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ABSTRACT  
The work presents the results of the experiments on annealing in air of bulk crystals of gallium oxide grown in 
Ar+O2 and CO2 atmospheres at a temperature of 1400 °C. The annealing time was 5 hours; the time to reach the 
temperature was 3.5 hours; the cooling time was 20 hours. Annealed samples show increasing of transmission 
in infrared area of electromagnetic spectrum and decreasing of width of X-ray rocking curve which means the 
reduction of the number of defects in crystals. Full width at half maximum of rocking curve for annealed samples 
was almost the same for both atmospheres: FWHMa = 84 arcsec for sample grown in Ar+O2 atmosphere and 
FWHMa = 80 arcsec for sample grown in CO2, which means that after annealing, the quality of the samples 
became comparable, despite the initial difference. 
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Introduction 

Recently, the theme of ultra-wide bandgap (UWBG) semiconductors has been gaining big 

attention [1–4]. The term UWBG is commonly used to denote semiconductors with a 

larger band gap Eg than traditional wide bandgap semiconductors such as silicon carbide 

(Eg=3.2eV [5]) and gallium nitride (Eg=3.4 eV [6]). Usually, compounds III-V (BN, AlN, 

AlGaN), diamond and compounds based on gallium oxide are considered as UWBG. The 

bulk crystal of gallium oxide (β-Ga2O3) is a semiconductor with a band gap of about 4.8 eV 

[7,8], with excellent electrical characteristics, such as large breakdown electric field of 

about 8 MV/cm theoretically [9] and about 3.8 MV/cm in the device [10], high radiation 

resistance [11] and relatively high electron mobility (up to 200 cm2V-1s-1 [12]). One of the 

main advantages of gallium oxide over other UWBG semiconductors is the possibility of 

fabricating bulk crystals by liquid phase growth methods such as the Czochralski method 

[13–19] and the edge-defined film-fed growth (EFG) method [20–25] used in the 

industry. 

Experiments on the annealing of bulk β-Ga2O3 crystals have shown that annealing 

in an oxygen-containing atmosphere leads to an increase in optical transmission in the 

IR region and a drop in the concentration of charge carriers [26–28]. During annealing 

without oxygen, for example in nitrogen [28] or in vacuum [29], the reverse processes 

occur — the concentration of carriers increases, transmission decreases. 
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Previous experiments have shown that increasing the oxygen concentration in the 

growth atmosphere improves the quality of crystals [30,31], as well as high-temperature 

annealing in an oxygen-containing atmosphere [26–28,31–33]. In addition, experiments 

have shown that the properties of the crystal after annealing change significantly at an 

annealing temperature of 1200 °C and above [31,33]. In this paper, the effect of annealing 

on gallium oxide crystals grown in different growth atmospheres is evaluated. 

 

Experimental setup and methodology 

For this study bulk single crystals of gallium oxide were grown in the industrial facility 

“Nika-3” (production of EZAN, Russia) using the Czochralski method as described in our 

previous work [30]. An iridium crucible was used to form the melt. β-Ga2O3 crystals were 

used as seeds. Ga2O3 powder with a purity of 99.999 % (5N) was used as a starting material 

for the formation of the melt. The growths were conducted in an argon atmosphere with 

the addition of 5 vol. % of oxygen and in CO2 atmosphere at a pressure of 1.4 bar. 

For the studies plane-parallel plates with thicknesses of 1 mm were cut from crystal 

boule along the cleavage plane (100). 

Annealing was conducted in a shaft furnace at a temperature of 1400 °C for 5 hours 

(the time to reach the temperature was 3.5 hours, the cooling time was 20 hours) in air. 

Sample for annealing was placed on sapphire substrate in corundum crucible. 

 

Results and Discussion 

The main difficulties in obtaining gallium oxide from the melt are the high melting point 

(1795–1820 °C [16,34]) and melt decomposition into volatile forms during growth in an 

atmosphere with oxygen deficiency [16]. The decomposition of the gallium oxide melt 

can be described by the following reactions: 

2Ga2O3 → 4GaO↑+ O2↑   (1)  

4GaO → 2Ga2O↑ + O2↑  (2)  

2Ga2O → 4Ga↑+ O2↑  (3) 

With crystal growth, decomposition leads to a lack of oxygen in the melt, which in 

turn leads to a violation of stoichiometry in the grown crystal and the formation of oxygen 

vacancies in crystal. Vacancies in β-Ga2O3 lead, for example, to an increase in optical 

absorption in the IR region of the spectrum [35]. 

 

 
Fig. 1. Photo of the samples of β-Ga2O3: a) sample grown in CO2 atmosphere; b) annealed sample grown in 

CO2 atmosphere; c) sample grown in Ar+O2 atmosphere; d) annealed sample grown in Ar+O2 atmosphere 
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After annealing, the sample became visually cloudy (Fig. 1), which indicates a change 

in the morphology of its top surface, presumably due to diffusion processes. For further 

experiments, a rough surface layer 0.1 mm thick was exfoliated from each annealed sample 

and the measurements were carried out on the remaining part of the samples. 

Figure 2 shows the normalized transmission spectra of samples. The graph shows 

that annealing led to an increase in transmission in the IR region of the spectrum, which 

means a decrease in the number of absorbing centers that can be oxygen vacancies [35]. 

There is also a strong difference between samples grown in Ar+O2 and in CO2 atmosphere, 

due to the almost five times higher [31] oxygen concentration in the growth atmosphere, 

which reduces the volatilization of oxygen from the melt [16]. 

  
Fig. 2. Normalized transmission spectra  

of samples of β-Ga2O3.  

Solid line – samples grown in Ar+O2 atmosphere, 

dashed line - samples grown in CO2 atmosphere 

Fig. 3. XRD 2-spectra of annealed and  

non-annealed samples of β-Ga2O3.  

Solid line – samples grown in Ar+O2 atmosphere,  

dashed line - samples grown in CO2 atmosphere 
 

XRD spectra (Fig. 3) showed the presence of peaks corresponding to the (100) plane 

of the β-Ga2O3 and showed no phase changes between samples. Figures 4 and 5 present 

normalized rocking curves of samples for peak (400). For sample grown in the Ar+O2 

atmosphere we can see significant reduction in the full width at half maximum (FWHM) 

of the rocking curve (RC) from FWHMna = 208 arcsec for the non-annealed sample to 

FWHMa = 84 arcsec for the annealed one. 
 

  
Fig. 4. Rocking curve ω for the peak (400) of 

annealed and non-annealed samples of β-Ga2O3 

grown in Ar+O2 atmosphere. FWHMna=208 arcsec, 

FWHMa= 84 arcsec 

Fig. 5. Rocking curve ω for the peak (400) of 

annealed and non-annealed samples of β-Ga2O3 

grown in CO2. FWHMna=82 arcsec, FWHMa= 80 

arcsec 
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Together with the visible change in the morphology of the sample surface after 

annealing, we can say about the movement of defects on to the surface and an increase 

in the bulk crystalline quality. 

For the sample grown in CO2 before annealing, a wide tail is observed on the RC, 

which indicates the presence of defect blocks in the crystal. The RC of the non-annealed 

sample can be decomposed by gaussians to the three peaks (see Fig. 6), similar to how it 

was done in [36], which means the presence of multiple disoriented blocks. After 

annealing, this tail disappears, which shows a decrease in the number of defects i.e., an 

improvement in crystal quality. The FWHM of RC after annealing correspond to the FWHM 

of strongest peak at the RC of the non-annealed sample. 

 

 
 

Fig. 6. Decomposition of rocking curve ω for the peak (400) of non-annealed sample β-Ga2O3 grown in 

CO2 atmosphere by gaussians 

 

Conclusions 

The work showed that annealing of β-Ga2O3 bulk crystals in air at 1400 °C for 5 hours 

leads to an increase in transmission in the infrared region of the electromagnetic 

spectrum and a decrease in the width of the rocking curve, which indicates a decrease in 

the number of defects in crystal. As has been shown in [35] oxygen vacancies can serve 

as absorption centers in a gallium oxide. Thus, the increase in transmittance in the IR 

region can be explained by a decrease in the concentration of oxygen vacancies during 

annealing in an oxygen-containing atmosphere (in air). RC shows that after annealing 

FWHM is almost same for samples grown in CO2 and Ar+O2 (95:5 vol. %) atmosphere, 

which means that after annealing, the quality of the sample obtained in the atmosphere 

of CO2, which was initially lower, became comparable to the quality of the sample 

obtained in the atmosphere of Ar+O2. In general, it can be concluded that annealing leads 

to a significant improvement in the quality of the samples regardless of the growth 

atmosphere, although the sample grown in CO2 still shows higher absorbance in IR range 

of electromagnetic spectrum. 
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