Thus, the boule was 
cleaved manually into close-to-rectangular plates measuring approximately to 2 × 1 cm2 
and 2 mm thick. The plates that had plane surfaces without chip outs were selected. It is 
known that (100) β-Ga2O3 surface inherent interlaced patchwork morphology with  
20–200 mm size regions that are highly smooth [27]. Therefore, such regions are adapted 
for epitaxial growth. 

Vacuum thermal evaporation (VTE) at VUP-2KU4.2 was applied to sputter Ni 
sacrifice layer prior to homoepitaxy process. The Ni foil (99.8 % purity) divided into 
0.0034 g portions per one sputtering process was used. The Ni portion weight was 
measured with a help of a Radwag WAS 220/C/2 analytical balance to provide Ni layer 
thickness of ~200 nm. The correspondence between film thickness and film weight was 
determined experimentally in advance. The evaporation process was performed at partial 
pressure of 10-5 Pa and a voltage of 60 V applied to the W-filament. To form self-ordered 
droplet-like island arrays, the subsequent thermal annealing was used. The improved 
Granat vacuum chamber was utilized. The annealing was performed at 1200 °С for 30 min 
in Ar ambient (at 2·104 Pa). The verification of the Ni layer thickness proceeded by 
registration the difference in the contrast of the grown layer from the base in the scanning 
electron microscope (SEM) on a scratch. It was mechanically applied to the sputtered 
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layer using a needle, the depth of which was registered by a microscope relative to the 
top surface of the layer. 

The epitaxial growth was developed on the (100) Ni/β-Ga2O3 substrate by the mist-
CVD technique. The home-made mist-CVD reactor employed a process based on 
acetylacetonate (acac). The growth temperature and duration were 950 °C and 3 h, 
correspondingly. The detailed process parameters can be found in our previous paper [31]. 

The thicknesses of the homoepitaxial layers were measured by defining a difference 
in weights (recalculated through the layer volume and β-Ga2O3 density) of the Ni/β-Ga2O3 
wafer and this sample (β-Ga2O3/Ni/β-Ga2O3) after growth. The Snoll 4/1300 muffle 
furnace was employed for sample annealing to weaken the Ni interface and impel 
epitaxial layer exfoliation. The annealing mode was set as 30 min at 700 °C on air. 
Directly for the exfoliation process the 3M Scotch double-sided tape was utilized. To get 
read of the rest of the Ni interlayer the sample was etched with HNO3 for 10 min  
at 30 °C [32]. The complete scheme of (100) β-Ga2O3 the lift-off is shown in Fig. 1. 

 

 
 

Fig. 1. The complete scheme of (100) β-Ga2O3 the lift-off 
 

The surface morphology of the grown gallium oxide layer was analyzed using a 
Phenom ProX SEM operating in secondary electron (SE) mode at 10 kV. Energy dispersive 
spectroscopy (EDS) implemented in SEM was applied for chemical characterization. The 
phase composition and the crystallinity of the homoepitaxial layers were analyzed by  
X-ray diffraction (XRD) at Bourevestnik DRON-7 setup utilizing equipped with Ge (111) 
monochromator crystal on doublet Cu Kα1,2 radiation, the wavelets 1.5406 Å (Kα1) and 
1.5444 Å (Kα2). 
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Results and Discussion 
The Ni sacrificial layer was sputtered on the (100) surface of the β-Ga2O3 substrate. The 
estimation ground on scratch measurement (see Fig. 2) gave a value of 230 nm which is 
very close to the experimental evaluation. 

At the next step the sample was annealed with an aim to form separate droplets. 
The surface contains Ni self-organized droplets of 0.5–1 µm in diameter is shown in 
Fig. 3(a). The chemical composition measured within a droplet region was Ga:Ni:O ≈ 
28:29:43 at. %, at the same time in the rest region the Ni concentration appeared to be 
as below 1 at. % and the chemical formula corresponded to trivalent gallium oxide. 

The surface of the sample upon mist-CVD epitaxy is depicted in Fig. 3(b). One can 
see, that it has relatively homogeneous morphology that consists of facetted crystals of 
various shapes with sizes of 1–2 µm. The thickness of the grown layer was estimated as 
4 µm by weighting based on the β-Ga2O3 density ρ = 5.95 g/cm3 [33]. 
 

  
Fig. 2. SEM plan-view image of the Ni 
layer with a scratch in green square 

Fig. 3. SEM plan-view images of the (100) β-Ga2O3 layer: after 
Ni sputtering and annealing (a) and after mist-CVD growth (b). 
The inset the (a) shows the average droplet size of 0.5–1 µm 

 

 
 

Fig. 4. XRD pattern and ω-scan (the inset) for the (100) β-Ga2O3 homoepitaxial layer 
 

The phase composition and the crystal perfection were estimated via θ-2θ curve 
and the ω-scan, respectively. Figure 4 illustrates a single-crystal structured homoepitaxial 
[100] oriented β-Ga2O3 layer. No additional peaks indicating the presence of other phases 
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or polycrystalline inclusions were detected. Perfection of the grown layer is confirmed by 
the successive series of even reflection orders from 400 up to 12 0 0 observed on the  
X-ray diffraction pattern obtained in the θ-2θ scanning mode (ICDD #00-041-1103).  
200 and 14 0 0 reflections are not registered since their intensities are very low 
themselves as it is shown by pattern modeling [34]. 

An ω-scan of the 400-peak shown in the inset demonstrated that the rocking curve 
peak can be effectively fitted via a Gaussian function with the FWHM (full-width-of-half 
maximum) of less than 3 arcmin. I.e., the crystallinity of the layer can be thus estimated 
as 2.88 arcmin (see inset of the Fig. 4) which is highly acceptable value for the epitaxial 
layer. The absence of additional peaks within the incident beam area of 0.1 × 1.0 mm2 
indicates the presence of a coherent β-Ga2O3 mosaic of high perfection for this field of 
study. 

Prior to lift-off process, the samples were undergoing annealing for initiating the 
exfoliating procedure. The exfoliation process was carried out using double-sided tape. 
The sample was glued to the tape with the epitaxial layer surface (see Fig. 5(a)). The 
substrate was then pulled upwards to peel off the epitaxial layer (see Fig. 5(b–d)). The 
most of epitaxial layers were successfully detached using this approach. 

 

 
 

Fig. 5. Exfoliation process: the sample glued to the tape with the epitaxial layer surface (a), the peeled off 
epitaxial layer (b), the same in reflected light (c), the same in transmitted light (d). The silhouette of the 

epitaxial layer is indicated by the frame. The scale of all images is the same 
 

  
 

Fig. 6. SEM plan-view images of  
the (100) β-Ga2O3 stand-alone layer  

with particularities. A zoomed region  
is depicted in the inset 

 
Fig. 7. SEM plan-view images of the (100) β-Ga2O3 stand-

alone layer upon etching. EDS measurements were 
registered in the box marked as “1”. The inset shows an 

energy spectrum contains Ga and O peaks only 
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SEM showed (see Fig. 6) that the contact surface of the exfoliated layer is suffered 
from uneven morphology, since it may include parts of the sacrificial Ni layer and 
fragments of gallium oxide itself which is capable of splitting along the cleavage plane. 
As soon as HNO3 at room temperature does not affect gallium oxide substrate (unless it 
is in the form of thin films), but able to dissolve Ni, it was utilized as the etchant.  

Upon etching the surface contained no particularities as well as no Ni has been 
found. This was approved by EDS measurements. The inset in Fig. 7 shows identification 
of Ga and O only while the white box indicates the scanning area. 

The diffraction pattern registered for the spalled layer is depicted in Fig. 8. It shows 
split (due to the doublet nature of the radiation) reflections 400, 600, 800, 12 0 0, and 
also 10 0 0, which has the form of a separate peak (probably from the Kα1 line) with a 
satellite of reduced intensity (which can be interpreted as a contribution from the Kα2 
component). Processing of the reflections set caused by the Kα1 radiation component 
yields the interplanar distance d200 (i.e. between adjacent (200) crystallographic planes) 
of about 11.865 Å. The similar value obtained on treating the reflections formed due to 
the Kα2 beam component turned out to be approximately 11.864 Å. The coherent-domain-
size (CDS) value happened to be about 170 nm in both cases with a microstrain of no 
more than 10–4. The set of the peaks in the range of ~ 13–28 deg. obviously belongs to 
tape material. Profile analysis of the ω-scan curve from the homoepitaxial β-Ga2O3 film 
of thickness 4 µm separated from a single-crystal substrate showed that its perfection 
(3.77 arcmin for the ω-scan curve FWHM) is close to the one of the unseparated layer 
(2.88 arcmin, see Fig. 4, the inset). Somewhat broadening and formation of symmetrical 
steps on both slopes of the ω-scan peak can be associated with its mechanical destruction 
in separating from the substrate. 
 

 
 

Fig. 8. XRD pattern and ω-scan (the inset) for the (100) β-Ga2O3 homoepitaxial layer after spalling 
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Conclusion 
The fabrication of free-standing homoepitaxial (100) β-Ga2O3 layer by spalling from the 
native host-substrate is developed. It includes: 200-nm-thick sacrificial Ni film sputtering 
by vacuum thermal evaporation; formation of nickel micron scale drop-like mask by high 
temperature annealing and homoepitaxial growth of 4-µm-thick layer by mist-CVD. The 
mechanical exfoliation itself was carried out with preliminary annealing. The exfoliated 
layer is characterized as a coherent β-Ga2O3 mosaic structure with high perfection. The 
measured value of the coherent-domain-size is about 170 nm with a microstrain of no 
more than 10–4. The full-width-of-a-half-maxima value is amounted as 3.77 arcmin, 
which is broadened compared to as-grown non-spalled layer (FWHM = 2.88 arcmin) 
presumably due to mechanically induced destruction. The exfoliated layers have smooth 
surface, and relatively high crystal quality. We propose that such approach is cost-
effective for production of high power devices based on gallium oxide single crystals. 
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