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Abstract. A discrete disclination model that describes the stored energy in icosahedral small 

particles (ISPs) is proposed. The particle energy is defined as a superposition of the energies 

of six interacting wedge disclinations, each of which connects the opposite vertices of the 

icosahedron. Isotropic elasticity analytical solution is given for a spheroid with the volume 

being equal to that of the icosahedron. Distributed disclination model, also known as Marks-

Ioffe model, is used for calculation of the stored in ISP energy. The influence of the Poisson's 

ratio on the stored in ISP energy is studied within both considered disclination models. 
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Introduction 

The interest to pentagonal crystals did increase after Dan Shechtman discovery of 

quasicrystals in the mid-1980s [1,2], for which he was awarded by Nobel Prize in chemistry 

in 2011. Being different from quasicrystals in the type of atomic ordering, icosahedral small 

particles (ISPs) share with the first ones a remarkable feature of having habitus with five-fold 

symmetry [3]. It was first proposed [4,5] and then supported by experimental data [6,7] that a 

ISP consists of twenty crystalline domains with FCC crystal structure interconnected by 

coherent twin boundaries. Such multiple cyclic twinning induces inhomogeneous elastic 

deformation in particle interior, which can be described in terms of wedge disclinations [8]. 

These structural features largely determine the unique functional properties of ISPs. In 

particular, it is precisely with the presence of twin boundaries and residual deformations that 

the higher chemical activity of ISPs is associated having the same size as for cubic or 

octahedral shape monocrystalline ones [9–11]. In addition, specific pentagonal shape of 

particles contributes to an increase in the intensity of plasmon resonance peaks, and can also 

leads to their splitting [12,13]. 

It should be noted that despite the active research of many unique nanomaterials over the 

past 20 years, only a small part has reached the large-scale applied use in various household and 

specialized devices of electronics and optoelectronics. The reason for this is not so much the 
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high cost and complexity of producing nanomaterials, but the significant uncontrolled effect of 

crystal structure defects on the functional properties of nanomaterials [14–16]. This highlights 

the great impact of theoretical studies of the defect structure of ISPs, too. 

The distributed disclination model [17], also known as Marks-Ioffe model, for the 

analysis of  intrinsic elastic strain in ISPs has been usually employed to provide a theoretical 

description of the relaxation phenomena in such microparticles. According to this model,  

the ISP is treated as an elastic sphere with the residual strain caused by removing the solid 

angle 0.0613 with subsequent recovering of the continuity. Theoretical studies [18] have 

shown that the distributed disclination model  makes it possible to find the elastic fields and 

energy of ISPs, expressed in simple for analysis analytical equations. On the other hand, the 

behavioral features of the ISPs, such as the growth of a pentagonal crystalline whisker from 

the apex of the ISP [19–21], can only be explained by discrete disclination model. The 

residual elastic strain in the discrete model is induced by six wedge disclinations with strength 

 7.333 crossing the particle through the opposite icosahedron vertices [7,22]. This 

representation is able to describe the inhomogeneous residual strains in ISPs to precise the 

results of existing theoretical models of stress relaxation as well as to create new models 

taking into consideration the defect formation in vicinity of disclination lines.  

Even though the discrete model of ISPs was proposed more than twenty years ago, 

some of its aspects require clarification, in particular, ISP nonuniform elastic filed and stored 

energy associated with this field, which are the purpose of this work. 

 

Discrete disclination model 

A pentagonal microcrystal with a habitus of regular icosahedron contains six positive wedge 

disclinations penetrating the crystal and passing through its center (Fig. 1(a)) [7,22]. The 

outcrops of the disclination lines on the surface coincide with the vertices of the icosahedron. 

The plane angles between the disclination lines α are all the same and equal to 63.435°: 
2 2
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= =    
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where Rcs is circumscribed sphere radius, cs ih2(5 5) / 4R g= + ; gih is icosahedron edge. 

 

 
 

Fig. 1. Schematics of icosahedral small particle (a) and its discrete disclination model (b). A, 

B, C, D, E, and F are wedge disclinations in the particle interior; О is the center of the 

icosahedron and the point of the intersection of disclination lines; ω is Frank pseudovector; α 

is the flat angle between disclinations. The invisible edges of the icosahedron are indicated by 

black dashed lines. Disclination lines are shown by colored dashed lines 
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As a simplified discrete model of such an ISP, we adopted an elastic sphere with six 

positive disclinations with strength ω ≈ 7.333° passing through its center [23,24] (Fig. 1(b)). 

The disclinations are positioned in the sphere in the same way as they are positioned in the 

ISP shown in Fig. 1(a). 

In the framework of the discrete disclination model, the stored in ISP energy EISP can be 

calculated based on the solution for elastic field of wedge disclination in an elastic sphere 

[25,26]; EISP can be expressed as the sum of six disclination self-energies EI and 15 energies 

of interaction between intersecting disclinations I and II EI-II: 

ISP I I-II6 15E E E= + .  (2) 

Figure 2 shows a geometric scheme for calculating elastic energies EI and EI-II. 

 

 
Fig. 2. Schematics for calculating the elastic energies of interacting wedge disclinations in a 

spheroid. a is a sphere radius; θ and R are angular and radial coordinates in the spherical 

coordinate system (R, θ, φ), respectively 

 

Elastic energy of a single disclination in a spheroid 

The disclination self-energies EI can be found using general formalism of the micromechanics 

of defects [27]: 

I * I

I

1

2
ij ij

V

E dV= −    ,   (3) 

where I *

ij  are eigenstrains of disclination I, and I

ij  are stresses of disclination I. 

In the case of wedge disclination defined by the position of its line x = 0, 0 ≤ R ≤ a and 

0 ≤ θ ≤ π (see Fig. 2), the eigenstrain of positive disclination I, can be written as: 
I * [( ), ] ( ) ( ) sin [( ), ] [ ] ( )xx yH H a R x R H H a R x           = − − − = − − − ,   (4) 

where H[ξ] is Heaviside function, δ(x) is Dirac delta function. Using Eqs. (3) and (4) the 

energy of a single disclination in a sphere can be modified as follows: 

I * I 2 I

I 0

0 0

1
sin |

2 2
xx xx xx x

V

a

E dV R dRd== − =  



     ,   (5) 

with the known disclination stress component I I

0|xx x= =    [25]: 
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where P2m(cosθ) are Legendre polynomials, 1

2 (cos )mP  are associated Legendre polynomials; 

G is shear modulus; ν is Poisson’s ratio. 

After integrating Eq. (5), the expression for the stored (elastic energy) of a single wedge 

disclination in a spheroid EI acquires the final form: 
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that leads to the specific energy per unit volume of the sphere w1: 
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Figure 3 presents the specific energy w1 as a function of Poisson’s ratio ν. For 

comparison, the same Fig. 3 shows the disclination energy per unit volume of a long cylinder 

of radius a [28]: 
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Fig. 3. Dependences of the elastic energy of a single wedge disclination per unit volume w on 

the Poisson’s ratio ν in a sphere and a cylinder 

 

It is worth to note that the graphs in Fig. 3 are identical to those first given in Ref. [26], 

where the formula for disclination energy in a spheroid had a different from Eq. (8) form 

(apparently, the terms of the series were grouped in another way than in the present work). 

 

Interaction energy of intersecting wedge disclinations in a spheroid 

The interaction energy of intersecting disclinations in a sphere EI-II can also be found using 

general formulas of micromechanics of defects [27]: 

I * II 2 II

I-II 0

0 0

sin |xx xx xx x

V

a

E dV R dRd== − =  


      , (10) 

where I *

ij  are eigenstrains of disclination I, and II

ij  are stresses of disclination II. 

Independence of the disclination elastic fields on the angle φ in the coordinate system 

associated with the disclination axis, see Eq. (6), allows one to make the transition from 
II

0|xx x=  to II

  in Eq. (10), and also write down the following relation: 

II I
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→ −

=
  

   (11) 

Considering Eq. (11), Eq. (10) is reduced to the following form: 
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            . (12) 

In Eq. (12), it is necessary to account for the following: dependence I

 on the angle θ 

or θ′ assumes that 0 ≤ θ ≤ π. Therefore, the integration over the variable φ in Eq. (12) should 

be performed by dividing the integration interval (–α, π–α) into (–α, 0) and (0, π–α). Note that 

the integration over a variable R gives an analytical result, and then the integration over the 

angle can be done numerically. In addition, it is necessary to consider the fact that for the 

interval (–α, 0), the eigenstrain of the disclination (and the elastic field) changes sign to the 

opposite. 

Figure 4 shows the dependence of the energy of intersecting disclinations in a spheroid 

EI-II on the flat angle between disclinations α. The five-pointed stars show calculated values, 

and the solid curve is the envelope. 
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Fig. 4. Dependence of the energy of intersecting wedge disclinations in a spheroid EI-II on the 

flat angle α between them 

 

Results and Discussion 

It is obvious that in the case of coincidence of two interacting disclinations (α = 0 or α = π), the 

interaction energy between two dislocations is equal to twice the elastic energy of a single 

disclination: EI-II = 2EI, and the total energy of such a system is 4EI. This corresponds to the single 

disclination energy EI with strength 2ω (ω → 2ω in Eq. (7)). At mutually perpendicular position 

of disclinations (α = π/2), the integral interaction energy between two dislocations EI-II is zero. 

Consider all the results of the analytical and numerical calculations, the stored in the 

ISP elastic energy EISP defined within the framework of discrete disclination model can be 

calculated by exploring Eq. (2) (α = 63.435°, ω ≈7.333°, ν = 0.3): 
2 3 3

IPP 0.687 0.0113E G a Ga  . (13) 

For comparison, let us find the value of ISP energy in the distributed disclination model 

(Marx-Ioffe model), in which six intersecting disclinations are replaced by continuously 

distributed conical stereo disclinations with total strength χ = 3ω/2π ≈ 0.06 [17]: 
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For the same radius of spheroid, the distributed disclination model gives a lower value 

of ISP energy compared to those found with the discrete disclination model, at least for the 

Poisson’s ratio ν = 0.3, the energy values differ by 1.7 times: 
IPP IPP/ 1.7E E  . Table 1 shows 

the ratio of the stored in ISP energies calculated within the framework of two models (discrete 

and distributed ones) for several values of Poisson's ratio ν. 

 

Table 1. Icosahedral small particle energy values found within discrete (EISP) and distributed 

(
IPPE ) disclination models for several values of Poisson's ratio 

Poison’s ratio ν EISP, Gω2a3 
ISPE

, Gω2a3 
ISP ISP/E E

 

0 0.528 0.212 2.5 

0.1 0.576 0.259 2.2 

0.2 0.626 0.318 2.0 

0.3 0.687 0.394 1.7 

0.4 0.785 0.495 1.6 

0.5 0.882 0.637 1.4 

 

As can be seen from Tab. 1, for any positive values of Poison’s ratio ν, ISP energy in 

discrete disclination model is larger than in distributed disclination model: 
IPP IPPE E  , and 



Disclination models in the analysis of stored energy in icosahedral small particles  82 

with a decrease in the Poisson's ratio ν of the ISP material, the discrepancy in ISP energy 

within discrete and distributed models becomes larger. 

 

Conclusions 

In this work, we have presented the discrete disclination model of icosahedral small particles 

(ISPs). The discrete disclination model considers ISP as an elastic spheroid with six positive 

wedge disclinations passing through its center in opposite to the distributed disclination model 

based on conical stereo disclinations continuously distributed over spheroid volume. In order 

to calculate the stored (elastic) in ISP energy, the pair interaction energy of disclinations in a 

spheroid has been calculated for the first time as a function of the plane angle between wedge 

disclinations. It has been shown that for disclinations located strictly opposite each other, the 

energy of their interaction is equal to twice the elastic energy of the single disclination in the 

sphere. On the other hand, for disclinations located at right angles to each other, the 

interaction energy has zero value. 

We have also analyzed the influence of Poison’s ratio on the energy of ISP found within 

both discrete and distributed disclination models. It has been established that for any positive 

values of Poisson's ratio of ISP material, the stored energy calculated within the discrete 

disclination model demonstrates larger values than those calculated within the distributed 

disclination model. The differences are stronger, the smaller the value of Poisson's ratio. 

Summarizing the findings, the discrete disclination model proposed opens the 

possibility to the strict analysis of icosahedral small particles. 
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