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Abstract. The article is devoted to the elastic-plastic analysis of a rotating hollow cylinder 

with fixed ends. It is assumed that the strains in a cylinder are infinitesimal and additively 

decomposed into elastic and plastic components. The elastic component of strain is 

determined in accordance with Hooke's law. The Tresca’s yield condition, the flow rule 

associated with it and the power law of hardening are adopted in order to calculate plastic 

strains. The presented analysis covers both loading and unloading stages. Unloading of a 

cylinder is assumed to be purely elastic. For a number of special cases of the hardening law, 

an analytical solution of the formulated system of equations is found. Special attention is paid 

to the calculation of the angular velocity corresponding to the complete transition of a 

cylinder to the plastic state. Dependencies of the fully-plastic limit angular velocity on the 

hardening parameters are established. 
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Introduction 

A rotating cylinder, along with a rotating disk, is one of the classical problems of solid 

mechanics. In addition to calculation of stresses and strains, it is of considerable interest to 

determine the maximum permissible angular velocity. Elastoplastic analysis gives a more 

accurate estimate of the bearing capacity of a rotating cylinder compared to the theory of 

elasticity. In this context, a relatively new technology of rotational autofrettage [1,2] also 

should be mentioned. Accurate modelling of this technology is possible only under the 

framework of elastoplastic analysis. Next, consider the works which are more relevant to the 

content of the present article.  

The solution of the elastoplastic problem for a linearly hardening rotating hollow 

cylinder with fixed ends is presented in [3]. A similar problem for an ideal hollow cylinder 

with free ends was considered by the authors of [4]. In [3,4], the distributions of 

displacements, stresses, and plastic strains in the cylinder under loading were found. 

Moreover, elastic limit angular velocity and fully-plastic limit angular velocity was 

established. In [1,2], rotational autofrettage of a hollow cylinder with fixed ends was modeled 

https://orcid.org/0000-0002-5156-424X


Exact elastoplastic analysis of a rotating hollow cylinder made of power-law hardening material  97 

considering the Bauschinger effect. The authors obtained the distribution of stresses in the 

cylinder at the stage of loading, as well as the distribution of residual stresses in the cylinder 

after its preliminary rotation at a given maximum angular velocity. It was assumed that the 

cylinder is made of an ideal elastoplastic material [1] or a linearly hardening [2] material.  

Rotational autofrettage of a hollow cylinder with free ends was studied in [5,6]. In [5], the 

authors obtained exact solutions for displacements, stresses, and plastic deformations in a 

rotating hollow cylinder at the stages of loading and unloading. Both isotropic and kinematic 

(Bauschinger effect) hardening was neglected. It should be noted that in [1–5] the Tresca 

plasticity condition and the flow law associated with it were adopted. 3D FEM analysis of 

rotational autofrettage is presented in [6]. The analysis is based on the von Mises’ yield 

condition, the associated flow rule, and the Ramberg-Osgood power-law of hardening. The 

authors of [6] established a fairly good agreement between the numerical calculations and the 

analytical solution [5].  

A rotating cylinder made of a nonlinear hardening material was studied in [7]. It was 

established that the parameters of hardening have a significant effect on the distribution of 

stresses and strains in the cylinder, as well as on the fully-plastic limit angular velocity. In [8], 

the distribution of residual stresses in a rotating nonlinear hardening cylinder after its 

preliminary rotation at a given velocity was found. Critical angular velocity is obtained, at 

which a secondary plastic flow does not occur at the stage of unloading. In [7, 8], the 

deformation theory of plasticity, the von Mises’ yield condition, and the Swift hardening law 

were used. The solution was carried out using the numerical algorithm based on the shooting 

method. 

The studies [9, 10] are devoted to the elastoplastic analysis of a rotating hollow cylinder 

in the presence of a stationary temperature gradient between the side surfaces of the cylinder.  

The problem statement was based on the Tresca condition, the flow law associated with it, 

and the law of linear hardening. To calculate thermal strains, the heat conduction equation and 

the Duhamel-Neumann law were adopted. It was assumed that the mechanical and 

thermophysical parameters of the material do not depend on temperature. It was established 

[9, 10] that an inhomogeneous temperature field has a significant effect on the evolution of 

plastic flow in a rotating hollow cylinder. 

One way to increase the bearing capacity of a structure and reduce its weight is to use 

functionally graded materials. Elastoplastic analysis of rotating hollow FGM-cylinders with 

fixed ends is presented in [11–14]. The results were obtained on the basis of the Tresca 

condition and the associated flow law, the material of the cylinder was assumed to be 

perfectly plastic. The power dependence of material properties on the radial coordinate of the 

cylinder was used. The obtained results [11-14] show that the inhomogeneity of the material 

has a significant effect on the stress state in the cylinder. Moreover, by a suitable choice of 

distributions of the mechanical properties of the material, it is possible to significantly 

increase the maximum angular velocity of the cylinder. 

As can be seen from the review, using the Tresca’s yield condition, analytical solutions 

were found for the elastoplastic rotating hollow cylinder in various formulations [1-5,9-14]. In 

all studies listed above, the material of the cylinder was assumed to be ideal or linearly 

hardening. As known [15], nonlinear laws more accurately describe the hardening of 

structural materials however the application of these laws is usually associated with the use of 

numerical methods [6–8]. This paper is devoted to the elastoplastic analysis of a rotating 

hollow cylinder based on the Tresca’s plasticity condition, the flow law associated with it, and 

the power law of hardening.  For a number of special cases of the hardening law, analytical 

solutions are obtained.  
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Problem statement 

Consider a hollow cylinder rotating around its own axis. The angular velocity   of the 

cylinder slowly increases with time, consequently the angular acceleration can be neglected. It 

is assumed that the cylinder is in a state of plane strain and holds axial symmetry. Under these 

kinematic constraints, the only non-zero displacement in the cylinder is the radial 

displacement ru , and shear strains and shear stresses are equal to zero. A cylindrical 

coordinate system ( ), ,r z  is used.  Following dimensionless variables are introduced 
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here ,in outr r  are inner and outer radii of the cylinder,  E  is Young modulus, 0 , y   are initial 

and current yield strength, ij  are total strains, e
ij  are elastic strains, p

ij  are plastic strains, ij  

are stresses,  ,K n  are hardening parameters,   is density. Next in the article, all formulas are 

written using dimensionless variables (1), and the overlines are omitted for brevity. For 

convenience, the loading parameter   is called the angular velocity. 

It is assumed that the strains in the cylinder are infinitesimal and additively decomposed 

into elastic and plastic parts 
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The only non-trivial equilibrium equation has form 
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Elastic strains and stresses are related by Hooke’s law 
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where   is the Poisson ratio.  

The Tresca’s yield condition reads as follows 

31 ,y  − =  (5) 

here eq  is the equivalent stress, 31 ,   are the major and minor principal stresses 

respectively.  

Flow rule has form: 

,p
ij

ij

d f
d d

d
 


=  (6) 

where p
ijd  are the increments of plastic strains, d  is non-negative multiplier, f  is plastic 

function associated with the yield condition (5). 
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Power law of hardening reads as follows 

,1 n
y eqH = +  (7) 

here eq  is the equivalent plastic strain. 

The equivalence of the increment of plastic work is  

,p p p
y eq r zr zzr r zd d d d        = + +  (8) 

where eqd  is the increment of the equivalent plastic strain. 

It is assumed that the side surfaces of the cylinder are traction-free. In this case, the 

boundary conditions have the form: 

( ) ( )0, 1 0.rr rr  = =  (9) 

The yield condition (5) is satisfied for the first time on the inner surface of the cylinder 

 =  at p = . With a further increase of the angular velocity, the elastoplastic border  

ep =  moves to the outer surface of the cylinder. At fp =  the elastic region disappears 

and the cylinder becomes fully-plastic. The present analysis is restricted to a range 

p fp   , in which the cylinder consists of the inner plastic region ( ), ep      and the 

outer elastic region ( ), 1ep    . Next, the solution in each of the regions is considered.  

 

Elastic region 

The distributions of displacements and stresses in the elastic region have the form: 
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here 1 2,d d  are integration constants. 

It is known [1-3] that plastic flow in a rotating hollow cylinder starts on the inner 

surface where the stress satisfies the inequality zz rr    . Elastic limit angular velocity 

is the function of the Poisson ratio   and the geometric parameter   [3]: 
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The integration constants 1 2,d d  may be determined from the system of equations: 
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The meaning of the first equation is that the yield condition (5) should be satisfied on 

the elastoplastic boundary. The solution of the previous system reads as follows 
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Plastic region 

Assume that the stresses in the plastic region always satisfy the inequality zz rr    . In 

this case, Tresca's yield condition (5) has form 

.rr y  − =  (13) 

It follows from the yield condition (13) and the flow rule (6) that  
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The equivalence of the increment of plastic work (8) yields 
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Using the yield condition (13), the previous equation leads to 
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Hence, in the case of monotonically increasing load, the plastic strains are expressed as 

follows 
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Thus, the Hooke’s law (4) can be transformed into the form: 
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Using the previous expressions, the equilibrium equation (3) takes the form: 
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From the solution of the previous equation, one may find: 
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here 21 ,c c are integration constants. 

The integration constants 1c  and 2c  may be determined from the system of equations: 
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The solution of the previous system is as follows  
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The coordinate of the elastoplastic boundary is determined from the condition: 

( ) ( ).el pl
ep epu u =  

Using (10), (12), (14) and (15), the previous condition may be written in the form: 
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The equation (16) is nonlinear for the border radius ep  and can be solved numerically 

by Newton’s method for assigned values of the mechanical parameters and the angular 

velocity ( )p  .  

With the complete transition of the cylinder to the plastic state, the condition 1ep =  is 

satisfied. Consequently, the equation (16) transforms into 
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The equation (17) has an analytical solution for the linear-hardening material ( )1n= . If 

1n , then the equation (17) is nonlinear for fp  and can be solved by Newton’s method. 

Proposition. The obtained elastoplastic solution (10), (12), (14), (15) and (16) is 

continuous across the border ep =  between elastic and plastic regions. 

Proof. In the present article the following continuity conditions at ep =  are used 
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where ⟦ . ⟧ means jump of a variable, i.e., the difference between function values on the 

elastoplastic border. Next, we prove that the previous system of conditions ensures the 

continuity of all functions.  
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the following system of equations can be obtained 
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The solution of the previous system is 0rr zz  = = =  because its determinant 

equals ( )( )1 1 2 0 + −  . The continuity of the elastic strain 
l
rr
e  follows from the continuity 
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of stresses and the inverse Hooke’s law. Finally, 0rr
el =  and 0rr

pl =  imply that 0rr = . 

Proof is complete.  

It should be noted that the obtained solution (14), as well as equations (16) and (17), are 

valid for any law of isotropic hardening. If the function ( )eq   is known, then distributions 

of stresses and plastic strains can be easily derived for any value of the angular velocity   in 

the range p fp   . The last step of the solution process is to determine the plastic strain  

eq . It follows from (5), (7) and (15) that 
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In general case, the equation (18) is transcendental and has no solution for arbitrary 

n . However, if n , then the equation (18) is reduced to algebraic one. According to the 

Abel–Ruffini theorem, there is no solution in radicals to algebraic equations of degree five or 

higher. Hence the equation (18) has solution only in the following cases 

1 4,1 3,1 2, 2 3,3 4,1, 4 3,3 2, 2,3, 4.n=  

The results of experiments [16] show that hardening parameter usually is less than one 

for metals 1n . Consequently, the further analysis is limited to the following values 

1 4,1 3,1 2, 2 3,3 4,1.n=   

The trivial case 1n=  corresponds to the linear-hardening material. The solution of (18) 

reads as 

0

01
eq

H







−

+
= .  (19) 

Using (19), the integral in the equation (17) may be evaluated in elementary functions, 

which in turn leads to dependence for plastic limit angular velocity 
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The found solution (19), (20) certainly coincides with the previously known solution 

[3]. If 0 0H = , then the solution (19) reduces to 0eq = −   and describes perfectly plastic 

material. 

Next, special cases of nonlinear hardening are considered. The equation of the form  

( )/ 0 ,p qx ax b p q+ + =   is reduced to the equation 0q py a y b+ + =  by using the apparent 

substitution 
1/qy x= .   

In the case 1 2n= , the equation (18) has two roots but only one of them satisfies the 

condition ( ) 0eq ep  = . This root read as follows 
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It should be noted that using previous expression, the indefinite integral deq    

may be evaluated through elliptical integrals which are supported by most computer algebra 

systems. 

If 1 3n= , then the equation (18) has only one real root 
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In the case 2 3n= , the single real root of the equation (18) has the form 

( ) ( )
1/33

1/3 1/3 2 2 2 3 3
0 0 0 0 0 0 0

11
2 2 3 .

2
, 3 27 4 27 2

7
eq H H v v H v H   − −= + −  +  = − −  

If 1 4n= , then only one root of the equation (18) satisfies the condition ( ) 0eq ep  = . 

This root read has form 

( )

4

1 2
0

1/3
1/3

1 2 4 3 3
0 0 0 01/3 2/3

.3

1 1
2 ,

2 2

2
4 , 9 27 256

3 2 3

eq H

t
v t t H H v

   



−

−

 
= − + − 
 

 
=  + = + −  

 

 

In the case 3 4n= , the equation (18) has two real roots but only one of them satisfies 

the condition ( ) 0eq ep  = . This root may be written as follows 

( ) ( )

( ) ( ) ( )

4 2/3 1/31/33 2
0 00 0 0

1/3 1/3 2/3

2/3 1/31/32 1/3
0 0 4 20

0 0 01/3 1/3 2/3

,

.

21 1
4 ,

2 4 2 4 4 3 2 3

2
4 , 81 768 9

2 3 2 3

eq

v vH H H
d

d

v vH
d d H v H

d





 



  −  − 
 = + − − − +
 
 

−  − 

=

= + − = −  −

 

For the cases 1 4,1 3, 2 3,3 4n= , the integrals in (15)–(17) are evaluated 

numerically. 

 

Validity of solution 

The obtained elastoplastic solution is valid only if the following inequality is satisfied in the 

plastic region during loading process 

zz rr     (21) 

Validity of this inequality strongly depends on the values of parameters , , ,H n  . It is 

easy to verify that for particular values of parameters the inequality (21) is violated. For 

example, if 0   then at the vicinity of the inner boundary of a cylinder the elastic stress state 

satisfies the inequality rr zz    . It follows from the boundary condition ( ) 0rr  =  and 

the relation ( )zz rr  = + . As a result, the inequality (21) will be violated in the plastic 

region. On the other hand, in the very thick-walled cylinders with relatively low but positive 

Poisson ratio, the radial stress may exceed axial one. This issue is illustrated in Fig.  1 where 

the distributions of stresses in a cylinder are presented for 0.2, 0.25, = = 0, 3.H = =  
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Fig. 1. Violation of the inequality (21) in the plastic region ( )0.2, 0.25, 0, 3H = = = =  

 

It is interesting to note that the inequality (21) in the plastic region was assumed by 

other authors who studied rotating hollow cylinders with fixed ends [1–3] but the range of 

validity of this assumption has not been examined in detail before. The current section is 

aimed to fill this gap.  

The stress state in the plastic region is 

( )

1 ,

,

rr

zz rr





 

   

=

+

+

=

− 
 (22) 

where , 0n
eqH =  . 

In the following, it is assumed that Poisson ratio is positive 0  . 

Stress state (22) should satisfy the inequality (21). Consider first part of the inequality 

(21). The previous equations can be combined as follows 

( )2 1zz   = − + . 

Then the inequality zz   can be transformed into the form 

( )1 .
1 2





 − +

−
 

Since 0, 0, 1 2, 0       then the previous inequality is valid.  

Next, consider the second part of the inequality (21). It follows from (22) that 

( )2 1 .zz rr  = + +  

The inequality zz rr   implies that 

.
1 2 1 2

rr

 


 
+

− −
   (23) 

Consequently, the elastoplastic solution is valid if the radial stress satisfies the 

inequality (23). The careful estimation of the radial stress and the equivalent plastic strain is 

very complicated due to the nonlinearity of the solution. Consider the simpler inequality 

max .
1 2

rr




−
  (24) 

It is obvious that the previous inequality implies the inequality (23). Next, the maximum 

possible value of the radial stress should be estimated. It follows from (15) that the stresses 

increase with decreasing equivalent plastic strain and reach a maximum when 0eq = . This 
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corresponds to the limiting case H→  when the plastic solution degenerates into the elastic 

one 

( )
( )2

21
2

.
3 2

ˆ lim
2 8 1

pl pl
rr rr

H

c
c


  

 →

−
− + − 

−
= =  (25) 

The dependence of the angular velocity on the border radius follows from (16) 

( )
( )

( ) ( )

2

4 2

4 1
.

1 2 3 2
p

e

e

e

p

p








  

−


−+
=

−
 

By using previous expression and (15), the limiting distribution (25) of the radial stress 

may be transformed into the form 

( )

( ) ( )( )
( )( )2 2 2

22

2

4

13 2
ˆ

2 3 2 1 2

l ep

ep

p
rr

  






  

− −−

− + −
= . (26) 

Next, one has to evaluate the maximum value of the function (26). It follows from the 

boundary conditions (9) and Rolle's theorem that for any fixed border radius ep  the radial 

stress has a point where the first derivative is zero. It is easy to verify that this point is 

 , 1   =   which is a maximum point.  

Consider the derivative of (26) with respect to ep . 

( )
( ) ( )( )

( ) ( )( )

( )( )2 2 2 2

2 22

5

4

3 2 1 2 1ˆ
3 2 .

3 2 1 2

e
pl

eprr

ep
p

p

e

      






  

− − − − −
= −

 − + −
 

The equation 
ˆ

0
pl
rr

ep






=


 has an only positive root 

1/4
3 2

1 2
ep


 



 − 
=  

− 
. The second 

derivative analysis shows that ep   is a maximum point. As a result, the radial stress has a 

maximum at point ( ), ep ep    = =  and the maximum value is  

( )
( )

2
1 3 2

ˆ ˆmax max , .
4 1 2

pl pl
r

pl
rrr rr ep

 
   

 
  

− −

−
= = =  

Combining the previous expression with the inequality (24) one may conclude that the 

inequality (21) is valid for any power-hardening material with ( )0, 0, tH n       where 

( )
( )

( )

2

2 2 3 4

3 1

2
.

2 4 2 1 4 18 4
t



  


  

−

− − −
=

+ + + +
 (27) 

One may notice that ( ) ( )
1

0 , 1 0.
2

t t = =  It should be remarked that under certain 

conditions the point ep   may be out of range  ,1 , namely 1ep   . As a result, the actual 

maximum value of the radial stress may be less than predicted above. However, the analysis 

showed that this issue does not significantly affect the function ( )t  .  

Next, consider the range of validity of the presented solution in the special case of ideal 

elastoplastic material. According to the (15), (18) and (19), if 0H =  then the radial stress in 

the plastic region takes the form 

( ) ( )2 21
.log

2
pl
rr    += −  (28) 

It should be noted that  
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( )2 2 .
1

0
2

pl
rr

 =


− 


 

The last inequality implies that the radial stress decreases with increase in  . 

Consequently, for any given point ( ,1   in the cylinder the radial stress reaches a 

maximum at the moment when elastoplastic border reaches this point.  

The dependence of   according to border radius ep  follows from (16) and takes the 

form 

( )
( ) ( )( )

( ) ( )( )

2

2 2

1

2

4 1 1 2log
.

3 2 4 1 1 2 2

ep

ep e

ep

p

ep

v

v v v

 

 




−− + −
 =

− − − + − −
 (29) 

The dependence of the radial stress at the elastoplastic border according to the border 

coordinate ep  may be obtained by combining (28) and (29) and reads as follows 

( ) ( ) ( )
( ) ( )( )

( ) ( )( )

1

1 2

2

2

2

2 2

4 1 1 2log
.

1
ˆ log

2 3 2 4 1 1 2 2

eppl
rr

ep

ep

ep p

ep ep

e

v

v v v

 
   









−

−
− + −

+ −
− − − +

=
− −

 

The function ( )ˆ pl
rr ep   reaches a maximum at some point ( ),1ep   . As a result, the 

inequality (21) is valid for ( )t   , where the point ep   and the value of t  may be 

evaluated numerically from the system of nonlinear equations 

( )

( )
2

0

ˆ

,
ˆ

.
1

pl
rr

ep

ep

pl
rr ep







 












 =



=

−

 

for any value of ( )0,1  .  

 

 
Fig. 2. The dependence ( )t   for ideal and hardening elastoplastic material 

 

The plots of the function ( )t   for hardening and ideal elastoplastic material are 

presented in Fig. 2. The plot for ideal material is constructed by numerical calculations. From 

a technical point of view, relatively thin-walled cylinders are more commonly used in 

practice. For 0.5   the presented elastoplastic solution for a nonlinear hardening material is 

correct if 1 6   which is valid for the vast majority of structural materials. The classical 

solution [3] for an ideal elastoplastic material has a much broader range of validity in 
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comparison to the presented solution. This is especially noticed for very thick-walled 

cylinders. On the other hand, if 0.9   then both solutions have very broad ( )0.0034   and 

almost the same ranges of applicability. 

 

Unloading 

The maximum angular velocity and final border radius are denoted as max  and ˆ
ep . It is 

assumed that unloading of a cylinder is purely elastic and the elastic properties ,E   of a 

material are the same as under loading. In this case the distributions of residual stresses at 

stand-still can be evaluated as the difference between the stresses at max=  and the ones 

occurring in a fictitious elastic material with unlimited elastic behavior at the same angular 

velocity. Using the purely elastic solution (10) and the boundary conditions (9) together with 

the solutions (10),(12) and (14),(15) in elastic and plastic region respectively, the distributions 

of residual stresses can be obtained in the following form 

( )
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
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−
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Results 

Consider a rotating hollow cylinder with the following parameter values 0.5, 0.3 = = . It 

should be noted that these parameters satisfy the condition of validity for all values of 

hardening parameters (Section 5 and Fig. 2). Firstly, the obtained results are illustrated by the 

dependency of plastic limit angular velocity fp  on hardening parameters n  and H . This 

relation is plotted in Fig. 3. It can be seen that fp increases with increase in H .  This 

dependence is the more pronounced, the lower the value of the power parameter n . For 

example, if 1n= , then the increase of fp  for  0, 1H  is ≈ 29 %. On the other hand, if  

1 4n=  the increase is ≈ 42 %. 

Series of Figs. 4-9 show the distribution of the circumferential stress and the equivalent 

plastic strain a cylinder for several values of H and n . It is assumed that the cylinder is fully-

plastic. The plots are limited to the circumferential stress because the it is mostly affected by 

the parameters. It is seen that with increase in H the stress increases and the plastic strain 

decreases. In same time, the increase of power parameter n  has inverse effect. It is interesting 

to note that for small values of n  and large values of H  the sufficiently large region in a 

vicinity of outer surface of the cylinder almost has no plastic strains (Figs. 4, 5) even in the 

fully-plastic stress state.  
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Fig. 3. The dependency of ( )fp H for several values of n  

 

 
 (a)  (b) 

 

Fig. 4. The distribution of (a) the circumferential stress and  

(b) the equivalent plastic strain for the several values of H and 1 4n=  

 

 
 (a)  (b) 

 

Fig. 5. The distribution of (a) the circumferential stress and  

(b) the equivalent plastic strain for the several values of H and 1 3n=  
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 (a)  (b) 

 

Fig. 6. The distribution of (a) the circumferential stress and  

(b) the equivalent plastic strain for the several values of H and 1 2n=  

 

 
 (a)  (b) 

 

Fig. 7. The distribution of (a) the circumferential stress and  

(b) the equivalent plastic strain for the several values of H and 2 3n=  

 

 
 (a)  (b) 

 

Fig. 8. The distribution of (a) the circumferential stress and  

(b) the equivalent plastic strain for the several values of H and 3 4n=  
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 (a)  (b) 

Fig. 9. The distribution of (a) the circumferential stress and  

(b) the equivalent plastic strain for the several values of H and 1n=  

 

Finally, the rotational autofrettage of a hollow cylinder with fixed ends is investigated. 

A cylinder with 0.5 =  made of 2024-T3 Aluminum [16] is considered. Mechanical 

parameters have following values 0 0 00.3, 200 , 2.8, 360, 0.25MPa K E n   = = = = = . 

Hence, non-dimensionless hardening parameter 0.6428H = . Plastic flow starts at 1.12p =  

and the cylinder becomes fully-plastic at 2.472fp = . Fig. 10 shows the distribution of 

residual circumferential stress after its previous rotation for several values of maximum 

angular velocity max , namely max 1.5, 1.8, 2.1, fp =  . One can see that the rotational 

autofrettage process forms the compressive residual stresses in a vicinity of inner boundary of 

a cylinder. The magnitude of residual stresses increases with increase in maximum angular 

velocity. In the same time, if max is close to plastic limit angular velocity fp  then the tensile 

residual stresses form in an outer boundary of a cylinder.  

 
Fig. 10. The distribution of the residual circumferential stress for the several values of max  

 

Conclusions 

The paper considered an elastoplastic problem in a rotating hollow cylinder with fixed ends 

under the Tresca yield condition and the power law of hardening. For a number of special 

cases of the hardening law, analytical solutions are obtained. The dependence of the plastic 

limit angular velocity of the cylinder on the parameters of hardening of is established. Despite 

the fact that for many materials the hardening parameter n  has values close to those 

considered in the present article, the obtained results are not universal and cannot describe an 
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arbitrary material. For further research, it is of interest to obtain an approximate analytical 

solution for an arbitrary value of n . 
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