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Abstract. The assessment of stresses arising from the interaction of the ice field and inclined 
structures is an important part of research in ice mechanics. For these purposes, various 
mathematical tools are used, including mechanical models of beams. The article presents 
solutions for the equation of dynamic deflection of a beam with different boundary 
conditions, as well as taking into account the influence of a liquid located under the ice field. 
The inclusion of the base reaction in the beam deflection equation allows us to obtain an 
alternative model, which in some cases turns out to be more accurate than others. The 
obtained solutions are tested on the results of our own experiments conducted in an ice basin 
with model ice. In the experiments, the velocity of structures was varied; force projections, 
time, and place of the ice beam failure were recorded. 
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1. Introduction  
A significant part of the research on the impact of ice on marine structures is devoted to the 
interaction of the ice field with an inclined plane. In the Arctic conditions, ice fields pose 
danger to offshore structures. Variation of the inclination angle governs a reduction in the 
load on these structures.  
 Failure of ice when interacting with an inclined plane is a complex process consisting of 
several stages. This paper considers a stage lasting until the first break appears in the ice 
sheet. The main type of inclined ice plane failure is bending; stresses arising due to 
compression of the material also have a slight impact [1,2]. For the purpose of a detailed 
study of the above-mentioned processes, model tests on the destruction of ice by an inclined 
structure have been conducted; the experiments have determined the components of the force 
load on the model of the inclined structure.  
 In recent decades, the issue of the interaction of ice with an inclined plane has been 
actively studied by well-known scientists in the field of ice mechanics, such as Frederking R. 
[3,4], Croasdale K. [5], Kheisin D. [6,7], Dempsy J. [8] and Maattanen U. [9]. Frederking 
investigated the behavior of the ice cover acting on an inclined structure at its destruction, the 
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types of occurring cracks, and the stages of their formation. Paper [4] presents the graphs on 
the dependence of the maximum value of the horizontal load on the inclined plane on the 
friction coefficient, ice thickness, etc. Kheisin was the first to describe the linear theory of the 
dynamic phenomena occurring in the ice sheet. For example, he considered the deformation 
of an ice field as bending of a plate under the action of a concentrated force, taking into 
account the influence of waves in water using the wave equation or the liquid potential. The 
main equation considered in [7] in the case of the above-mentioned process is given as 
𝐷𝐷∇4𝑤𝑤 + 𝜌𝜌1ℎ

𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕2

+ 𝜌𝜌2𝑔𝑔𝑤𝑤 + 𝜌𝜌2
𝜕𝜕Ф
𝜕𝜕𝜕𝜕

= 𝑃𝑃0𝑒𝑒𝑖𝑖𝑖𝑖𝜕𝜕𝛿𝛿(𝑥𝑥,𝑦𝑦), where the potential of liquid – is 
Ф(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡), the deflection of the plate – is 𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑡𝑡), liquid and ice properties are given by 
the densities 𝜌𝜌1,2. The analytical integration of this equation becomes problematic with the 
presence of inhomogeneous boundary conditions; thus it requires numerical solutions or 
simplifications of the geometry [10].   
 If this equation is simplified, the summand with the liquid potential can be omitted, then 
the influence of water will be taken into account by the summand with a modulus of a 
subgrade reaction (𝜌𝜌2𝑔𝑔), or will be replaced by a coefficient of an added mass. The numerical 
solution of a two-dimensional problem using the bed coefficient is presented in [11], in [12] 
the ice field failure is modeled by FDM using the coefficient of an added mass.  
 This paper presents a comprehensive study of the analytical solution of two equations of 
the ice field dynamic bending in a one-dimensional case, i.e., the geometry of the ice field is 
simplified to the case of an ice beam. It is possible to assume that the deflections of the 
longitudinal sections of the ice field plate slightly differ from each other and coincide with the 
deflection of the section in the middle line of a plate. Additionally, it is assumed that Young's 
modulus is constant. 
   
Nomenclature 
𝐸𝐸 – Young's module, Pa;  
𝐼𝐼 – moment of inertia, m4;   
𝑘𝑘 – coefficient of an elastic foundation (bed), kN/m3;  
𝜌𝜌 – material density, kg/m3;  
ℎ – beam thickness, m;  
𝑏𝑏 – beam width, m;  
𝐿𝐿 – beam length, m. 
 
2. Mathematical model   
Modelling the processes of interaction of the ice field with various objects involves 
simplifying its geometry. The case when the ice field hits an inclined plane is often 
considered in mechanics as a problem of a beam bending under certain boundary conditions. 
Accounting for the influence of water, which is under the ice field, requires adding an elastic 
foundation to the equation and sometimes an added mass. The paper considers both of the 
cases. The equation of the dynamic deflection of a beam on an elastic foundation is given as 
[13] 
𝜌𝜌ℎ 𝜕𝜕2𝑤𝑤

𝜕𝜕𝜕𝜕2
+ 𝐸𝐸𝐼𝐼 𝜕𝜕

4𝑤𝑤
𝜕𝜕𝑥𝑥4

+ 𝑘𝑘𝑤𝑤 = 0,        (1) 

where 𝑤𝑤(𝑥𝑥, 𝑡𝑡) is the desired transverse displacement 𝐼𝐼 = 𝑏𝑏ℎ3

12
 – is the moment of inertia for a 

rectangular beam, 𝜌𝜌 is the density of ice. 
It is necessary to set four boundary conditions for equation (1). When the end of the 

beam, which represents the free edge of an ice field, hits an inclined structure at speed 𝑣𝑣, it 
instantly receives a vertical component of the speed, depending on the inclination angle 
(Figure 1 (a)). It is assumed that the forces are applied to the neutral axis of the beam, then the 
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condition of zero bending moment is set at the free end.  The boundary conditions will be as 
follows:  
𝑤𝑤(0, 𝑡𝑡) = 𝑣𝑣 𝑡𝑡 𝑐𝑐𝑡𝑡𝑔𝑔𝑐𝑐;   𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑥𝑥2

(0, 𝑡𝑡) = 0;  𝑤𝑤(∞, 𝑡𝑡) = 0;  𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

(∞, 𝑡𝑡) = 0.               (2) 
This paper also considers another possible approach to set boundary conditions for this 

type of problem, which is force boundary conditions. When the ice edge comes into contact 
with an inclined plane, brittle failure occurs due to the fragility of the material. At the free 
end, a contact surface is formed which gives as a lever arm to the moment of the longitudinal 
component 𝑷𝑷𝒙𝒙 of the force N (Fig. 1(b)). The bending moment for a rectangular beam, taking 
into account the sign is given as 𝑀𝑀 = −ℎ|𝑷𝑷𝒙𝒙|

2
. The transverse component of the force 𝑭𝑭𝒛𝒛 

initiates the setting of the boundary condition for setting the external force at the end  
𝐹𝐹 = |𝑭𝑭𝒛𝒛 |.                                                                  

 

 
Fig. 1. Simplified models for two types of boundary conditions of the problem of the bending 
ice beam failure due to interaction with an inclined structure: (a) – the first type of boundary 

conditions; (b) – the second type of boundary conditions 
 

A model experiment in an ice tank allows us to obtain force measurements 𝑃𝑃𝑥𝑥, 𝐹𝐹𝑧𝑧 using 
dynamometers. Figure 2 shows an example of measuring the transverse component 𝑃𝑃𝑥𝑥 during 
1 minute in the experiment on the destruction of a simulated ice beam by an inclined plane. 
The linear section of the load growth characterizes the movement of the ice field along with 
the plate until the crack is formed.  

The time dependence according to the linear law can be expressed in terms of the 
proportionality coefficients, which are obtained from the linear approximation of discrete 
signals from the sensor. Then 𝑃𝑃𝑥𝑥 = 𝑘𝑘𝑥𝑥𝑡𝑡, 𝐹𝐹𝑧𝑧 = 𝑘𝑘𝑧𝑧𝑡𝑡 (Fig. 3). 

Thus, the force and moment included in the boundary conditions will be written as 
follows: 𝐹𝐹 = 𝐹𝐹(𝑡𝑡) = 𝐶𝐶𝐹𝐹 ∙ 𝑡𝑡,𝑀𝑀 = 𝑀𝑀(𝑡𝑡) = 𝐶𝐶𝑀𝑀 ∙ 𝑡𝑡, where  𝐶𝐶𝐹𝐹 = 𝑘𝑘𝑧𝑧 ,𝐶𝐶𝑀𝑀 = 𝑘𝑘𝑥𝑥

ℎ
2
. As a result, we 

obtain:  
𝐸𝐸𝐼𝐼 𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑥𝑥2

(0, 𝑡𝑡) = −𝐶𝐶𝑀𝑀𝑡𝑡;   𝐸𝐸𝐼𝐼 𝜕𝜕
3𝑤𝑤
𝜕𝜕𝑥𝑥3

(0, 𝑡𝑡) = 𝐶𝐶𝐹𝐹𝑡𝑡;  𝑤𝑤(∞, 𝑡𝑡) = 0;  𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

(∞, 𝑡𝑡) = 0, (3) 
The initial conditions are zero: 

𝑤𝑤(𝑥𝑥, 0) = 0;  𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕

(𝑥𝑥, 0) = 0.  (4) 
The analytical solution of the partial differential equation (1) under zero initial 

conditions and boundary conditions (2) or (3) can be obtained using the Laplace integral 
transforms:  
𝑊𝑊(𝑥𝑥,𝑝𝑝) =  ∫ 𝑤𝑤(𝑥𝑥, 𝑡𝑡)𝑒𝑒−𝑝𝑝𝜕𝜕𝑑𝑑𝑡𝑡+∞

0 , 
where 𝑝𝑝 = 𝛼𝛼 + 𝑖𝑖𝑖𝑖 is a complex parameter. The transition to a new parameter allows to omit 
the time variable; thus, a new differential equation is obtained, the solution of which is 
expressed in terms of elementary functions.  
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Fig. 2. Graph of loads on the inclined plane recorded during the experiment for the speed of 

movement 𝑣𝑣 = 5 mm/s 
 

 
Fig. 3. Graphs of linear load sections for force components 𝑃𝑃𝑥𝑥 and 𝐹𝐹𝑧𝑧 at speed 𝑣𝑣 = 5 mm/s. 
The red line indicates the linear function obtained by approximating grid functions by the 

least-squares method. 
 

The 𝑤𝑤1(𝑥𝑥, 𝑡𝑡) denotes a solution of equation (1) for mixed boundary conditions of type 
(2), 𝑤𝑤2(𝑥𝑥, 𝑡𝑡) − the solution of the equation (1) for force boundary conditions of type (3).  
𝑤𝑤1(𝑥𝑥, 𝑡𝑡) =  1

2𝜋𝜋𝑖𝑖 ∮ 𝑒𝑒
𝑝𝑝𝜕𝜕𝑒𝑒−𝛽𝛽𝑥𝑥 𝑣𝑣

𝑝𝑝2
𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽𝑥𝑥 𝑑𝑑𝑝𝑝,    (5) 

𝑤𝑤2(𝑥𝑥, 𝑡𝑡) =  1
2𝜋𝜋𝑖𝑖 ∮ 𝑒𝑒

𝑝𝑝𝜕𝜕𝑒𝑒−𝛽𝛽𝑥𝑥 �𝐶𝐶𝑀𝑀𝛽𝛽+𝐶𝐶𝐹𝐹
2𝑝𝑝2𝛽𝛽3

𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽𝑥𝑥 − 𝐶𝐶𝑀𝑀
2𝑝𝑝2𝛽𝛽2

𝑐𝑐𝑖𝑖𝑠𝑠 𝛽𝛽𝑥𝑥� 𝑑𝑑𝑝𝑝,        (6) 
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where =
�𝑝𝑝

2+𝜅𝜅
𝛾𝛾

4

√2
, 𝐸𝐸𝐸𝐸
𝜌𝜌ℎ

= 𝛾𝛾 , 𝑘𝑘
𝜌𝜌ℎ

= 𝜅𝜅. 
To go to the original coordinates, it is necessary to carry out the inverse transformation, 

calculate the Riemann-Mellin integral. At this stage, difficulties may arise mainly related to 
the choice of the integration contour, bypassing the branching points, and deducting the 
residue of the function of a complex variable. Let us bring the solution to the final version for 
two boundary conditions:  

𝑤𝑤1(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣𝑡𝑡 𝑐𝑐𝑡𝑡𝑔𝑔𝑐𝑐 𝑒𝑒−
√2
2
� 𝑘𝑘
𝐸𝐸𝐸𝐸

4
𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐( √2

2
�𝑘𝑘
𝐸𝐸𝐸𝐸

4
𝑥𝑥),   (7) 

𝑤𝑤2(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕𝑒𝑒−
√2
2 � 𝑘𝑘

𝐸𝐸𝐸𝐸
4

𝑥𝑥

� 𝑘𝑘
𝐸𝐸𝐸𝐸

�(𝐶𝐶𝑀𝑀 + √2𝐶𝐶𝐹𝐹

� 𝑘𝑘
𝐸𝐸𝐸𝐸

4
) 𝑐𝑐𝑐𝑐𝑐𝑐( √2

2
�𝑘𝑘
𝐸𝐸𝐸𝐸

4
𝑥𝑥) − 𝐶𝐶𝑀𝑀𝑐𝑐𝑖𝑖𝑠𝑠 (√2

2
�𝑘𝑘
𝐸𝐸𝐸𝐸

4
𝑥𝑥)�.             (8) 

In this form, the solutions show only a deflection. To study the process of the ice field 
failure, the stresses arising in the material are of greater interest. Let us assume that the 
condition for initiating destruction is achieving the ultimate bending strength of the beam 
material max0≤𝑥𝑥≤∞,0≤𝜕𝜕≤∞  𝜎𝜎(𝑥𝑥, 𝑡𝑡) >  𝜎𝜎𝑠𝑠. Knowing the analytical deflection formulas 
expressed in this paper by formulas (7) and (8), we can obtain the stresses. For two models, 
we will obtain the following expressions for the stresses:  

𝜎𝜎1(𝑥𝑥, 𝑡𝑡) = 2𝐸𝐸 ℎ
2
𝑣𝑣𝑡𝑡 𝑐𝑐𝑡𝑡𝑔𝑔𝑐𝑐�𝑘𝑘

𝐸𝐸𝐸𝐸
4

𝑒𝑒−
√2
2
� 𝑘𝑘
𝐸𝐸𝐸𝐸

4
𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐( √2

2
�𝑘𝑘
𝐸𝐸𝐸𝐸

4
𝑥𝑥),     (9) 

𝜎𝜎2(𝑥𝑥, 𝑡𝑡) = 𝐸𝐸 ℎ
2
𝑡𝑡𝑒𝑒−

√2
2
� 𝑘𝑘
𝐸𝐸𝐸𝐸

4
𝑥𝑥 �(𝐶𝐶𝑀𝑀 + √2𝐶𝐶𝐹𝐹

� 𝑘𝑘
𝐸𝐸𝐸𝐸

4
) 𝑐𝑐𝑖𝑖𝑠𝑠( √2

2
�𝑘𝑘
𝐸𝐸𝐸𝐸

4
𝑥𝑥) + 𝐶𝐶𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐 (√2

2
�𝑘𝑘
𝐸𝐸𝐸𝐸

4
𝑥𝑥)�.    (10) 

Formulas (7)-(10) presented in this chapter will be used to model the behavior of the ice 
field in the conditions of the model experiments on the destruction of ice when coming into 
contact with an inclined plane.  

 

3. Taking into account the additional masses in the problem with a beam movement 
When a body moves in an inviscid liquid, its inertial properties are determined by the added 
masses. For bodies of various shapes moving in a homogeneous liquid, these characteristics 
are well studied and presented in numerous papers, for example, [14].     

The formulas for the added mass of a rectangle are given in [15,16]. The coefficient of 
added masses is equal to 𝑘𝑘11 = 𝜆𝜆11

𝜌𝜌𝑏𝑏𝜌𝜌
. For a beam with the parameters 𝜌𝜌

𝑏𝑏
= 10 the  𝑘𝑘11 ≈ 2.2.

 Similarly (1), we can write the equation of the beam deflection, where the influence of 
the hydraulic foundation is taken into account by adding the added mass 
(1 + 𝑘𝑘11)𝜌𝜌ℎ 𝜕𝜕2𝑤𝑤

𝜕𝜕𝜕𝜕2
+ 𝐸𝐸𝐼𝐼 𝜕𝜕

4𝑤𝑤
𝜕𝜕𝑥𝑥4

= 0. (11) 
 The boundary conditions are set as follows: 
𝑤𝑤(0, 𝑡𝑡) = 𝑣𝑣𝑡𝑡;   𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑥𝑥2

(0, 𝑡𝑡) = 0;  𝑤𝑤(∞, 𝑡𝑡) = 0;  𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

(∞, 𝑡𝑡) = 0,  (12) 
where 𝑣𝑣 is the speed of movement of a structure. The initial conditions are zero: 
𝑤𝑤(𝑥𝑥, 0) = 0;  𝜕𝜕𝑤𝑤

𝜕𝜕𝜕𝜕
(𝑥𝑥, 0) = 0.  

 In this formulation, the problem has been solved by Osipenko N.M. [17], and the 
following solution has been obtained: 

𝑤𝑤3(𝑥𝑥, 𝑡𝑡) = −
𝑡𝑡
2
�
𝑆𝑆(𝜂𝜂)

𝜂𝜂
1
2
𝑑𝑑𝜂𝜂

∞

𝜂𝜂

+
𝑡𝑡
2

 �
𝑆𝑆′(𝜂𝜂)

𝜂𝜂
3
2
𝑑𝑑𝜂𝜂

∞

𝜂𝜂

, 𝜂𝜂 =
1

4𝑎𝑎2
�
𝑥𝑥2

𝑡𝑡
� ,𝑎𝑎 = �

𝐸𝐸𝐼𝐼
𝑐𝑐𝜌𝜌ℎ

�
1
4

,  
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𝑆𝑆(𝜂𝜂) = 23/2

𝜋𝜋
𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝜂𝜂. (13) 

𝑤𝑤3(𝑥𝑥, 𝑡𝑡) = 3𝑣𝑣𝜕𝜕
√𝜋𝜋
�2𝐶𝐶 ��2𝜂𝜂

𝜋𝜋
� − 1� − 2√2𝑣𝑣𝜕𝜕

𝜋𝜋
𝑠𝑠𝑖𝑖𝑠𝑠𝜂𝜂
�𝜂𝜂

, (14) 

where 𝐶𝐶(𝑥𝑥) = ∫ cos(𝑡𝑡2)𝑑𝑑𝑡𝑡𝑥𝑥
0  is the Fresnel C integral. 

 The type of the solution (14) is a simplification of the solution (13) obtained in the 
article [17]. However, when calculating the stresses according to the formula given earlier, the 
question arises about the continuity of the resulting function 𝜎𝜎:  
𝜎𝜎3(𝑥𝑥, 𝑡𝑡) = 𝐸𝐸 ℎ

2
�− 12𝑣𝑣𝑥𝑥

𝜋𝜋3𝑎𝑎3√2𝜕𝜕
𝑐𝑐𝑖𝑖𝑠𝑠 �𝑥𝑥

2

𝑎𝑎2
1
2𝜋𝜋𝜕𝜕
� + √2𝑣𝑣

2𝑎𝑎𝜋𝜋𝑥𝑥
𝑐𝑐𝑐𝑐𝑐𝑐 �𝑥𝑥

2

𝑎𝑎2
1
2𝜋𝜋𝜕𝜕
� −  2√2𝑣𝑣𝜕𝜕𝑎𝑎

𝜋𝜋𝑥𝑥3
𝑐𝑐𝑖𝑖𝑠𝑠 �𝑥𝑥

2

𝑎𝑎2
1
2𝜋𝜋𝜕𝜕
��. (15) 

The formula for stresses cannot be used at 𝑥𝑥 = 0, since it is discontinuous at this point. 
It will be convenient to use an approximate form of the solution for small values of the time 
variable in the form of 𝑤𝑤3(𝑥𝑥, 𝑡𝑡) ≈  12𝑘𝑘𝑧𝑧

𝐸𝐸ℎ3
�2𝐵𝐵

3

15
𝑡𝑡5/2 − 𝐵𝐵2

4
𝑥𝑥𝑡𝑡2 + 𝑥𝑥3𝜕𝜕

6
− 𝑥𝑥5

2𝐵𝐵2
�, where  

𝐵𝐵 ≈ 1.04(ℎ�𝐸𝐸/𝜌𝜌
√𝑐𝑐

)1/2. Since 𝑘𝑘𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑡𝑡, the stresses are approximately expressed as 

𝜎𝜎3(𝑥𝑥, 𝑡𝑡) ≈  6𝑘𝑘𝑧𝑧
ℎ2
𝑥𝑥 �𝑡𝑡 − 10 𝑥𝑥2

𝐵𝐵2
�. 

These approximated formulas work well for small durations; with the growth of 𝑡𝑡, the 
solution shows a large deviation from the empirical data. 
 
4. Experimental Results  
To verify the results, the model tests on the interaction of the ice field with an inclined plane 
have been carried out in the ice basin of the Krylov State Research Centre (St. Petersburg, 
Russia). The simulated ice for these tests is made according to the Fine Grain technology. The 
temperature of ice freezing was -25°C. The thickness of the frozen ice averaged h=50 mm 
along the entire length of the ice tank. Rectangular beams are cut out of a homogeneous field 
with a width of b = 0.5 m and a length of L = 1.5 m. The beam width was chosen according to 
the width of the existing model with an inclined wall. The length was chosen as long as 
possible, due to considerations of the technical feasibility of manufacturing at a given 
thickness of the ice. 
 The physical and mechanical properties of the model ice, such as Young's modulus, 
compressive, and bending strengths, have been measured according to the ITTC standards 
[18]. Table 1 presents the measured values.  
 
Table 1. Properties of the model ice 

Characteristics Value from the experiment (average) 
Density, kg/m3 900 
Young's modulus, MPa 24.2 
Compressive strength, kPa 28.88 
Flexural strength, kPa 22.8 

 
The experiment has used the principle of inverse motion – the ice field is stationary, the 

inclined plane is fixed on the trolley, and moves along the ice tank. The experimental data 
have been obtained for velocities (0.0025, 0.005, 0.025) m/s. The failure of the ice beams has 
been recorded using photo and video equipment. Figure 4 shows the moments of the ice field 
fracture. 
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Fig. 4. Images of the experimental installations in the experiment on the interaction of the ice 

field with the inclined plane at different velocities: (a) 25 mm/s, (b) 5 mm/s, (c) 2.5 mm/s. 
The angle of inclination is 53°, the thickness of the simulated ice is 0. 05 m 

 
The expressions 𝑤𝑤1(𝑥𝑥, 𝑡𝑡),𝑤𝑤2(𝑥𝑥, 𝑡𝑡),𝑤𝑤3(𝑥𝑥, 𝑡𝑡) are used to visualize the deflection of the 

ice field. Figure 5 shows the graphs of the beam deflection in different problem statements 
and at different time points.  

The deflection function for the third equation w3(x, t) on the considered interval 
x ∈ [0, 1.5] m is quite close to the linear function, with only the inclination angle changing in 
time. The analytical expression obtained for stresses σ3(x, t) in the framework of the model, 
taking into account the added masses does not fully describe the case of the ice material 
failure since the maximum value of stress increases significantly with time. 

Figure 6 shows the stresses in the ice beam at the time moment of fracture 𝑡𝑡𝑏𝑏𝑏𝑏 for 𝜎𝜎1 
and 𝜎𝜎2.  
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Fig. 5. Deflection plots for three problem statements at different time points for speed 

𝑣𝑣 = 5 𝑚𝑚𝑚𝑚/𝑐𝑐. Solid red line – solution 𝑤𝑤1(𝑥𝑥, 𝑡𝑡) taking into account the elastic foundation with 
mixed boundary conditions; dotted blue line – solution 𝑤𝑤2(𝑥𝑥, 𝑡𝑡) taking into account the elastic 
base with force boundary conditions.; dotted green line – solution 𝑤𝑤3(𝑥𝑥, 𝑡𝑡) for a model with 

an added mass factor 
 

 
Fig. 6. Stress graphs 𝜎𝜎1(𝑥𝑥, 𝑡𝑡) and 𝜎𝜎2(𝑥𝑥, 𝑡𝑡), shown at the moment of the fracture 𝑡𝑡𝑏𝑏𝑏𝑏𝑒𝑒𝑎𝑎𝑘𝑘1  and 

𝑡𝑡𝑏𝑏𝑏𝑏𝑒𝑒𝑎𝑎𝑘𝑘2  for each statement of the problem, respectively 
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For the second formulation of the problem, the fracture time is significantly longer than 
for the first one. According to the stress graphs, the time and place of the breaking point is 
determined from the following condition {𝑥𝑥 𝑏𝑏𝑏𝑏𝑒𝑒𝑎𝑎𝑘𝑘, 𝑡𝑡𝑏𝑏𝑏𝑏𝑒𝑒𝑎𝑎𝑘𝑘: 𝜎𝜎(𝑥𝑥 𝑏𝑏𝑏𝑏𝑒𝑒𝑎𝑎𝑘𝑘, 𝑡𝑡𝑏𝑏𝑏𝑏𝑒𝑒𝑎𝑎𝑘𝑘) > 𝜎𝜎𝑠𝑠}. Table 2 
below presents a comparison of the experimental results and analytical models. 

 
Table 2. Comparison of the results of two models  

Value Experimental Model 1 Model 2 Error, 
model 1 

Error, 
model 2 

𝑡𝑡𝑏𝑏𝑏𝑏𝑒𝑒𝑎𝑎𝑘𝑘, 𝑐𝑐 7.2 2.88 7.16 60% 0.5% 
𝑥𝑥 𝑏𝑏𝑏𝑏𝑒𝑒𝑎𝑎𝑘𝑘,𝑚𝑚 0.6 0.37 0.51 38% 15% 

 
4. Discussion and final remarks  

The solutions presented in the form of 𝑤𝑤1(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣𝑡𝑡𝑒𝑒−
√2
2
�𝑘𝑘𝑘𝑘
𝐸𝐸𝐸𝐸

4
𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐( √2

2
�𝑘𝑘
𝐸𝐸𝐸𝐸

4
𝑥𝑥) and  

 𝑤𝑤2(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕𝑒𝑒−
√2
2 �𝑘𝑘𝑘𝑘𝐸𝐸𝐸𝐸
4

𝑥𝑥

�𝑘𝑘𝑘𝑘
𝐸𝐸𝐸𝐸

�(𝐶𝐶𝑀𝑀 + √2𝐶𝐶𝐹𝐹

�𝑘𝑘𝑘𝑘
𝐸𝐸𝐸𝐸

4
) 𝑐𝑐𝑐𝑐𝑐𝑐( √2

2
�𝑘𝑘
𝐸𝐸𝐸𝐸

4
𝑥𝑥) − 𝐶𝐶𝑀𝑀𝑐𝑐𝑖𝑖𝑠𝑠(√2

2
�𝑘𝑘
𝐸𝐸𝐸𝐸

4
𝑥𝑥)� contain a time 

variable raised to the first power. This type of solution is associated with boundary conditions 
in which the force and moment depend linearly on time. Proper functions of the differential 
equation are reduced with expressions in the integration constants, which leaves only a linear 
factor 𝑡𝑡 in the solution. It turns out that 𝜕𝜕

2𝑤𝑤
𝜕𝜕𝜕𝜕2

≡ 0 for any values of the variables 𝑥𝑥 and 𝑡𝑡. In this 
case, the statement of the dynamic problem-equation (1) - does not make any sense. In the 

solution of equation (11) in the form of 𝑤𝑤(𝑥𝑥, 𝑡𝑡) = 3𝑣𝑣𝜕𝜕
√𝜋𝜋
�2𝐶𝐶 ��2𝜂𝜂

𝜋𝜋
� − 1� − 2√2𝑣𝑣𝜕𝜕

𝜋𝜋
𝑠𝑠𝑖𝑖𝑠𝑠𝜂𝜂
�𝜂𝜂

 the 

deflection function has a complex dependence on the time variable. Here 𝜕𝜕
2𝑤𝑤
𝜕𝜕𝜕𝜕2

≠ 0. 
However, the solutions 𝑤𝑤1,𝑤𝑤2 with a linear dependence on 𝑡𝑡 describe the experiment 

quite well in comparison with 𝑤𝑤3, where the deviation from the experiment is observed at 
short durations already. In the second solution, the time of the fracture coincides with the time 
of the ice beam fracture with an accuracy of 0.5%, which has been recorded on the video. 

 
5. Conclusion  
This paper obtains solutions of the equations of dynamic bending of the beam on an elastic 
foundation and with a coefficient of added masses, which are used to model the fracture 
process in the ice field interacting with an inclined plane [19]. For each equation, the 
formulation of boundary conditions corresponding to the physical process and mathematical 
considerations, namely, the continuity of the deflection function, is proposed.  
 The experiments in the ice tank on the failure of the beams by the inclined plane have 
been carried out to verify the mechanical models. During the experiments the values of the 
forces acting on the model with the inclined plane from the side of the ice beam have been 
recorded by means of a six-component dynamometer; video recording has been made from 
different angles. 
 The accuracy of the models in relation to the obtained experimental data differs. The 
smallest error is given by the model, the coefficients 𝐶𝐶𝑀𝑀 and 𝐶𝐶𝐹𝐹 in the boundary condition of 
which are based on the readings of the dynamometer. It is believed that coefficients 𝐶𝐶𝑀𝑀 and 
𝐶𝐶𝐹𝐹 can be obtained without additional empirical data on the dynamics of loads. For example, 
in [20] the expressions for coefficients are given in terms of various ice and liquid properties; 
but determining some parameters is more time-consuming than fixing loads on an inclined 
plane.  The plans for the further development of this issue include determining methods for 
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the non-empirical determination of force and moment multipliers in linear boundary 
conditions. 
 The results presented in this paper are applied to narrow beams. The microstructure of 
the ice is not taken into account, as well as small cracks that may form inside the material.  
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