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Abstract. Solving the problem of large elastic-plastic deformation theory, the present paper 

addresses, involved two stages. We first derive the exact solution to the problem of slow strain 

growth in a cylindrical layer consisting of an incompressible elastic/viscoplastic material and 

experiencing viscometric motion subject to no-slip contact between the material and the rigid 

instrument's walls. Then a striking stick-slip transition at one of the material-instrument 

interfaces poses the problem of unloading dynamics. Stress jump at the boundary surface causes 

a shear cylindrical unloading shock wave, which advances into the material and interacts with 

the elastic-plastic boundary separating viscoplastic flow from reversible deformation region. 

To solve this dynamic problem the ray method for constructing approximate solutions is 

adjusted to the case of elastic/viscoplastic material. 
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Introduction 

The dynamics of solids under impulse or shock loading remains one of the primary concerns of 

modern mechanics and mathematical physics. Such problems arise when dealing with issues of 

ensuring the reliability of critical units in mechanisms and machines, upon improving 

technology for processing materials and manufacturing products, in nonlinear acoustics and 

acoustic diagnostics, in seismology and seismic exploration. Unsteady impact on the boundaries 

of deformable bodies causes the propagation of velocity (shock waves) or acceleration (weak 

waves) discontinuities through the material. They are generally induced by discontinuous initial 

and boundary conditions; although, a weak wave may terminate into a shock one [1,2] due to 

the unbounded growth of its strength [3,4]. This phenomenon is essentially nonlinear [5], as 

also is the dependence of wave velocities on the preliminary strains [6] and shock wave 

velocities on the amplitude of discontinuities [7-9]. 

Originally, these and other nonlinear phenomena used to be observed in gas dynamics, 

which, unlike dynamics of solids, was developed as a nonlinear theory. The situation is more 

complicated for solids because they exhibit both volumes (as in gas dynamics) and shape-
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changing strains. Volume and shape-changing deformations propagate independently only in 

the scope of linear elasticity, but they are coupled in the nonlinear case. Sometimes, in order to 

focus on the aspects of propagating shear strains solely, the material is assumed to be 

incompressible [10-12]. Herein, we introduce this simplifying constraint too. 

When the plastic properties of material should be taken into account along with elastic 

ones, the problem is getting more challenging. J. Mandel [13] noted that in the context of the 

Prandtl-Reuss elastoplastic flow model [14] shock waves cannot be uniquely described by a 

closed system of equations in terms of discontinuities. To avoid this uncertainty, the auxiliary 

thermodynamic hypothesis on the maximum mechanical energy dissipation on the surfaces 

across which plastic strains are discontinuous had to be introduced [15,16]. With this hypothesis 

accepted and small deformations assumed, the first simplest problems of the perfect 

elastoplasticity [17-20] were solved; algorithms and programs for numerical calculations were 

developed [21-25]. Among the latter, finite-difference, characteristics, and finite-element 

calculation methods evolved. But in all cases, the main challenge in calculating the deformation 

dynamics was associated with discontinuity surfaces traveling through a deformable body, 

especially the surfaces of velocity discontinuities. 

In gas dynamics [3], special shock-fitting algorithms were developed to calculate the 

location and the amplitude of discontinuities. They typically constitute a two-step scheme of 

predictor-corrector type relying on the solution of the discontinuity decomposition problem at 

the intermediate step. In solid dynamics, due to interacting processes of shear and volumetric 

strain propagation, the problem of the decomposition of a combined discontinuity is hardly ever 

tractable [17,20]; therefore, various modifications of shock-capturing methods are employed 

[22]. Nevertheless, it is worth remarking that discontinuities in solids can be fitted by the 

methods based on integral generalizations of variational inequalities [21] and the methods for 

embedding near-front asymptotics into finite-difference schemes [26-28]. Asymptotic 

expansions of solutions behind discontinuity surfaces are constructed either using the 

perturbation method [29] or the ray method [27]. By so doing, the location of discontinuities 

and their amplitudes are corrected at each time step of calculations. 

The method for constructing approximate solutions of essentially unsteady dynamic 

problems in the form of near-front expansions was proposed in papers [30] and [31], in which 

it was termed the ray method. Achenbach and Reddy [30] constructed an approximate solution 

as a power series with respect to time, while Babicheva et al. [31] did so with respect to the ray 

coordinate. Obeying compatibility conditions for discontinuities [15,32-34] one can recurrently 

deduce ordinary differential equations (decay equations) for coefficients of these power series. 

The recurrence is violated only if the velocity of the discontinuity surface depends on the 

variable amplitude of discontinuity, i.e., for shock waves in the nonlinear media. Peculiarities 

of the ray method employment and approximate solutions obtained by means of it were 

reviewed in [35]. Burenin et. al. [36-38] tailored the method of ray expansions for constructing 

solutions behind shock wave fronts. In the present paper, we use the ray method in the dynamics 

of large elastic/viscoplastic deformations [39,40] to construct a ray expansion of a solution 

behind the front of the unloading shock wave. 

Dynamics of elastic/viscoplastic medium unloading was studied in [41-43], where 

authors obtained the exact solutions of the problems on instantaneous unloading of a material 

that had undergone large elastic/viscoplastic strains under quasistatic deforming prior to that. 

The interaction of the unloading shock wave with the moving elastic-plastic boundary was 

investigated. The success in solving these problems was gained by applying the theory of large 

elastic-plastic deformations [44,45], in which reversible and irreversible strains were specified 

by differential equations of their change (transfer). The foundations of the mathematical model 

for this theory [44,45] were proposed in [46,47]. The content of [44], thus, constitutes analytical 

and numerical-analytical solutions of boundary-value problems of the large strain theory just 
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mentioned along with a detailed description of the way to obtaining model relations. Herein, 

we also solve the boundary-value problem in the context of the theory [44], but our concern is 

constructing an approximate solution behind the front of the unloading shock wave by means 

of the ray expansions. 

We should stress that allowing for the viscous resistance to plastic flow has even 

facilitated deriving exact solutions [42,43]. Herein, we also take it into account when 

constructing the ray expansion. Such a simplification is associated with the fact that, due to the 

viscosity of the material under plastic flow, irreversible deformations are continuous across the 

surfaces of velocity discontinuities. This leads to the effect that, in contrast to the elastic-plastic 

medium [16,21], the elastic/viscoplastic one cannot transmit discontinuity surfaces other than 

those moving with elastic wave velocities [48-50]. 

Reversible and irreversible deformations are interdependent in the course of deforming. 

Therefore, the initial stress-strain state cannot be prescribed arbitrarily [42-44] when posing 

unloading problems. It must be a result of the preliminary loading process. So, any problem of 

unloading a deformable body that has accumulated large strains must be preceded by solving 

the problem on the loading of this body providing data on the resulting distribution of reversible 

and irreversible strains over the body. Such a loading problem can be a quasistatic one, in which 

inertia forces can be neglected due to the slow process of active deformation. It is precisely 

such a loading process that we consider here. 

 
Mathematical model of elastic/viscoplastic material 

Flow plasticity theory demands decomposing strains in a body into reversible and irreversible 

parts, which, unlike total strains, are not measurable experimentally. Therefore, introducing 

them into the theory is hypothetical. However, they are highly important for the theory as they 

are thermodynamic parameters of state for a deformable body. According to the concept of 

constructing the thermodynamics of processes, it is reversible and irreversible strains that one 

should formulate differential equations of their change (transfer) for [44,45,51]. These 

equations may serve as a definition for the parts of deformation or accompany such parameters 

of state if the latter is defined out of other considerations. It only matters while doing so that 

the relations formulated are geometrically consistent. 

When deformations are small, the problem of constructing equations of total deformation 

transfer does not arise because its solution is obvious. In the case of large deformations, [52,53] 

such a problem is most often reduced to "choosing" the objective derivative of the 

hypothetically constructed tensor of plastic strains. 

For the present study, we adopt the mathematical model proposed in [46,47] and 

thoroughly discussed in [44,45]. Equations of change in the tensors of reversible 𝒆 and 

irreversible 𝒑 strains can be written in the form [44,45] 
𝐷𝒆

𝐷𝑡
= 𝜺 − 𝜺𝒑 −

1

2
((𝜺 − 𝜺𝒑 + 𝒛) ∙ 𝒆 + 𝒆 ∙ (𝜺 − 𝜺𝒑 − 𝒛)), (1) 

𝐷𝒑

𝐷𝑡
= 𝜺𝒑 − 𝒑 ∙ 𝜺𝒑 − 𝜺𝑝 ∙ 𝒑, (2) 

where 
𝐷𝒏

𝐷𝑡
=

𝑑𝒏

𝑑𝑡
− 𝒓 ∙ 𝒏 − 𝒏 ∙ 𝒓𝑻, 𝜺 =

1

2
(𝛻𝒗 + 𝛻𝑇𝒗), 𝝎 =

1

2
(𝛻𝒗 − 𝛻𝑇𝒗), 

𝒗 =
𝑑𝒖

𝑑𝑡
=

𝜕𝒖

𝜕𝑡
+ 𝒗𝛻𝒖, 𝒓 = 𝝎 + 𝒛, 

𝒛 = 𝐴−1{𝐵2(𝜺 ∙ 𝒆 − 𝒆 ∙ 𝜺) + 𝐵(𝜺 ∙ 𝒆2 − 𝒆2 ∙ 𝜺) + 𝒆 ∙ 𝜺 ∙ 𝒆2 − 𝒆2 ∙ 𝜺 ∙ 𝒆}, 

𝐴 = 8 − 8𝐸1 − 3𝐸1
2 − 𝐸2 −

𝐸1
3

3
+

𝐸3

3
,    𝐵 = 2 − 𝐸1, 

𝐸1 = 𝑡𝑟(𝒆), 𝐸2 = 𝒆 ∙∙ 𝒆,           𝐸3 = 𝒆2 ∙∙ 𝒆.  
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In the transfer equations for reversible (1) and irreversible (2) strains, 𝒖 and 𝒗 are the 

displacement and the velocity vectors respectively. The terms (𝜺 − 𝜺𝑝) and 𝜺𝑝 in the right parts 

of equations (1)-(2) are the sources of strains. The remaining terms in the right parts are the flux 

terms. They define the interdependence of the thermodynamic parameters 𝒆 and 𝒑 in the course 

of their change. The geometrical consistency of this interdependence requires the definite 

objective time derivative in (1) and (2). The form of this derivative is indicated for an arbitrary 

tensor 𝒏. If the nonlinear part 𝒛 of the tensor 𝒓 is null, the objective derivative 𝐷/𝐷𝑡 in (1) and 

(2) becomes the Jaumann derivative [44,45]. 

The sources in transfer equations (1) and (2) define the growth of reversible 𝒆 and 

irreversible 𝒑 strains and must be related to the reasons for this growth by governing laws. 

According to (2), there is a possibility for the deformation process with 𝜺𝑝 = 0, when 

𝐷𝒑/𝐷𝑡 =  0. In this case, the tensor of irreversible strains is invariable, but its components 

change as if the body would move without getting deformed. Dependencies (1) and (2) endow 

the regions of preliminary reversible (elastic) deformation 𝒑 = 0 and the unloading regions 

𝒑 = 𝑐𝑜𝑛𝑠𝑡 ≠ 0 with this property. 

Recalling (1) and (2), the Almansi tensor of total strains 𝒅 is defined as follows [44,45,47] 

𝒅 = 𝒆 + 𝒑 −
1

2
𝒆 ∙ 𝒆 − 𝒆 ∙ 𝒑 − 𝒑 ∙ 𝒆 + 𝒆 ∙ 𝒑 ∙ 𝒆. (3) 

Reasoning from (3), rather it is the tensor 𝒔 = 𝒆 − 𝒆 ⋅ 𝒆/2 that should have been referred 

to as a tensor of reversible (elastic) strains, in which the tensor 𝒆 is a main linear part. The 

tensor 𝒆 is the one of small elastic strains; it turned out to be convenient for writing transfer 

equations (1) and (2) by means of it. It also proved to be more useful when writing a counterpart 

of the Murnaghan formula [44,45,54] in the case of perfect elastoplasticity under study. This 

formula for the case of an incompressible medium considered below reads [44,45] 

𝝈 = −𝑝1𝑰 −
𝜕𝑊

𝜕𝒅
(𝑰 − 2𝒅) 𝑖𝑓 𝒑 = 0, (4) 

𝝈 = −𝑝2𝑰 −
𝜕𝑊

𝜕𝒆
(𝑰 − 𝒆) 𝑖𝑓 𝒑 ≠ 0. 

In (4), 𝝈 is the Euler-Cauchy stress tensor, 𝑝1 and 𝑝2 are the additional hydrostatic 

pressures, 𝑰 is the second-order unit tensor, 𝑊 = 𝑊(𝐽1, 𝐽2) is the elastic potential (free energy 

density in the isothermal case). For proceeding calculations, we designate 𝑊 = 𝑊(𝐽1, 𝐽2) as 

follows 

𝑊 = −2𝜇𝐽1 − 𝜇𝐽2 + 𝑏𝐽1
2 + (𝑏 − 𝜇)𝐽1𝐽2 − 𝜒𝐽1

3 + ⋯, (5) 

𝐽𝑘 = {
𝐿𝑘   𝑖𝑓 𝒑 ≡ 0
𝐼𝑘 𝑖𝑓 𝒑 ≠ 0

,   𝑘 = 1,2, 

𝐿1 = 𝑡𝑟(𝒅),          𝐿2 = 𝒅 ∙∙ 𝒅, 𝐼1 = 𝑡𝑟(𝒆) −
1

2
𝒆 ∙∙ 𝒆,  𝐼2 = 𝒆 ∙∙ 𝒆 − 𝒆2 ∙∙ 𝒆 +

1

4
𝒆2 ∙∙ 𝒆2. 

In (5), 𝜇 is the shear modulus; 𝑏 and 𝜒 are the higher-order elastic moduli. The invariants 

𝐼1 and 𝐼2 of the reversible strain tensor are specified in such a way as to ensure the limiting 

transition from the second formula in (4) to the first one as the plastic strains tend to zero. 

The relation (2) allows deforming without the growth of irreversible strains, i.e. elastic 

deforming. We remark that this assumption idealizes the deformable material. This is 

achievable only in the scope of perfect elastoplasticity. The real body possesses viscosity, so 

upon imposing stress it acquires unrecoverable strains due to the creeping onset. However, 

differential equation (2) does not contradict this either. Ignoring this phenomenon, we further 

assume the deformable material to be perfectly elastic-plastic [14]. In such a material, 

irreversible (plastic) strains begin going up when the stresses reach the loading surface 

𝑓(𝝈, 𝜺𝑝, 𝑘) = 0. As a loading surface, we take the unified condition of maximum tangential 

stresses [14] 

𝑓(𝜎𝑖 , 휀𝑘
𝑝, 𝑘) = 𝑚𝑎𝑥|𝜎𝑖 − 𝜎𝑗| − 2𝑘 − 2휂𝑚𝑎𝑥|휀𝑘

𝑝|. (6) 



72   A.A. Burenin, E.A. Gerasimenko, L.V. Kovtanyuk 

In (6), 𝜎𝑖 and 휀𝑘
𝑝

 are the principal values of the stress and the strain rate tensors 

respectively, 𝑘 is the yield stress, and 휂 is the coefficient of viscous resistance to plastic flow. 

Imposing the condition of the von Mises maximum principle [14], we have the associated law 

of plastic flow 

𝜺𝒑 = 𝜆
𝜕𝑓

𝜕𝝈
,  𝜆 > 0. (7) 

In order to get the closed system of equations both in the region of elastic deformation 

and in the region of plastic flow it suffices to complete the preceding relations with the equation 

of motion or the balance equation 

∇ ∙ 𝝈 = 𝜌
𝑑𝒗

𝑑𝑡
, (8) 

∇ ∙ 𝝈 = 0 . (9) 

Whenever forces of inertia are feasible to be ignored in (8) so as to have (9), a quasistatic 

approximation is allowed in solving the problem. 

 

Quasistatic deformation 

Let the material, the deformation properties of which obey the relations stated in Section 2, fills 

the layer between two coaxial rigid surfaces. The equations of these surfaces in the cylindrical 

coordinate system (𝑟, 𝜑, 𝑧) are the following: 𝑟 = 𝑟0, 𝑟 = 𝑅(𝑟0 < 𝑅). Deforming is caused by 

revolving the inner cylinder 𝑟 ≤ 𝑟0 about its axis 𝑟 = 0 while the surface 𝑟 = 𝑅 is motionless. 

The material is considered to be initially unstrained. Assume that the no-slip conditions are 

satisfied at the boundary surfaces 𝑟 = 𝑟0 and 𝑟 = 𝑅 until the shear stress exceeds some given 

threshold value |𝜎𝑟𝜑| ≤ 𝜎0 

𝒖(𝑅, 𝑡) = 𝒗(𝑅, 𝑡) = 0, 𝜎𝑟𝜑(𝑟0, 𝑡) = −𝛼𝑡. (10) 

The latter condition specifies the load on the deformable material; 𝜎0 and 𝛼 are the 

prescribed constants of the problem. We put 𝜎0 > 𝑘. Due to the imposed condition of 

incompressibility, the paths of the material's particles are concentric circles, and the only 

nonzero component of the velocity vector is 𝑣𝜑. According to (1)-(3), the kinematics of the 

medium in this case is determined by the relations 

𝑢𝑟 = 𝑟(1 − 𝑐𝑜𝑠𝜓),  𝑢𝜑 = 𝑟𝑠𝑖𝑛𝜓, (11) 

𝑑𝑟𝑟 = −
𝑓2

2
,  𝑑𝑟𝜑 =

𝑓

2
, 𝑓 = 𝑟

𝜕𝜓

𝜕𝑟
, 𝑣𝜑 = 𝑟𝜔 = 𝑟

𝜕𝜓

𝜕𝑡
, 

휀𝑟𝜑 =
𝑟

2

𝜕2𝜓

𝜕𝑟𝜕𝑡
, 𝜔𝑟𝜑 = −

𝜕𝜓

𝜕𝑡
−

𝑟

2

𝜕2𝜓

𝜕𝑟𝜕𝑡
, 𝑟𝑟𝜑 = −

𝜕𝜓

𝜕𝑡
+

2휀𝑟𝜑(1 − 𝑒𝜑𝜑)

𝑒𝑟𝑟 + 𝑒𝜑𝜑 − 2
, 

where 𝜓 = 𝜓(𝑟, 𝑡) is the central angle of twisting of medium particles, and 𝜔 = 𝑣𝜑/𝑟 is the 

angular velocity. 

Taking into account that for such problems diagonal components of the strain tensors are 

small quantities of a higher order of smallness compared to off-diagonal components [44], 

hereinafter we restrict ourselves to terms of the first order with respect to diagonal components 

and of the second order with respect to off-diagonal components. Such a restriction, though not 

mandatory, allows us to obtain analytical relations for the displacements. From (4) and (5) we 

derive stress components 

𝜎𝑟𝑟 = −𝑝 − 2𝜇 + 2(𝑏 + 𝜇)𝑒𝑟𝑟 + 2𝑏𝑒𝜑𝜑 + 𝜇𝑒𝑟𝜑
2 , (12) 

𝜎𝜑𝜑 = −𝑝 − 2𝜇 + 2(𝑏 + 𝜇)𝑒𝜑𝜑 + 2𝑏𝑒𝑟𝑟 + 𝜇𝑒𝑟𝜑
2 , 

𝜎𝑧𝑧 = −𝑝 − 2𝜇 + 2𝑏(𝑒𝑟𝑟 + 𝑒𝜑𝜑) − 2𝜇𝑒𝑟𝜑
2 ,      𝜎𝑟𝜑 = 2𝜇𝑒𝑟𝜑 ,        

𝜎𝑟𝑟 − 𝜎𝜑𝜑

𝜎𝑟𝜑
=

𝑒𝑟𝑟 − 𝑒𝜑𝜑

𝑒𝑟𝜑
. 

At the beginning of the loading process (from the instant 𝑡 = 0), the material deforms 

reversibly (𝑝𝑖𝑗 = 0). According to relations (12) and (3), the stress components, in this case, 

can be written as follows 
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𝜎𝑟𝑟 = 𝜎𝑧𝑧 = −(𝑝 + 2𝜇) −
(𝑏+𝜇)

2
𝑓2 = −𝑠(𝑟, 𝑡), (13) 

𝜎𝜑𝜑 = −𝑠(𝑟, 𝑡) + 𝜇𝑓2,      𝜎𝑟𝜑 = 𝜇𝑓. 

Substituting (13) into (9), we get two balance equations 
𝜕𝜎𝑟𝑟

𝜕𝑟
+

𝜎𝑟𝑟−𝜎𝜑𝜑

𝑟
= 0,      

𝜕𝜎𝑟𝜑

𝜕𝑟
+ 2

𝜎𝑟𝜑

𝑟
= 0. (14) 

Then, integrating equations (14) subject to the boundary conditions (10), we obtain a 

solution for the case when material acquires the elastic deformation 

𝜓 =
𝑐(𝑡)

2𝜇
(

1

𝑅2
−

1

𝑟2
) , 𝜔 =

𝑐̇(𝑡)

2𝜇
(

1

𝑅2
−

1

𝑟2
) , �̇�(𝑡) =

𝑑𝑐(𝑡)

𝑑𝑡
 ,  (15) 

𝜎𝑟𝜑 =
𝑐(𝑡)

𝑟2
,  𝜎𝑟𝑟 = 𝜎𝑧𝑧 =

𝑐2(𝑡)

4𝜇
(

1

𝑟0
4 −

1

𝑟4
) + 𝜎𝑟𝑟

0 , 

𝜎𝜑𝜑 =
𝑐2(𝑡)

4𝜇
(

1

𝑟0
4 +

3

𝑟4
) + 𝜎𝑟𝑟

0 , 𝑐(𝑡) = −𝛼𝑡𝑟0
2, 

𝑒𝑟𝜙 = 𝑑𝑟𝜙 =
𝑐(𝑡)

2𝜇𝑟2
,  𝑒𝑟𝑟 = −

3

2
𝑒𝑟𝜙

2 ,  𝑒𝜙𝜙 =
𝑒𝑟𝜙

2

2
, 

where 𝜎𝑟𝑟
0 = 𝜎𝑟𝑟(𝑟0, 𝑡) is a prescribed value of the stress component 𝜎𝑟𝑟 at the surface 𝑟 = 𝑟0. 

Solution (15) is valid within the time interval from 𝑡 = 0 to 𝑡 = 𝑡0 until the plasticity 

condition (6) is fulfilled at the rigid wall 𝑟 = 𝑟0, which, under the restrictions applied, takes the 

form 𝜎𝑟𝜑(𝑟0, 𝑡0) = −𝑘. Substituting the value 𝜎𝑟𝜑(𝑟0, 𝑡0) into the last equation and using (15), 

we find the moment of the plastic flow onset 𝑡0 = 𝑘/𝛼. 

Thenceforth, the region of viscoplastic flow 𝑉(𝑃): 𝑟0 ≤ 𝑟 ≤ 𝑚(𝑡) develops from the 

boundary 𝑟 = 𝑟0. The surface 𝑟 = 𝑚(𝑡) is an elastic-plastic boundary. In the region 

𝑉(𝐸): 𝑚(𝑡) ≤ 𝑟 ≤ 𝑅 reversible deforming continues. 

By integrating the balance equations (14) in the region of recoverable deforming and 

using condition (10), we find 

𝜎𝑟𝜑
(𝐸)

=
𝑐(𝑡)

𝑟2 , 𝜓(𝐸) =
𝑐(𝑡)

2𝜇
(

1

𝑅2 −
1

𝑟2) , 𝜔(𝐸) =
𝑐̇(𝑡)

2𝜇
(

1

𝑅2 −
1

𝑟2).  (16) 

Hereinafter, the superscript "𝐸" is related to the region 𝑉(𝐸) while the superscript "𝑃" 

denotes the region 𝑉(𝑃).  

In the case under study, the yielding criterion (6) reads 

𝑓(𝜎𝑟𝜑 , 휀𝑟𝜑
𝑝

) = 𝜎𝑟𝜑
2 − (𝑘 − 휂|휀𝑟𝜑

𝑝
|)

2
= 0.  (17) 

In virtue of the associated flow rule (7), the condition (17) leads to 

𝜎𝑟𝜑 = −𝑘 + 휂휀𝑟𝜑
𝑝 ,  𝜆 =

𝑟𝜑
𝑝

𝜂 𝑟𝜑
𝑝

−𝑘
. (18) 

By integrating the balance equations (14) in conjunction with the continuity conditions 

for the stress components at the elastic-plastic boundary 𝑟 = 𝑚(𝑡), we obtain the components 

𝜎𝑟𝜑, 𝑒𝑟𝜑 in the plastic flow region 

𝜎𝑟𝜑
(𝑃)

=
𝑐(𝑡)

𝑟2
, 𝑒𝑟𝜑 =  

𝑐(𝑡)

2𝜇𝑟2
. (19) 

Comparing (18) and (19), we calculate the plastic strain rate 

휀𝑟𝜑
𝑝 =

1

𝜂
(𝑘 +

𝑐(𝑡)

𝑟2 ).  (20) 

The unknown function of integration 𝑐(𝑡) has to be determined from the condition of zero 

plastic strain rate at the elastic-plastic boundary 𝑟 = 𝑚(𝑡) 

𝑐(𝑡) = −𝑘𝑚(𝑡)2. (21) 

On the other hand, following the last boundary condition in (10) 

𝑐(𝑡) = −𝛼𝑡𝑟0
2, (22) 

that allows us to get the expression for the surface 𝑚(𝑡) 

𝑚(𝑡) = 𝑟0√𝛼𝑡/𝑘. (23) 
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According to the relations (1)-(3), the yielding criterion (17), and the associated flow rule 

(18), in the region of plastic flow the kinematics of the medium are determined by the relations 

휀𝑟𝜑 = 휀𝑟𝜑
𝑒 + 휀𝑟𝜑

𝑝 =
𝜕𝑒𝑟𝜑

𝜕𝑡
+

𝜕𝑝𝑟𝜑

𝜕𝑡
, 휀𝑟𝑟

𝑝 =
𝜕𝑝𝑟𝑟

𝜕𝑡
+ 2𝑝𝑟𝜑(𝑟𝜑𝑟 + 휀𝑟𝜑

𝑝 ) − 2𝑝𝑟𝜑
𝜕𝜓

𝜕𝑡
, (24) 

휀𝜑𝜑
𝑝 =

𝜕𝑝𝜑𝜑

𝜕𝑡
+ 2𝑝𝑟𝜑(𝑟𝑟𝜑 + 휀𝑟𝜑

𝑝 ) + 2𝑝𝑟𝜑

𝜕𝜓

𝜕𝑡
, 휀𝑟𝑟

𝑝 = −휀𝜑𝜑
𝑝 =

휀𝑟𝜑
𝑝 (𝑒𝑟𝑟 − 𝑒𝜑𝜑)

2𝑒𝑟𝜑
. 

Components of the velocity and the strain rate tensor are determined by (11). 

Utilizing kinematic relations (24) and formula (20), we obtain the component of plastic 

strains 𝑝𝑟𝜑 

𝑝𝑟𝜑 =
1

𝜂
(𝑘𝑡 −

𝛼𝑟0
2𝑡2

2𝑟2
) + 𝑔(𝑟). (25) 

Recalling the condition of zero plastic strain rate at the elastic-plastic boundary 𝑟 = 𝑚(𝑡) 

and relation (23), we derive the unknown function 𝑔(𝑟) 

𝑔(𝑟) = −
𝑘2𝑟2

2𝛼𝜂𝑟0
2. (26) 

In accordance with relations (3), we have 𝑑𝑟𝜑 = 𝑒𝑟𝜑 + 𝑝𝑟𝜑. Then, combining (11) and 

(23)-(26), we deduce the differential equation governing the twist angle 𝜓(𝑟, 𝑡) in the region of 

plastic flow 
𝑟

2

𝜕𝜓

𝜕𝑟
=

1

𝜂
(𝑘𝑡 −

𝛼𝑡2𝑟0
2

2𝑟2 ) −
𝑘2𝑟2

2𝛼𝜂𝑟0
2 −

𝛼𝑡𝑟0
2

2𝜇𝑟2.  

After integration in conjunction with the condition of continuity of function 𝜓(𝑟, 𝑡) across 

the elastic-plastic boundary 𝑟 = 𝑚(𝑡), we find 𝜓(𝑟, 𝑡) in the yielding region 

 𝜓(𝑃) =
2𝑘𝑡

𝜂
𝑙𝑛

𝑟

𝑚(𝑡)
+

𝛼𝑟0
2𝑡

2𝜇
(

1

𝑟2 −
1

𝑅2) +
𝛼𝑟0

2𝑡2

2𝜂
(

1

𝑟2 −
1

𝑚(𝑡)2) +
𝑘2

2𝛼𝜂𝑟0
2 (𝑚(𝑡)2 − 𝑟2).  (27) 

Referring to (25) and (26), we have 

𝑝𝑟𝜑 =
1

𝜂
(𝑘𝑡 −

𝛼𝑟0
2𝑡2

2𝑟2 −
𝑘2𝑟2

2𝛼𝑟0
2). (28) 

Using equations of variation of strain components (1)-(2) and conditions (17)-(18), we 

obtain a system of equations for diagonal components of elastic 𝑒𝑟𝑟, 𝑒𝜑𝜑 and plastic 𝑝𝑟𝑟, 𝑝𝜑𝜑 

strain tensors in the yielding region. These components are small quantities of a higher order of 

smallness compared to off-diagonal ones  
𝜕𝑝𝑟𝜙

𝜕𝑡
= 휀𝑟𝜑

𝑝 ,   
𝜕𝑝𝜑𝜑

𝜕𝑡
= −휀𝑟𝜑

𝑝 𝑝𝜑𝜑−𝑒𝑟𝜑
2

𝑒𝑟𝜑
+

4 𝑟𝜑𝑝𝑟𝜑

2+𝑒𝑟𝜑
2 (1 + 𝑝𝜑𝜑 −

1

2
𝑒𝑟𝜑

2 − 2𝑒𝑟𝜑𝑝𝑟𝜑),   (29) 

𝑒𝑟𝑟 = 𝑝𝜑𝜑 −
3𝑒𝑟𝜑

2

2
− 2𝑒𝑟𝜑𝑝𝑟𝜑, 𝑝𝑟𝑟 + 𝑝𝜑𝜑 = −2𝑝𝑟𝜑

2 , 𝑒𝑟𝑟 + 𝑒𝜑𝜑 = −𝑒𝑟𝜑
2 . 

System (29) can be integrated numerically. The stress component 𝜎𝑟𝑟 is found from the 

first balance equation (14) with the account of its value at the surface 𝑟 = 𝑟0. Then, from the 

relations (12), the hydrostatic pressure 𝑝 and the stress components 𝜎𝜑𝜑 and 𝜎𝑧𝑧 are determined. 

 

Unloading wave. Ray method 

The moment the stress |𝜎𝑟𝜑| at the surface 𝑟 = 𝑟0 touches the critical value 𝜎0, the stick 

boundary condition shifts abruptly to the condition of friction between the material and the rigid 

cylindrical surface. Various conditions of dry or viscous friction can be taken as a law of 

friction. Here, we adopt the friction condition according to Prandtl law: |𝜎𝑟𝜙(𝑟0, 𝑡)| = 𝜎𝑠 , 𝜎𝑠 =

𝑐𝑜𝑛𝑠𝑡,  𝜎𝑠 < 𝑘. 
According to (19), a change in the boundary condition occurs at the instant of time 𝑡 =

𝑡𝑠 = 𝜎0/𝛼. The jump in the boundary condition [𝜎𝑟𝜙(𝑟0, 𝑡𝑠)] = 𝜎𝑠 − 𝜎0 ≠ 0 causes the 

cylindrical shock wave 𝛴1, which location in space is determined by the equation 𝑟 = 𝑟1(𝑡) =

𝑟0 + ∫ 𝐺(𝜉)𝑑𝜉
𝑡

𝑡𝑠
.  
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A shock wave is thought to be a surface of strong discontinuity, i.e. such a surface that 

displacements are continuous over it, while velocities and stresses suffer a finite discontinuity. 

The surface of strong discontinuity [48] could be interpreted as a limiting layer of thickness 𝛥𝑆 

(𝛥𝑆 → 0); within this layer velocities and stresses change from the values 𝑣𝑖
+, 𝜎𝑖𝑗

+ to the values 

𝑣𝑖
−, 𝜎𝑖𝑗

−, remaining monotonic and continuous inside the layer. Across the surfaces of weak 

discontinuity that also emerge in what follows, stresses and velocities remain continuous, but 

some of their partial derivatives undergo a discontinuity. As is customary, the surface of weak 

discontinuity, across which a discontinuity in the first-order derivative of the velocity occurs, 

is called a weak wave of the first order or an acceleration wave. 

Thus, since the emergence of shock wave, the material of the deformable layer is divided 

into three parts. It keeps deforming reversibly in the region 𝑉(𝐸): 𝑚(𝑡) ≤ 𝑟 ≤ 𝑅, while 

viscoplastic flow proceeds in the region 𝑉(𝑃): 𝑟1(𝑡) ≤ 𝑟 ≤ 𝑚(𝑡). In the unloading domain 

𝑉(1): 𝑟0 ≤ 𝑟 ≤ 𝑟1(𝑡) material deforms reversibly anew, but with previously accumulated 

unrecoverable strains. According to (28) and (29), the component of irreversible strains 𝑝𝑟𝜑(𝑟) 

alone is invariable upon unloading process 

𝑝𝑟𝜑(𝑟) =
1

𝜂
(𝑘𝜏1(𝑟) −

𝛼𝑟0
2𝜏1

2(𝑟)

2𝑟2
−

𝑘2𝑟2

2𝛼𝑟0
2), (30) 

where 𝜏1(𝑟) = 𝑡𝑠 + ∫ 𝑑𝜉/𝐺(𝜉)
𝑟

𝑟0
 is the time the wave front 𝛴1 reaches a position 𝑟. Other 

components of plastic strain tensor 𝑝𝑟𝑟(𝑟, 𝑡), 𝑝𝜑𝜑(𝑟, 𝑡) keep changing with time due to 

changing elastic strains 𝑒𝑟𝜙(𝑟, 𝑡). Hence, there is an internal redistribution between elastic and 

plastic strains; components 𝑝𝑟𝑟(𝑟, 𝑡), 𝑝𝜑𝜑(𝑟, 𝑡) can both increase and decrease in magnitude. 

Behind the unloading shock wave equations of motion may be written as 
𝜕𝜎𝑟𝜑

𝜕𝑟
+ 2

𝜎𝑟𝜑

𝑟
= 𝜌𝑟�̈�,  

𝜕𝜎𝑟𝑟

𝜕𝑟
+

𝜎𝑟𝑟−𝜎𝜑𝜑

𝑟
= −𝜌𝑟�̇�2. (31) 

The former equation in (31) is meant for determining the kinematics of unloading 

deforming, while the latter can be used for calculating the additional hydrostatic pressure 𝑝(𝑟, 𝑡) 

based on the solution obtained for the function 𝜓(𝑟, 𝑡). Therefore, the boundary-value problem 

for the former equation in (31) should be solved first. From (11), (12), and (30), we get the 

following expression for the stress component 𝜎𝑟𝜑 

𝜎𝑟𝜑 = 𝜇𝑟𝜓,𝑟 −
2𝜇

𝜂
(𝑘𝜏1(𝑟) −

𝛼𝑟0
2

2𝑟2 𝜏1
2(𝑟) −

𝑘2𝑟2

2𝛼𝑟0
2). (32) 

Substituting (32) into the former equation in (31), we obtain a second-order partial 

differential equation of a hyperbolic type. The boundary conditions for such an equation will 

be the condition of displacement continuity across the unloading wave 𝑟 = 𝑟1(𝑡) and the 

friction condition at the boundary surface 𝑟 = 𝑟0, respectively 
[𝜓]|𝛴1

= (𝜓+ − 𝜓−)|𝑟=𝑟1(𝑡) = 0, (33) 

𝜎𝑟𝜑(𝑟0, 𝑡) = −𝜎𝑠 . (34) 

Hereinafter, squire brackets denote the jump across the discontinuity surface for any 

function enclosed in them; 𝜓+ =   𝜓+(𝑟1(𝑡), 𝑡) and 𝜓− =   𝜓−(𝑟1(𝑡), 𝑡) are the values of 

function 𝜓(𝑟, 𝑡) just ahead of the discontinuity surface and immediately behind it, respectively. 

In an elastic/viscoplastic medium, irreversible strains are continuous across the 

discontinuity surface [𝑝𝑟𝜑] = 0 [48-50]. Therefore, the velocity 𝐺(𝑡) of the unloading shock 

wave can depend only on preliminary strains and jumps of reversible strains [42,50]. In all the 

previous relations, terms of third and higher powers of 𝑒𝑟𝜑 were omitted. If we restrict ourselves 

only to the preceding relations, we derive that the unloading wave speed is constant 𝐺 = √𝜇/𝜌 

and 𝜏1(𝑟) = 𝑡𝑠 + (𝑟 − 𝑟0)/𝐺. The equation of motion in this case takes the simplest form 

𝜓,𝑟𝑟 +
3

𝑟
𝜓,𝑟 −

�̈�

𝐺2  =  
2

𝜂
(

𝑘

𝐺𝑟
−

𝛼𝑟0
2𝜏1(𝑟)

𝐺𝑟3 +
2𝑘𝜏1(𝑟)

𝐺𝑟2 −
𝑘2𝑟2

2𝛼𝑟0
2). (35) 
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Even such a simplified equation (35) is not exactly solvable. Therefore, we solve it 

approximately by means of the ray method subject to the boundary conditions (33) and (34). It 

is worth remarking that the ray method allows for solving the problem even without simplifying 

assumptions made. They are not required for the method. If one includes in (12) third and higher 

order powers of 𝑒𝑟𝜑, the velocity of the unloading shock wave 𝐺 will not be constant. Such a 

case for a nonlinear elastic medium was considered in [26-28,36-38]. A review of publications 

devoted to the features of applying the ray method to constructing approximate solutions of 

solid dynamics problems one can find in [35]. In the case being considered, to construct an 

approximate solution for equation (35) with boundary conditions (33) and (34), it is convenient 

to apply the ray method in its classical form, as it was proposed more than half a century ago 

[30]. In addition, since the ray is a curve invariably orthogonal to the discontinuity surface, for 

the problem in question it coincides with the coordinate axis 𝑂𝑟. 

The function 𝜓(𝑟, 𝑡) is continuous across the discontinuity surface [𝜓] = 0, but its 

derivatives and, hence, velocity, strains, and stresses undergo ordinary discontinuity. Let us 

introduce a ray series for the function 𝜔(𝑟, 𝑡) = �̇�(𝑟, 𝑡) behind the unloading shock wave as 

follows 

𝜔(𝑟, 𝑡) = 𝜔−|𝑡=𝜏1
+ �̇�−|𝑡=𝜏1

(𝑡 − 𝜏1) +
1

2
�̈�−|𝑡=𝜏1

(𝑡 − 𝜏1)2 + ⋯  =  

=  (𝜔+ − [𝜔])|𝑡=𝜏1
+ (�̇�+ − [�̇�])|𝑡=𝜏1

(𝑡 − 𝜏1) +
1

2
(�̈�+ − [�̈�])|𝑡=𝜏1

(𝑡 − 𝜏1)2 + ⋯. (36) 

Expansion (36) is Taylor's series in time t  about the instant of arrival of the wave front 

at a given point of space. The ray series for the stresses and the angle of twisting are written 

similarly to (36), and all the quantities desired are expressed in terms of jumps in the angular 

velocity and its derivatives [𝜕𝑛−1𝜔/𝜕𝑡𝑛−1] (𝜔 = �̇�, 𝑛 = 1,2, … ). All the quantities ahead of 

the discontinuity surface (marked by index "+") are considered to be known. They are provided 

by the solution of the quasistatic problem on viscoplastic flow in the region 𝑟1(𝑡) ≤ 𝑟 ≤ 𝑚(𝑡). 

In order to calculate the jump of 𝜔(𝑟, 𝑡) and discontinuities of its derivatives of order n  over 

the shock wave, one should differentiate the former equation in (31) 𝑛 − 1 times with respect 

to time, then write the result on other sides of the discontinuity surface and take a difference of 

the expressions obtained employing geometrical and kinematical conditions of compatibility 

[14,32-34]. Thus, we obtain a system of first-order inhomogeneous linear differential equations 
𝛿𝜉𝑛

𝛿𝑡
+

3𝐺

2𝑟1
𝜉𝑛 = 𝛷𝑛(𝑡, 𝑟1, 𝜉1, 𝜉2, … , 𝜉𝑛−1),  𝜉𝑛 = [

𝜕𝑛𝜓

𝜕𝑡𝑛 ]|
Σ1

. (37) 

In (37), 𝛿/𝛿𝑡 is the 𝛿-derivative with respect to time (Thomas derivative [32]); 𝛷𝑛 is the 

recurrently calculated function that depends on discontinuities of lower-order derivatives, 

parameters of motion, and strain state ahead of the discontinuity surface 

Φ1 =
𝐺

η𝑟1
(𝑘 −

α𝑟0
2𝑡

𝑟1
2 ) ,   Φ2 =

α𝑟0
2𝐺

η𝑟1
3 −

3𝐺2𝐴(1)

8𝑟1
7/2 −

2𝑘𝐺2

𝜂𝑟1
2 , (38) 

Φ3 = −
3𝐵(1)𝐺2

8𝑟1
7/2

+
15𝐴(1)𝐺3

64𝑟1
9/2

+
2𝑘𝐺3

휂𝑟1
3 . 

Ordinary differential equations (37) are referred to as decay equations. The constants of 

integration 𝐴(1), 𝐵(1) and 𝐶(1) arising in turn at each step are determined by virtue of boundary 

condition (34). Condition (33) is automatically satisfied due to the structure of the ray series. 

Finally, we obtain the following relations behind the unloading shock wave  

𝜉1 =
𝐴(1)

𝑟1
3/2 +

2𝑘

3𝜂
−

2𝛼𝑟0
2

𝜂
(

2

𝐺𝑟1
−

𝑡

𝑟1
2) , 𝜉2 =

𝐵(1)

𝑟1
3/2 +

3𝐴(1)𝐺

8𝑟1
5/2 −

4𝑘𝐺

𝜂𝑟1
−

2𝛼𝑟0
2

𝜂𝑟1
2 , (39) 

𝜉3 =
𝐶(1)

𝑟1
3/2

+
3𝐵(1)𝐺

8𝑟1
5/2

−
15𝐴(1)𝐺2

128𝑟1
7/2

−
4𝑘𝐺2

휂𝑟1
2 , 
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𝜓(1)(𝑟, 𝑡) = 𝜓(𝑃)|
𝑡=𝜏1

+ (�̇�(𝑃) − 𝜉1)|
𝑡=𝜏1

(𝑡 − τ1) +
1

2
(�̈�(𝑃) − 𝜉2)|

𝑡=𝜏1
(𝑡 − τ1)2 + 

+
1

6
(𝜓(𝑃) − 𝜉3)|

𝑡=𝜏1
(𝑡 − τ1)3 + ⋯, 

𝜎𝑟𝜑
(1)(𝑟, 𝑡) = −

𝛼𝑟0
2𝜏1

𝑟2
+

𝜇𝑟𝜉1(𝜏1)

𝐺
+ 

+ (−
𝛼𝑟0

2

𝑟2
− [�̇�𝑟𝜑

(1)
]|

𝑡=𝜏1

) (𝑡 − τ1) −
1

2
[�̈�𝑟𝜑

(1)
]|

𝑡=𝜏1

(𝑡 − τ1)2 + ⋯, 

[�̇�𝑟𝜑
(1)

] = −
3𝜇

2
𝜉1 −

𝜇r1

𝐺
𝜉2 −

𝜇

휂
(𝑘 −

𝛼𝑟0
2𝑡

𝑟1
2 ), 

[�̈�𝑟𝜑
(1)

] = −
𝜇r1

𝐺
𝜉3 −

3𝜇

2
𝜉2 −

3𝜇𝐺

8r1
𝜉1 +

3𝛼𝜇𝑟0
2𝐺𝑡

4휂𝑟1
3 −

7𝑘𝜇𝐺

4휂r1
+

3𝛼𝜇𝑟0
2

2휂𝑟1
2 , 

𝐴(1) =
√𝑟0𝐺(𝜎0 − 𝜎𝑠)

𝜇
+

2𝑟0
3/2

휂
(

2𝛼𝑟0

𝐺
− 𝛼𝑡𝑠 −

𝑘

3
), 

𝐵(1) =
15𝐺2(𝜎𝑠 − 𝜎0)

8𝜇√𝑟0

+
√𝑟0𝐺(13𝑘 + 7𝜎0)

4휂
+

𝛼√𝑟0𝐺

𝜇
+

𝛼𝑟0
3/2

2휂
, 

𝐶(1) = −
15𝐺𝐵(1)

8𝑟0
−

105𝐺2𝐴(1)

128𝑟0
2 +

8𝑘𝐺2

휂√𝑟0

+
6𝛼𝐺√𝑟0

휂
. 

The superscript "(1)" indicates that the value refers to the domain 𝑉(1): 𝑟0 ≤ 𝑟 ≤ 𝑟1(𝑡). 

Calculations according to the above recurrent scheme can be continued if necessary. For 

instance, by calculating 𝛷4(𝑡, 𝑟1) and writing down the decay equation for 𝜉4(𝑡), we can solve 

the initial-boundary value problem for this ordinary differential equation and so on. Here we 

restrict ourselves to three steps of the method. 

Solution (39) is valid up to the instant 𝑡 = 𝑡𝑚, at which the unloading wave encounters 

elastic-plastic boundary 𝑟 = 𝑚(𝑡) 

𝑡𝑚 = 𝑡𝑠 +
1

2𝐺2 (
𝛼𝑟0

2

𝑘
− 2𝑟0𝐺 + √4𝛼𝑟0

2𝐺

𝑘
(𝐺𝑡𝑠 − 𝑟0) +

𝛼2𝑟0
4

𝑘2 ). (40) 

Figures 1-3 show the distribution of the shear stress 𝜎𝑟𝜑(𝑟, 𝑡), angle of twisting 𝜓(𝑟, 𝑡), 

and angular velocity 𝜔(1)(𝑟, 𝑡) (2a) at the instant 𝑡 = 𝑡𝑚 the wave 𝛴1 encounters elastic-plastic 

boundary. Figure 2(b) depicts the variation of unloading wave intensity with time. Here, we 

consider the case when the region with irreversible deformations is much narrower than the 

elastic one and makes up approximately 1/5 of the layer thickness. The calculation was carried 

out for the following values of the constants: 𝜌0 = 8.96 × 10
3
 kg×m3, 𝜇 = 41.5 GPa, 𝑘 = 68.5 

MPa, 휂 = 4.83 GPa×s, 𝜎0 = 71.5 MPa, 𝜎𝑠 = 58.2 MPa, 𝑅/𝑟0 = 1.1, 𝛼 = 6343 Pa/s. 
 

 
Fig. 1. Shear stress 𝜎𝑟𝜑 distribution at the moment 𝛴1 encounters elastic-plastic boundary 

𝑟 = 𝑚∗ 
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Fig. 2. Angular velocity 𝜔(1) distribution at the moment 𝛴1 encounters elastic-plastic 

boundary 𝑟 = 𝑚∗ (a); variation of unloading wave intensity with time (b) 

 

 
Fig. 3. Angle of twisting 𝜓 distribution at the moment 𝛴1 encounters elastic-plastic boundary 

𝑟 = 𝑚∗ 

 

Reflection of the unloading wave from the elastic-plastic boundary 

At the point of time 𝑡 = 𝑡𝑚, plastic flow ceases, and the region with accumulated irreversible 

strains is bounded by the surfaces 𝑟 = 𝑟0 and 𝑟 = 𝑚∗, where 𝑚∗ = 𝑚(𝑡𝑚) = 𝑟0√𝛼𝑡𝑚/𝑘. At 

exactly the same time from the surface 𝑟 = 𝑚∗ two discontinuity surfaces, the surface 𝛴2: 𝑟2 =
𝑚∗ − 𝐺(𝑡 − 𝑡𝑚), and 𝛴3: 𝑟3 = 𝑚∗ + 𝐺(𝑡 − 𝑡𝑚), start propagating in opposite directions to the 

inner and to the outer cylinder respectively (Fig. 4).  

 

 
Fig. 4. Wave pattern after reflection of unloading wave from elastic-plastic boundary 𝑚∗ 
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In the region with accumulated irreversible strains motion of the medium is governed by 

equation (35), while in the region of reversible deformation the equation of motion reads 

𝜓,𝑟𝑟 +
3

𝑟
𝜓,𝑟 −

�̈�

𝐺2 = 0. (41) 

Boundary conditions for equations (35) and (41) are the condition of continuity of 

displacements across 𝛴2: 𝑟 = 𝑟2(𝑡) and 𝛴3: 𝑟 = 𝑟3(𝑡) as well as matching displacements and 

their derivatives at the elastic-plastic boundary 𝑟 = 𝑚∗. The latter ensures the smoothness of a 

solution in the domain between 𝛴2 and 𝛴3 at each instant of time beyond 𝑡𝑚 

[𝜓]|Σ2
= [𝜓]|Σ3

= 0,      𝜓(2)|
𝑚∗

= 𝜓(3)|
𝑚∗

,     𝜓,𝑟
(2)

|
𝑚∗

= 𝜓,𝑟
(3)

|
𝑚∗

. (42) 

As above, a superscript in parentheses indicates the value is calculated in the region 

behind the wave with a corresponding number. The solution for the desired function 𝜔(𝑟, 𝑡) 

behind the waves 𝛴2 and 𝛴3 is represented by the ray series similar to (36) 

𝜔(2) = (𝜔(1) − 휂1)|
𝜏2

+ (�̇�(1) − 휂2)|
𝜏2

(𝑡 − 𝜏2) +
1

2
(�̈�(1) − 휂3)|

𝜏2

(𝑡 − 𝜏2)2 + ⋯,  (43) 

𝜔(3) = (𝜔(𝐸) − 휁1)|
𝜏3

− 휁2|𝜏3
(𝑡 − 𝜏3) −

1

2
휁3|𝜏3

(𝑡 − 𝜏3)2 + ⋯, (44) 

휂𝑖 = [
𝜕𝑖𝜓

𝜕𝑡𝑖
]|

Σ2

,    𝜏2 = 𝑡𝑚 + (𝑚∗ − 𝑟) 𝐺⁄ , 휁𝑖 = [
𝜕𝑖𝜓

𝜕𝑡𝑖
]|

Σ3

,    𝜏3 = 𝑡𝑚 + (𝑟 − 𝑚∗)/𝐺.  

Differential equations for the ray series coefficients can be obtained in accordance with 

the procedure described in Section 4. After integration, we substitute the result into (43), (44), 

compare it with the boundary conditions (42), and obtain the desired solution 

𝜓(2)(𝑟, 𝑡) = 𝜓(1)|
τ2

+ 𝜔(1)|
τ2

(𝑡 − τ2) +
1

2
�̇�(1)|

τ2
(𝑡 − τ2)2 + (45) 

+
1

6
(�̈�(1)|

τ2
− 휂3(𝜏2)) (𝑡 − τ2)3 + ⋯,  

𝜎𝑟𝜑
(2)

(𝑟, 𝑡) = 𝜎𝑟𝜑
(1)

|
τ2

+ �̇�𝑟𝜑
(1)

|
τ2

(𝑡 − τ2) +
1

2
(�̈�𝑟𝜑

(1)
|

τ2

−
𝜇𝑟

𝐺
휂3(𝜏2)) (𝑡 − τ2)2 + ⋯, 

𝜓(3)(𝑟, 𝑡) = 𝜓(𝐸)|
τ3

+ (𝜔(𝐸)|
τ3

− 휁1(τ3)) (𝑡 − τ3) −
1

2
휁2(τ3)(𝑡 − τ3)2 − (46) 

−
1

6
휁3(τ3)(𝑡 − τ3)3 + ⋯, 

𝜎𝑟𝜑
(3)(𝑟, 𝑡) = −

𝛼τ3𝑟0
2

𝑟2
+

𝜇𝑟

𝐺
휁1(τ3) + (−

𝛼𝑟0
2

𝑟2
+

3𝜇

2
휁1(τ3) +

𝜇𝑟

𝐺
휁2(τ3)) (𝑡 − τ3) + 

+
𝜇𝑟

2𝐺
(휁3(τ3) +

3𝐺

2𝑟
휁2(τ3) +

3𝐺2

8𝑟2
휁1(τ3)) (𝑡 − τ3)2 + ⋯, 

휂1 = 휂2 = 0, 휂3 =
𝐶(2)

𝑟2
3/2

 , 휁1 =
𝐴(3)

𝑟3
3/2

, 휁2 =
𝐵(3)

𝑟3
3/2

+
3𝐺𝐴(3)

8𝑟3
5/2

 ,   

휁3 =
𝐶(3)

𝑟3
3/2

+
3𝐺𝐵(3)

8𝑟3
5/2

−
15𝐴(3)𝐺2

128𝑟3
7/2

, 

𝐴(2) = 𝐵(2) = 0, 𝐶(2) =
𝛼2𝑟0

4

2휂𝑘𝑚∗
5/2

+
𝑘𝐺2

2휂√𝑚∗

−
3𝐺𝛼𝑟0

2

4휂𝑚∗
3/2

, 

𝐴(3) = 𝐴(1) +
4√𝑚∗

휂
(

2

3
𝑘𝑚∗ −

𝛼𝑟0
2

𝐺
) , 𝐵(3) = 𝐵(1) −

5𝑘𝐺√𝑚∗

휂
−

𝛼𝑟0
2

2휂√𝑚∗

, 

𝐶(3) = 𝐶(1) −
𝛼2𝑟0

4

2휂𝑘𝑚∗
5/2

−
21𝑘𝐺2

16휂√𝑚∗

−
33𝛼𝑟0

2𝐺

32휂√𝑚∗

. 
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As it follows from (45)-(46) 𝛴3 is a shock wave, while 𝛴2 is a weak wave of second order 

across which stresses and velocities remain continuous, but an acceleration derivative jump 

occurs. In view of the fact the region with irreversible strains occupies a small part of the layer, 

𝛴2 will reflect from the cylinder wall 𝑟 = 𝑟0 before 𝛴3 reaches 𝑟 = 𝑅. The reflection causes 

propagation of the weak wave of second order 𝛴4: 𝑟4 = 𝑟0 + 𝐺(𝑡 − 𝑡𝑟), 𝑡𝑟 = 𝑡𝑚 +
(𝑚∗ − 𝑟0)/𝐺. If we restrict ourselves by cubic terms in the ray solution no new discontinuities 

occur when 𝛴4 travels through the elastic-plastic boundary 𝑟 = 𝑚∗, but the calculation of 

preliminary deformations is implemented differently on the left/right of the elastic-plastic 

boundary. Preliminary deformations are given by the solution behind 𝛴2 in the region 𝑟0 ≤ 𝑟 ≤
𝑚∗ and by the solution behind 𝛴3 in the region 𝑚∗ ≤ 𝑟 ≤ 𝑟3(𝑡). Let us write down the solution 

behind the wave 𝛴4 

𝜓(4)(𝑟, 𝑡) = 𝜓(𝑖)|
𝜏4

+ 𝜔(𝑖)|
𝜏4

(𝑡 − 𝜏4) +
1

2
�̇�(𝑖)|

𝜏4
(𝑡 − 𝜏4)2 + (47) 

+
1

6
(�̈�(𝑖)|

𝜏4
− 휃3(𝜏4)) (𝑡 − 𝜏4)3 + ⋯, 

𝜎𝑟𝜑
(4)

(𝑟, 𝑡) = 𝜎𝑟𝜑
(𝑖)

|
𝜏4

+ �̇�𝑟𝜑
(𝑖)

|
𝜏4

(𝑡 − 𝜏4) +
1

2
(�̈�𝑟𝜑

(𝑖)
|

𝜏4

+
𝜇𝑟

𝐺
휃3(𝜏4)) (𝑡 − 𝜏4)2 + ⋯,  

휃3 = [�̈�]|𝛴4
=

𝐶(2)

𝑟4
3/2

,   𝜏4 = 𝑡𝑟 + (𝑟 − 𝑟0)/𝐺, 

in which 𝑖 = 2 in the region 𝑟0 ≤ 𝑟 ≤ 𝑚∗ and 𝑖 = 3 in the region 𝑚∗ ≤ 𝑟 ≤ 𝑟3(𝑡). The next 

change in the wave pattern occurs when the wave 𝛴3 reflects from the outer boundary   𝑟 = 𝑅 

in the form of shock wave 𝛴5: 𝑟5 = 𝑅 − 𝐺(𝑡 − 𝑡𝑅), 𝑡𝑅 = 𝑡𝑚 + (𝑅 − 𝑚∗)/𝐺. There are no 

difficulties to calculate the stress-strain pattern behind 𝛴5 by means of the algorithm described 

and boundary condition (1) at the surface 𝑟 = 𝑅, preliminary deformations ahead 𝛴5 are 

prescribed by (46). Further, upon weak wave 𝛴4 and shock wave 𝛴5 interaction at the instant 

�̃� = 𝑡𝑚 + (𝑅 − 𝑟0)/𝐺 wave pattern remains unchanged, but from this moment one has to take 

into account that stress-strain state ahead 𝛴4 is determined by the solution behind 𝛴5 while 

preliminary deformations for the wave 𝛴5 are determined according to (47). 

At this point the analytical study is considered complete, and the calculation of the further 

deforming, if necessary, it is advisable to carry out numerically, using the analytical expressions 

obtained to approximate the solution at the nodes of the near-front domain. 

 

Concluding remarks 

The research conducted broadens our insight into the processes occurring in the material under 

complex deforming within a wide strain rate range. The problem considered features a two-

stage deforming mechanism. In the first stage which involved slow loading of a cylindrical 

elastic/viscoplastic layer the exact solution of the corresponding boundary-value problem in the 

scope of large deformation theory has been obtained by applying the quasistatic approach. In 

the second stage calculation of the dynamic unloading triggered by instantaneous stress drop 

below the yield limit at the material and the rigid wall interface has been implemented. This 

event induced the cylindrical unloading shock wave, across which the plastic strain rate 

vanishes instantly and the viscoplastic flow ceases. Upon its reflection from the elastic-plastic 

boundary, a weak wave, propagating over the region with accumulated time invariable 

irreversible deformations, and a shock wave, moving over the elastic region, have been formed. 

Further unsteadiness in the layer is associated with the reflection of these waves from the 

instrument walls and the elastic-plastic boundary. 

The solution to the dynamic problem has been constructed by means of truncated ray 

expansions about the time of the disturbance arrival at a given point of a domain. This method 

has allowed us to calculate the stress-strain state behind the discontinuity surfaces arising in the 

least cumbersome manner avoiding a need to solve the partial differential equation (which 
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cannot be integrated exactly in the case of axial symmetry), but reducing the problem of 

integrating a system of ordinary differential equations of the first order that determine the 

change of velocity jump and the jumps of its time-derivatives up to the second order over the 

wave fronts. Higher-order jumps can be determined according to the same algorithm with no 

major difficulties except for increasing computational load. 

However, some limitations are worth mentioning. First of all, truncated ray series 

demonstrate a close approximation to the solution only in the vicinity of the wave front, which 

is well applicable for narrow layers, as is one considered afore, and for short time range elapsed 

after the moment of wave motion commence. To construct a uniformly valid solution for a 

domain of a more considerable extent, methods of regularization of ray expansions can be 

applied, both analytical [35] and numerically analytical [26-28]. In the latter case, the analytical 

solution is incorporated into a numerical finite-difference scheme. 

Second of all, the unloading wave velocity turned out to be constant owing to allowing 

the reversible strains to be small. In the case of finite strains situation is more complicated; the 

shock wave velocity and in turn the location of the wave front will be affected by strains ahead 

of the wave and discontinuities amplitudes, and the evolution behavior of the discontinuity of 

each order is coupled with that of higher order. In addition, the wave pattern becomes more 

intricate because two shear shock waves will appear in a prestrained medium: plane and 

circularly polarized ones. 

Nevertheless, despite the noted limitations, the results of the present work lay the 

groundwork for studying more complex unsteady boundary-value problems involving large 

deformations. 
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