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ABSTRACT  
Advanced technological and engineering solutions involve usage of complex tribological systems. There is a 
demand for precise and computationally efficient methods to describe such systems. The aim of this study is to 
develop a computationally efficient method to solve the problem of deformation of a two-layer system using the 
Green's function molecular dynamics (GFMD) technique. We consider a viscoelastic layer attached to an elastic 
halfspace and derive a constitutive equation in Fourier space from the corresponding elastic solution. This third-
order equation is numerically integrated by the backward Euler method, and a quasi-static solution is found 
through the fast inertial relaxation engine (FIRE) optimization algorithm. The method is illustrated with a simple 
model of indentation by a rigid cylinder. Using this method, contact area and pressure were calculated as a 
function of time for various shear modulus values. 
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Introduction 

Tribology is one of the oldest sciences, yet even after the hundreds years of research it 

remains not completely understood. Tribology of viscoelastic materials is becoming more 

and more important as technology moves forward: there is a large class of new rubber-

like materials which have a wide range of innovative implementations in engineering, 

microelectronics, microbiology. Therefore, when modelling such systems, it is necessary 

to include an accurate description of the response of the viscoelastic material. The 

contact of a rigid rough surface with a viscoelastic halfspace was investigated in the work 

of Bugnicourt et al. [1]. In their work, the contact problem was numerically solved through 

a combination of the backward Euler method and conjugate gradient optimization. A 

viscoelastic model utilizing Green's function molecular dynamics (GFMD) and a semi-

analytical solution with improved accuracy instead of the backward Euler method was 

developed in [2] and applied to the quasi-static indentation and rolling of a rigid cylinder 

on a frictionless viscoelastic halfspace. GFMD [3] is a boundary element method based 

on the fast Fourier transform and molecular dynamics energy minimization that simulates 

the response of an elastic body to an external force. GFMD has been used in simulations 

of rough elastic contacts [4], bodies of finite height [5], atomistic systems [3], viscoelastic 
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halfspaces [6] and adhesive viscoelastic roughness contact [7]. Recently, GFMD was 

accelerated with the fast inertial relaxation engine (FIRE) algorithm, resulting in 

speedups of one order of magnitude [8]. 

Contact mechanics models are used in many applications [9–11]. Sometimes 

contact mechanical systems can be represented by semi-infinite bodies. That, however, 

is not always the case [12]. There are systems that require a consideration of the layer's 

thickness, such as power transmission belts [13], seismic energy dissipation systems [14], 

electroadhesive devices [15], multi-layer structure [16], biomedical applications [17], 

coatings etc. In these situations, one should take into consideration the surface layer on 

top of the main half-space [18]. With further modification that concept can be used in 

investigation of adhesion of viscoelastic polymers depending on various factors, such as 

temperature, environment [19], blending [20] or molecular cross-linking density [21]. 

In this work we study the indentation of a viscoelastic layer of finite thickness 

bonded to an elastic halfspace. The paper is organized as following. In section "Methods", 

a constitutive equation is derived, following which, the methodology to obtain a 

numerical solution is explained. In section "Result and Discussion", using the newly 

developed model, the results for the indentation of a cylindrical punch onto a viscoelastic 

material are shown and discussed. 

 

Methods 

Consider a viscoelastic layer with stress σ and strain ε. Let s = σ – (1/3) tr(σ) I be the stress 

deviator, and let e = ε – (1/3) tr(ε) I be the strain deviator. Assume that viscoelasticity of 

the layer is described by the following equation [22]: 

𝑠(𝑡) = ∫ 𝐺(𝑡 − 𝑡′)�̇�(𝑡′)d𝑡′
𝑡

−∞
,            (1) 

where t is the time and G(t) is the time-dependent shear modulus. The complex shear 

modulus G(ω) is then defined by 

𝐺(𝜔) = 𝑖𝜔 ∫ 𝐺(𝑡)𝑒−𝑖𝜔𝑡d𝑡′
∞

0
,  (2) 

so that 

𝑠(𝜔) = 2𝐺(𝜔)𝑒(𝜔),  (3) 

where s(ω) = ∫e–iωt s(t) dt, e(ω) = ∫e–iωt e(t) dt, and ω is the angular frequency. 

The complex shear modulus in the Zener model [22] is given by 

𝐺(𝜔) = (𝐺0 + 𝑖𝜔𝜏𝐺∞) × (1 + 𝑖𝜔𝜏)
−1

,  (4) 

where τ is the relaxation time, 𝐺0 = 𝑙𝑖𝑚
𝜔→0

𝐺(𝜔) is the low-frequency shear modulus, and 

𝐺∞ = 𝑙𝑖𝑚
𝜔→∞

𝐺(𝜔) is the high-frequency shear modulus. The time-dependent shear modulus 

takes the form: 

𝐺(𝑡) = 𝐺0 + (𝐺∞ − 𝐺0)𝑒−𝑡/𝜏.  (5) 

Substituting Eq. (4) in Eq. (3) and applying an inverse Fourier transform, we obtain: 

𝑠(𝑡) + 𝜏 �̇�(𝑡) = 2𝐺0𝑒(𝑡) + 2𝜏𝐺∞�̇�(𝑡).  (6) 

For an elastic halfspace with shear modulus G and Poisson ratio ν the relation 

between normal surface stress σ(x) and normal surface displacement u(x) is [23]: 

𝑢(𝑥) = −
1−𝜈

2𝜋𝐺
∫

𝜎(𝑥′)

|𝑥−𝑥′|
𝑑𝒙′.  (7) 
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After taking the Fourier transform, we can write: 

𝑢(𝑞) = 𝑀(𝑞)𝜎(𝑞),  (8) 

where u(q) = ∫u(x) e–ix·q dx, σ(q) = ∫σ(x) e–ix·q dx, q is the wavevector, q = |q|, and 

𝑀(𝑞) = −
1−𝜈

𝐺𝑞
.  (9) 

Consider an elastic layer of thickness d with shear modulus G and Poisson ratio ν 

attached to an elastic halfspace with shear modulus Gbulk and Poisson ratio νbulk. Equation (9) 

becomes (see [24]): 

𝑀(𝑞) = −
1−𝜈

𝐺𝑞
𝑆(𝑞),  (10) 

where 

𝑆(𝑞) =
1+4𝑚𝑞𝑑𝑒−2𝑞𝑑−𝑚𝑛𝑒−4𝑞𝑑

1−(𝑚+𝑛+4𝑚𝑞2𝑑2)𝑒−2𝑞𝑑+𝑚𝑛𝑒−4𝑞𝑑
,  (11) 

where 

𝑚 = (𝐺/𝐺bulk − 1) × (𝐺/𝐺bulk + 3 − 4𝜈)−1,  (12a) 

𝑛 = 1 −
4(1−𝜈)

1+(𝐺/𝐺bulk)(3−4𝜈bulk)
.  (12b) 

In the limiting case where the halfspace is rigid (Gbulk = ∞), Eq. (11) reduces to: 

𝑆(𝑞) =
(3−4𝜈0) 𝑠𝑖𝑛ℎ(2𝑞𝑑)−2𝑞𝑑

(3−4𝜈0) 𝑐𝑜𝑠ℎ(2𝑞𝑑)+2(𝑞𝑑)2−4𝜈0(3−2𝜈0)+5
,  (13) 

while for a free layer (Gbulk = 0), Eq. (11) reduces to: 

𝑆(𝑞) =
𝑠𝑖𝑛ℎ(2𝑞𝑑)+2𝑞𝑑

𝑐𝑜𝑠ℎ(2𝑞𝑑)−2(𝑞𝑑)2−1
.  (14) 

Assume the layered solid is incompressible. Then ν = νbulk = 0.5 and Eq. (12) simplify to: 

𝑚 = 𝑛 = (𝐺 − 𝐺bulk)/(𝐺 + 𝐺bulk).  (15) 

Due to the elastic-viscoelastic correspondence principle, a solution to our 

viscoelastic problem can be derived from the elastic solution by replacing G with the 

complex shear modulus G(ω). Substituting Eq. (4) in Eq. (15) gives: 

𝑛 =
(𝐺0+𝑖𝜔𝜏𝐺∞)/(1+𝑖𝜔𝜏)−𝐺bulk

(𝐺0+𝑖𝜔𝜏𝐺∞)/(1+𝑖𝜔𝜏)+𝐺bulk
=

(𝐺0/𝐺bulk−1)+𝑖𝜔𝜏(𝐺∞/𝐺bulk−1)

(𝐺0/𝐺bulk+1)+𝑖𝜔𝜏(𝐺∞/𝐺bulk+1)
=

𝑎0+𝑠𝑎1

𝑎2+𝑠𝑎3
, (16) 

where 

𝑠 = 𝑖𝜔𝜏,  (17a) 

𝑎0 = 𝐺0/𝐺bulk − 1,  (17b) 

𝑎1 = 𝐺∞/𝐺bulk − 1,  (17c) 

𝑎2 = 𝐺0/𝐺bulk + 1,  (17d) 

𝑎3 = 𝐺∞/𝐺bulk + 1.  (17e) 

We define: 

𝑟 = 𝑒−2𝑞𝑑,  (18a) 

𝑏0 = −2(1 + 2(𝑞𝑑)2),  (18b) 

𝑏1 = 4𝑞𝑑,  (18c) 

and write Eq. (11) as: 

𝑆(𝑞) =
1+4𝑛𝑞𝑑𝑒−2𝑞𝑑−(𝑛𝑒−2𝑞𝑑)

2

1−(2𝑛+4𝑛(𝑞𝑑)2)𝑒−2𝑞𝑑+(𝑛𝑒−2𝑞𝑑)
2 =

1+𝑏1𝑛𝑟−(𝑛𝑟)2

1+𝑏0𝑛𝑟+(𝑛𝑟)2. (19) 

Substituting Eq. (16) gives: 

𝑆(𝑞, 𝜔) =
1+𝑏1((𝑎0+𝑠𝑎1)/(𝑎2+𝑠𝑎3))𝑟−(((𝑎0+𝑠𝑎1)/(𝑎2+𝑠𝑎3))𝑟)

2

1+𝑏0((𝑎0+𝑠𝑎1)/(𝑎2+𝑠𝑎3))𝑟+(((𝑎0+𝑠𝑎1)/(𝑎2+𝑠𝑎3))𝑟)
2 =

(𝑎2+𝑠𝑎3)2+𝑏1(𝑎0+𝑠𝑎1)(𝑎2+𝑠𝑎3)𝑟−((𝑎0+𝑠𝑎1)𝑟)
2

(𝑎2+𝑠𝑎3)2+𝑏0(𝑎0+𝑠𝑎1)(𝑎2+𝑠𝑎3)𝑟+((𝑎0+𝑠𝑎1)𝑟)
2 =

𝑐1,1+𝑐2,1𝑠+𝑐3,1𝑠2

𝑐1,0+𝑐2,0𝑠+𝑐3,0𝑠2
, 

(20) 
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where 

𝑐0,𝑘 = 0,  (21a) 

𝑐1,𝑘 = 𝑎2
2 + 𝑎0𝑎2𝑏𝑘𝑟 + (−1)𝑘𝑎0

2𝑟2,  (21b) 

𝑐2,𝑘 = 2𝑎2𝑎3 + (𝑎1𝑎2 + 𝑎0𝑎3)𝑏𝑘𝑟 + (−1)𝑘2𝑎0𝑎1𝑟2, (21c) 

𝑐3,𝑘 = 𝑎3
2 + 𝑎1𝑎3𝑏𝑘𝑟 + (−1)𝑘𝑎1

2𝑟2,  (21d) 

𝑐4,𝑘 = 0.  (21e) 

For k = 0, 1. Using Eqs. (4), (9), and (20) gives: 

𝑀(𝑞, 𝜔) = −
𝑆(𝑞,𝜔)

2𝐺(𝜔)𝑞
= −

1

2𝑞

1+𝑠

𝐺0+𝑠𝐺∞

𝑐1,1+𝑐2,1𝑠+𝑐3,1𝑠2

𝑐1,0+𝑐2,0𝑠+𝑐3,0𝑠2 =

−
1

2𝑞

𝑐1,1+(𝑐1,1+𝑐2,1)𝑠+(𝑐2,1+𝑐3,1)𝑠2+𝑐3,1𝑠3

𝐺0𝑐1,0+(𝐺0𝑐2,0+𝐺∞𝑐1,0)𝑠+(𝐺0𝑐3,0+𝐺∞𝑐2,0)𝑠2+𝐺∞𝑐3,0𝑠3. 
(22) 

Substituting this in Eq. (8), we have: 

∑ (𝑐𝑘+1,1 + 𝑐𝑘,1)𝑠𝑘𝜎(𝑞, 𝜔)3
𝑘=0 = −2𝑞 ∑ (𝑐𝑘+1, 0 𝐺0 + 𝑐𝑘, 0 𝐺∞)𝑠𝑘𝑢(𝑞, 𝜔)3

𝑘=0 .               (23) 

An inverse Fourier transform is applied to obtain the constitutive equation: 

∑ (𝑐𝑘+1,1 + 𝑐𝑘,1)𝜏𝑘𝜕𝑡
𝑘𝜎(𝑞, 𝑡)3

𝑘=0 = −2𝑞 ∑ (𝑐𝑘+1, 0 𝐺0 + 𝑐𝑘, 0 𝐺∞)𝜏𝑘𝜕𝑡
𝑘𝑢(𝑞, 𝑡)3

𝑘=0 .                 (24) 

Consider the limiting case where the elastic halfspace is infinitely rigid, i.e., 

Gbulk = ∞. Then –a0 = –a1 = a2 = a3 = 1 and: 

1 − 𝑏𝑘𝑟 + (−1)𝑘𝑟2 = 𝑐1,𝑘 = 𝑐2,𝑘/2 = 𝑐3,𝑘.  (25) 

For k = 0, 1 so that the left-hand side operator of Eq. (24) is: 

∑ (𝑐𝑘+1,1 + 𝑐𝑘,1)(𝜏𝜕𝑡)𝑘 = 𝑐1,1 + (𝑐1,1 + 𝑐2,1)(𝜏𝜕𝑡)3
𝑘=0 + (𝑐2,1 + 𝑐3,1)(𝜏𝜕𝑡)2 +

𝑐3,1(𝜏𝜕𝑡)3 = (1 − 𝑏1𝑟 − 𝑟2)(1 + 3(𝜏𝜕𝑡) + 3(𝜏𝜕𝑡)2 + (𝜏𝜕𝑡)3) = (1 − 𝑏1𝑟 −

𝑟2)(1 + 𝜏𝜕𝑡)3, 

(26) 

while the right-hand side operator is: 

−2𝑞 ∑ (𝑐𝑘+1, 0 𝐺0 + 𝑐𝑘, 0 𝐺∞)3
𝑘=0 (𝜏𝜕𝑡)𝑘 = −2𝑞(1 − 𝑏0𝑟 + 𝑟2)(𝐺0 +

(2𝐺0 + 𝐺∞)(𝜏𝜕𝑡) + (𝐺0 + 2𝐺∞)(𝜏𝜕𝑡)2 + 𝐺∞(𝜏𝜕𝑡)3) = −2𝑞(1 − 𝑏0𝑟 + 𝑟2)(𝐺0 +
𝐺∞𝜏𝜕𝑡)(1 + 𝜏𝜕𝑡)2. 

(27) 

After removing the common factor (1 + τ∂t)2, we get the equation: 

𝜎(𝑞, 𝑡) + 𝜏�̇�(𝑞, 𝑡) = −2𝑞
1−𝑏0𝑟+𝑟2

1−𝑏1𝑟−𝑟2 (𝐺0𝑢(𝑞, 𝑡) + 𝐺∞𝜏�̇�(𝑞, 𝑡)). (28) 

If the viscoelastic layer is infinitely thick, i.e., d = ∞, then Eq. (28) reduces to: 

𝜎(𝑞, 𝑡) + 𝜏�̇�(𝑞, 𝑡) = −2𝑞(𝐺0𝑢(𝑞, 𝑡) + 𝐺∞𝜏�̇�(𝑞, 𝑡)), (29) 

which was obtained and integrated semi-analytically by van Dokkum et al. [2]. Note that 

the same semi-analytical integration scheme may be used to solve Eq. (28). 

Assume the layered solid is indented by rigid punch with a trajectory h(x,t). The time is 

discretized into time points 0, Δt, 2Δt,… and the surface of the layered solid u(x,t) is 

discretized with n grid points x0, x1, …, xn-1. Overlap of the punch and the layered solid is not 

allowed (u(xj,t) ≤ h(xj,t)). Also, it is assumed that at the bottom of the elastic solid being 

approximated by the elastic halfspace the displacements are fixed at zero. Then, since the 

layered solid is incompressible, the mean surface displacement is zero (∑ 𝑢(𝑥𝑗 , 𝑡) = 0𝑛−1
𝑗=0 ). 

To numerically solve Eq. (24) for σ the 𝜕𝑡
𝑘𝑢 are approximated with finite differences 

and used to compute the input to the backward Euler method. An alternative might be to 

solve Eq. (24) semi-analytically [25] for improved convergence properties. The 

equilibrium displacement field at a given time is found by solving an energy minimization 

problem via FIRE-based GFMD [8]. 
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If u(q,t – 4Δt), u(q,t – 3Δt), u(q,t – 2Δt), and u(q,t – Δt) have been found, then σ(q,t) 

can be shown to be a linear function of u(q,t). Thus, the slopes and the intercepts of the 

linear functions may be precomputed before the minimization. (Note that the 

displacements could be shifted to eliminate the intercepts.) 

The fast Fourier transform and its inverse are denoted by FFT and IFFT. The 

pseudocode is as follows: 

0 set up the trajectory of the punch h(t) 

1 set displacements u(t) to zero for t < 0 

2 t ← 0 

3 be_solver ← (backward Euler solver of (24) for σ) 

4 while true 

5 a ← (slopes of σ from be_solver) 

6 b ← (intercepts of σ from be_solver) 

7 use FIRE-based GFMD to find u(t) such that the energy corresponding to the force 

IFFT (a ʘ FFT(u(t)) + b) is minimal subject to ( )
1

0
, 0

−

=
=

n

jj
txu  and u(t) ≤ h(t), where 

ʘ is elementwise product 

8 rhs ← (new values of the right-hand side of (24) computed from u(t – 3Δt), 

u(t – 2Δt), u(t – Δt), u(t) using finite differences) 

9 update be_solver with rhs 

10 t ← t + Δt 

 

Results and Discussion 

We consider indentation by a rigid punch in two dimensions. The punch is periodic in the 

x direction with period L and its trajectory is defined by: 

ℎ(𝑥, 𝑡) =
𝑅

2
(

𝑥

𝑅
)

2

+
−ℎ0𝐿

𝜏
⋅ {

0, for 𝑡 < 0
𝑡, for  0 ≤ 𝑡 < 𝜏
𝜏, for 𝑡 ≥ 𝜏

,  (30) 

for –1/2 ≤ x/L ≤ 1/2, where h0L is the maximum indentation depth and R is the radius of 

curvature at x = 0. A schematic of the system is shown in Fig. 1. The relative contact area is 

defined as ã = a/L, and the dimensionless pressure is defined as p̃ = p̄(2G0), where p̄ is the 

mean normal contact stress. The numerical results are obtained for Gbulk/G0 = 1, G∞/G0 = 10, 

n = 214 = 16384, h0 = 0.01, R/L = 0.25, d/L = 0.05, and Δt/τ = 0.005 unless specified 

otherwise. Figure 2 shows p̃ and ã for Gbulk = G∞ and d/L = 0, 1/32, 1/16, 1/8, 1/4, ∞. 

The relative contact area and the dimensionless pressure as functions of time for 

G∞ = Gbulk and d/L = 0, 1/32, 1/16, 1/8, 1/4, ∞ are presented in Figs. 2. At time t ≈ 0 the 

responses are approximately the same. This is because the coating is responding with the 

high-frequency modulus G∞ = Gbulk and the whole layered solid is behaving like a purely 

elastic halfspace with G = Gbulk regardless of thickness d. As the coating thickness d/L is 

varied from 0 to ∞, the relative contact area curve rises until d/L = 1/16 and then returns 

to the initial values. As we can see, the contact area curve is the same for d = 0 and d = ∞. 

At d = 0 the system is purely elastic, hence the contact area and pressure become constant 

when the punch stops at t = τ. The constantness of contact area at the hold for d = ∞ is 

in accordance with the simulations by van Dokkum [5]. That 𝑙𝑖𝑚
𝑡→∞

�̃�(𝑡) must be the same 

for d = 0 and d = ∞ follows from the corresponding elastic energy functions being equal 
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up to a positive constant factor. In Figure 3, the contact area and the pressure for varying 

hardness of the bulk layer are presented. As the bulk becomes harder, the values of the 

contact area curve increase up to infinite rigidity, at which point the contact area is 

constant at the hold. In Figure 4, the contact area and the pressure for 

G∞/G0 = 2, 3, 5, 9, 17 are presented. As G∞ increases, the contact area curve goes down, 

while the pressure curve goes up. When t → ∞, the curves approach the same response 

of an elastic halfspace with G = G0 =Gbulk. 

 

 
 

Fig. 1. Schematic of a rigid punch indenting a viscoelastically layered solid 

 

  
 

Fig. 2. The relative contact area ã (a) and the dimensionless pressure p ̃ (b) as a function of the 

dimensionless time t/τ for G∞ = Gbulk and d/L =0, 1/32, 1/16, 1/8, 1/4, ∞ 

 

a b 
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Fig. 3. The relative contact area ã (a) and the dimensionless pressure p ̃ (b) as a function of the 

dimensionless time t/τ for Gbulk/G0 = 4, 16, 64, 256, ∞ 

 

 
 

Fig. 4. The relative contact area ã (a) and the dimensionless pressure p ̃ (b) as a function of the 

dimensionless time t/τ for G∞/G0 = 2, 3, 5, 9, 17 

 

Conclusions 

There is a demand for computationally efficient methods to model tribological systems. 

We formulate and implement a GFMD technique to compute the response of a viscoelastic 

layer of finite thickness bonded to an elastic half-space. We derive a constitutive equation 

and solve it numerically using the backward Euler method. A quasi-static solution is found 

using the FIRE optimization algorithm. The developed method is applied to model 

indentation by a rigid punch. 

The model described in the article can be used in a number of cases, for instance, 

electroadhesive devices, multi-layer structures, coating, and etc. Moreover, as a future 

development, this computational model can be extended with adhesion forces, more 

precise (higher orders) of viscoelastic material allowing to simulate broader range of cases. 
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