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ABSTRACT  
Stir casting was used to produce Al7075/n-TiB2 composites with three distinct n-TiB2 weight percentages: 
1, 1.5, 2 and 2.5 %. The mechanical and tribological characteristics of Al7075/n-TiB2 composites have been 
investigated in dry sliding situations. Evenly distributed dispersion of n-TiB2 particulates and the strong 
interfacial interaction among the matrix as well as reinforcement are confirmed by the microstructural 
characterization. Composites with 1, 1.5, 2 and 2.5 % reinforced n-TiB2 show the better mechanical 
properties when compared to base alloy. Fracture research revealed that n-TiB2 reinforced aluminum matrix 
composites and non-reinforced aluminum alloy exhibited ductile expression in the form of dimples. Dry 
sliding wear assessments have been performed using pin-on-disc instruments. We measured the wear loss 
of the nano composites and found that the cumulative wear loss variation with n-TiB2 is linear for each 
composite. According to the SEM examination of worn-out surfaces, oxidative wear is responsible for 
specimens that fall within the prescribed stress and sliding distance. The experiment demonstrates that 
wear loss decreases linearly with an increase in the weight percentage of titanium diboride nanoparticles. 
The obtained results show that the fabricated nano composites exhibit improved hardness of 14 %, tensile 
strength of 9 % and wear resistance of 20 % when compared to the base alloy. 
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Introduction 
Aluminum alloys are becoming more and more popular for structural applications, 
especially in the automotive and aerospace industries, due to their high specific power, 
low density, high conductivity, and high strength to weight ratio, all of which have a 
positive economic impact [1]. Metal matrix composites with an aluminum basis are 
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commonly utilized due to their high modulus, strength-to-weight ratio, stiffness, 
corrosion resistance, and wear resistance. These composites have superior mechanical 
characteristics than conventional metals and alloys [2]. Frequently utilized ceramics for 
reinforcement include of SiC, TiC, Al2O3, and B4C. These can be utilized as long fibers, tiny 
whiskers, irregular or irregular, or as particles [3]. Liquid composites are used to create 
aluminum metal matrix composites (AMMCs). Due to its unique features, TiB2 stands out 
when compared to ordinary ceramic reinforcements due to its higher thermodynamic 
stability, higher hardness, and low density. Due to its many advantages over the ex-situ 
process, researchers have been concentrating on the development of aluminum-TiB2 in 
situ composites with metal matrix in recent years. Better in-situ production of Al alloys is 
made possible by the exothermic reaction and increased wettability of TiB2 with 
aluminum, which results in a better interface bonding and less variation in the 
thermophysical features of the two during heating. Ceramics with poor wettability have 
higher porosity, bad mechanical characteristics, and uneven dispersion [4]. Researcher [5] 
studied Cu-Sn alloy with 7.5 wt. % of Si3N4 particles reinforced composites fabricated by 
using conventional stir casting method. It is stated that Cu-Sn alloy with 7.5 wt. % of 
silicon nitride particles reinforced composites showed lesser densities as compared to the 
base Cu-Sn alloy. The wear resistance of Cu-Sn alloy increased with the incorporation of 
Si3N4 particles. Several investigations into the mechanical properties and strengthening 
techniques of TiB2/A356 composites have been conducted; the results indicate significant 
improvements in tensile strength [6]. Al7475 alloy was used to make composites with 2, 
4, 6, 8 and 10 wt. % of B4C particles. By incorporating particles into the matrix, the density 
of Al alloy composites was lowered. Al7475 alloy with B4C composites exhibited superior 
tensile properties at room and elevated temperatures as compared to the base alloy [7]. 
Researcher [8] studied effect of nanosized Al2O3 and Al2O3-SiC on mechanical, wears and 
fracture surface of Al7075 composites for soil anchoring applications. It was concluded 
that, in contrast to Al7075 alloy, hybrid MMCs enhanced tensile strength and superior 
hardness. The obtained results indicate that highest hardness of 78 VHN and tensile 
strength of 126 MPa were achieved for developed hybrid composites. According to 
Zulkamal et al. [9], the semi-solid A356 alloy's wear resistance was enhanced, and its 
microstructure was rectified with the inclusion of TiB2 particles. Low cycle fatigue studies 
on in-situ TiB2/A356 composites were carried out by Deepak et al. [10], who discovered 
that TiB2 particles significantly affected the composites' hardness, tensile strength, 
structure, and fatigue life. The microstructure, type of reinforcement, percentage of 
interfacial bonding, average load, sliding distance, and sliding-speed are the main factors 
influencing the mechanical and tribological characteristics of composites. Among all 
these characteristics, particle size has a favorable impact on the composites' performance. 
According to literature survey, a large number of researchers have studied various grades 
of aluminum, but comparatively few have studied the impact of n-TiB2 wt. % on Al7075 
alloy. The novelty of the research is to investigate the mechanical and wear properties of 
newly developed n-TiB2 reinforced Al7075 composites and analyze the surface 
morphology. Overall, the results showed that Al composites reinforced with nanosized 
TiB2 particles could be good materials where wear-resistant and high-strength 
components are crucial, especially in the civil-structures, aerospace, and automotive 
engineering industries. 
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Materials and Methods 
Stir casting produced a homogeneous distribution, which improved the characteristics of 
aluminum composites. Therefore, the stir casting method was used for the current study's 
hybrid MMC manufacturing. Bright extruded rods of Al7075 and n-TiB2 particles were 
employed to make these composites. Table 1 displays the weight percentage of Al7075's 
chemical makeup. 
 
Table 1. Chemical composition of Al7075 alloy (wt. %) 
Content Al Cu Mg Si Fe Mn Ni Pb Sn Ti Zn Cr 

wt.% Rem 1.480 2.306 0.059 0.256 0.052 0.052 0.023 0.012 0.052 5.424 0.280 
 

The Al7075 (base alloy) was first melted by using graphite crucible at 750 °C [11,12]. 
Subsequently, the molten melt was mixed with 30–50 nm sized n-TiB2 (1, 1.5, 2, and 2.5 %) 
particulates that had been preheated to 450 °C. During the stirring operation, the pre-
heated reinforcement particles were mixed with the base alloy. Inert gases were extracted 
from the molten aluminum metal matrix using a degassing tablet. Melting the slurry 
required 60 sec of stirring at 150 rpm, and then it was put into a pre-heated mold. The as-
cast samples were taken out of the mold once they had set. As-cast and nano-composites 
were both machined to prepare the test samples using CNC machining. The relevant ASTM 
standards were followed in the preparation of test specimens for wear and mechanical 
testing. Hybrid MMC samples were polished using diamond paste and different-sized grit 
sheets to produce a clean surface finish in preparation for microstructural analysis. After 
using Keller's reagent to etch these specimens, they were left to dry in the open. The 
produced hybrid MMCs were examined for microstructure using Nikon E-200 optical 
microscope. The developed hybrid MMCs were exposed to microhardness testing using a 
Vickers Micro Hardness testing apparatus in compliance with E92-ASTM guidelines. 
Specimens with diameters and thicknesses of 20 mm each were used to evaluate the 
hardness. For thirty seconds, a constant 5 kg load was applied by using diamond shape 
indenter. Tensile testing was carried out utilizing a 450 KN weight on a Universal Testing 
Machine (UTM) in compliance with ASTM E8 requirements (gauge length is 50 mm and 
gauge dia is 10 mm). Tensile strength values varied by less than 10 %, according to the 
results, which were based on average values of three test samples with similar 
compositions. The pin-on-disc test apparatus was used in accordance with ASTM G99 
guidelines to measure wear loss (30 mm length and 6 mm dia). The mean values, with 
variances of less than 10 %, were considered after three wear test specimens with 
comparable compositions were analyzed. 

The prepared composites' densities were determined by applying the Archimedes 
principles, and theoretical densities were calculated by applying the rule of mixture in 
accordance with the percentage of reinforcement weight, as indicated in this equation [13]: 
ρc = ρmVm + ρrVr,                                                                    (1) 
where ρc is the composite density, ρm is the matrix density, ρr is the reinforcement density, 
Vm is volume fraction of mass, Vr is the volume fraction of reinforcement. 

One of the crucial physical characteristics that will significantly affect the composite's 
mechanical and tribological qualities is porosity. The primary factors influencing the 
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porosity for the composites are mechanical alloying, sintering temperature, and 
compaction pressure. The porosity percentages of the resulting composites were computed 
using [14]: 
Porosity =

Theoretical density – Experimental density
Theoretical density

∙ 100.                      (2) 

Figure 1 shows the framework of the present research investigation. 
 

 
 

Fig. 1. Framework of the present research investigation 
 
Findings and Discussion 
Micro-structural Investigation 

A matrix material's reinforcing particle distribution is examined via microstructural 
analysis. The mechanical and wear characteristics of Al7075/n-TiB2 nanocomposite are 
analyzed by microstructural characteristics. The optical microstructure pictures of base 
alloy and developed nanocomposites are displayed in Fig. 2. 

The micro structural pictures of all the samples show an equal distribution of small-
pored n-TiB2 particles. Since liquid metallurgy method was used to produce the 
specimens, porosity cannot be totally removed. It is also evident from microstructural 
pictures that cluster formation increases as % of n-TiB2 increases from 1 to 2.5. The 
existence of more n-TiB2 clusters is one of the primary reasons for the improved 
mechanical and wear features. The uniform dispersion of n-TiB2 nanoparticles in the base 
matrix strengthens the interfacial-bond between the reinforcement element and the base 
matrix, which explains the improved mechanical and wear properties of the 2.5 wt. %  
n-TiB2 composite. The number of n-TiB2 particles increases with the nucleation sites 
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because it provides additional barriers to the fractures in the grains that cause the change 
of the grain structure [15,16]. 
 

 
 

Fig. 2. Microstructure of (a) Base alloy, (b) 1.5 % n-TiB2 composites, (c) 2 % n-TiB2 composites  
and (d) 2.5 % n-TiB2 composites 

 
Energy dispersive X-ray spectroscopy study 

Energy dispersive X-ray spectroscopy (EDS) analysis was performed on the fabricated 
nano MMCs samples in order to assess the chemical compositions of the Al7075/n-TiB2 
composite. The results are shown in Fig. 3. The analysis unequivocally demonstrates that  
 

 
Fig. 3. EDS analysis of Al7075+2.5 % n-TiB2 
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Al, Mn, Cu, Co, Ti, and other elements occur over a range of peaks. The result displays the 
EDS study's "Ti" peak. It provides proof that developed nano MMCs contain TiB2 particles [17]. 
 

Density and porosity 

The Archimedes method for determining density uses the fact that the apparent weight 
of an object submersed in liquid is lighter that the object's weight in air by the weight of 
the volume of liquid that the object displaces. Figure 4 illustrates the variation in the 
porosity and the density of Al7075/n-TiB2 composites. 

 

 
Fig. 4. Effect of n-TiB2 on Density and porosity 

 
Theoretical and experimental density values for Al7075/n-TiB2 composites show a 

nearly similar trend and are nearly in agreement with one another. Density levels rise with 
the reinforcement addition. This increment of density values may be the cause of the high 
n-TiB2 (hard) particle density [18]. The lower porosity of all the composites shows that 
reinforcement and matrix material have a strong interfacial bond. High compacting 
pressure and the temperature of sintering are the two primary factors that can impact the 
porosity within a composite [19,20]. 
 
Hardness 

Figure 5 displays the hardness of the Al7075/n-TiB2 composites. It is found that the 
2.5 wt. % n-TiB2 composite has far higher hardness values than the other composites. The 
produced composites' increased hardness could be credited to many factors [21]. First off, 
the n-TiB2 particulates have a higher hardness than matrix alloy, and this hardness is 
enhanced by the reinforcements' homogeneous distribution throughout the matrix. 
Second, adding robust hard particles refines the grains of the aluminum alloy, which 
raises the dislocation density at the matrix-reinforcement interfaces and raises the 
produced composites' hardness values. Ultimately, the mass of the produced composites 
increases with increasing in reinforcement content, and this densification improves the 
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composites' hardness [22]. When the n-TiB2 wt. % rose from 0 to 2.5, the hardness values 
improved from 70 to 84 VHN. 
 

  
Fig. 5. Effect of n-TiB2 on hardness Fig. 6. Effect of n-TiB2 on toughness 

 
Toughness 

The sample's energy absorption during an abrupt load was determined by an impact test 
procedure that adhered to the ASTM D256 standard. In this test, the amount of energy in 
a material upon break can be determined using the strength value. The impact strength 
of the composites is determined using the Charpy impact test. The strength variation of 
toughness for Al7075/n-TiB2 composites with varying reinforcements is displayed in 
Figure 6. The n-TiB2 composite with 2.5 wt. % showed higher impact strength than the 
others. The uniform dispersion of n-TiB2 particulates in the matrix and strong interfacial 
bonding are the reasons for the high ductility. The main cause of the lower impact 
strength reported by most composites is the existence of pores and microcracks. 
 
Tensile strength 

Figure 7 shows that as the weight percentage of n-TiB2 content increased, the hybrid 
composites' tensile strength increased as well. The reported outcomes are consistent with 
what has been seen in the majority of hard particle reinforced micro MMCs [23]. Other 
studies [24,25] detailed the strengthening mechanisms and connected them to the 
enhanced load-sustaining capability of the resulting composite, which was attained by 
increasing the wt. % of hard nano particulates and enhancing the resistance to the 
dislocation or movement of the particles. 

Strength increased as a result of the generated nano MMCs' resistivity to 
dislocations, and the tension strength was increased even more by including additional 
n-TiB2 particles into the MMCs. The hard particle's characteristics made the material 
stronger. The ultimate strength was increased by hard nanoparticles rather than 
dislocations. Several additional researchers reported similar findings [26]. A higher 
concentration of n-TiB2 resulted in an improvement in the ultimate tensile strength, 
which is commonly ascribed to a decreased degree of porosity along with a more even 
distribution of reinforcement of hard particles. This fact is supported by the results 
obtained from most hard particles reinforced nano composites. The micro MMCs solidified 
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more quickly as a result of the matrix's level of reinforcement. This is usually caused by 
the complexity that results from the inclusion of strong nanoparticles, which obstructs 
dislocation motions across the base matrix [27]. 
 

 
Fig. 7. Effect of n-TiB2 on tensile strength 

 
Figure 8 shows the stress-strain curves for the alloy and nanocomposites. These 

curves' primary characteristics are that as particle content rises, tensile strength increases 
as fracture strain decreases. When compared to the nanocomposites, the base alloy is 
shown to have the largest plastic strain and to show the least resistance of plastic 
deformation due to its relatively lower flow stress. It is noted that, in comparison to the 
base alloy, all of the nanocomposites exhibit greater strength. This is because the 
nanoparticles have been strengthened and the grains have been refined. The mismatch 
strengthening and elevated load bearing brought on by the nano-sized particles are 
typically responsible for the increase in strength in nano-MMCs. It is deduced that this 
might be because of variations in the CTE between the reinforcements and the matrix. 
The dislocation's mobility within the matrix is impeded by the hard nanoparticles, which 
is why the durability of the nano-MMCs is found to be greater compared to base matrix. 
During tensile tests, the hard ceramic nanoparticles' ability to trap dislocations resulted 
in an increase in the nanocomposites' tensile strength [28,29]. 
 

 
Fig. 8. Effect of n-TiB2 nanoparticles concentration on stress-strain curves 

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

0% 2% 4% 6% 8% 10% 12% 14%

S
T

R
E

S
S

 (
M

P
a

) 

STRAIN 



Study on n-TiB2 particulates reinforced Al7075 nano composite for soil nail applications: mechanical, wear, and fracture characterizations  109 
 

When tension load was applied, higher weight percentage of reinforcements caused 
significant debonding at the matrix-reinforcement material contact point, which reduced 
ductility. Tensile fractured surface of the as-cast and 2.5 % n-TiB2 reinforced MMC specimen 
are depicted in Fig. 9. The development of small pores on shattered material surfaces was 
the reason for the extreme ductility observed in MMC manufacture. In comparison to 
nanocomposites, as-cast elements with fractured surfaces showed more dimple shapes, 
suggesting superior ductile strength. The addition of n-TiB2 particles caused the failure 
type to change from ductile to brittle, according to fractography investigations. This 
displacement is indicated by the dimples on the surface fractured specimen and the 
deformed area. More hard reinforcements resulted in more microcracks, indicating that the 
material was less ductile. The architecture of fractured surfaces frequently exhibited a 
higher density of voids and cracks. Because of their presence in the soft matrix, the robust 
particles created a triaxial stress state that ultimately led to void formation. This implies 
that there is a strong relation between the reinforcement being used and the matrix 
material, and that the size and shape of the reinforcements have an impact on bonding. 
Linear relationship observed between the dimple diameters and the composite's strength. 
Tensile sample fracture surfaces revealed details about the composition of nanoparticles 
at the interface. Hard nanoparticle pullout and fracture were two of the fracture processes 
that decreased ductility. The outward propagation of cracks from their centers was 
enhanced by voids at the particle and matrix interfaces [30,31]. 
 

 
(a) 

 
(b) 

Fig. 9. Fracture surface of (a) base alloy and (b) 2.5 % n-TiB2 composites 
 
Wear loss 

In the present investigation, all the wear test samples were tested with a constant load 
of 10 N, sliding speed of 500 rpm and sliding distance of 1000 m have been considered. 
Figure 10 shows the wear rates for both the Al matrix alloy and the Al/n-TiB2 MMCs. The 
amount of n-TiB2 that exists in reinforced composites has been found to increase the 
transition load. It was also observed that the composite had a lower wear rate than the 
base metal. The wear resistance that the composite samples given by releasing n-TiB2 
into the surface that contacts them during sliding is most likely the cause of this. 
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Alpas and Zhang [32] examined the sliding wear characteristics of Al-Si alloys reinforced 
with TiB2 particles. It was concluded that TiB2 reinforcement greatly improves wear 
resistance based on their studies. 
 

 
Fig. 10. Effect of n-TiB2 on wear loss 

 

 
(a) 

 
(b) 

Fig. 11. SEM micrographs of worn surfaces of (a) base alloy and (b) 2.5 % n-TiB2 composites 
 
A thin film forms between the surfaces that meet when sliding wear causes n-TiB2 

particles to shear and stick to the metal surface with the principal axis parallel to the 
sliding direction. Moreover, the n-TiB2 hard film can bear stress within low load 
circumstances without breaking or turning plastic due to its incredibly limited ductility. 
Research has repeatedly demonstrated that wear rate as well as surface damage may be 
decreased if material used at the counter contact is prevented from plastically deforming. 
The n-TiB2 strong film in composites efficiently reduces the wear rates while sustaining 
high loads [33]. Therefore, the pace at which the sheared reinforcing layers stick to the 
sliding surfaces determines how well the n-TiB2 particulates in the composite materials 
can slow down wear. The test samples' sliding wear tracks were inspected using scanning 
electron microscopy (SEM). SEM analyses of the wornout surfaces provided evidence 
about how hard particles affected the produced composites' wear characteristics. 

Wear Direction 
Deep Grooves 

Delaminated Layers 

Wear Direction 

Micro Grooves 

Micro Pits 

Fissures 



Study on n-TiB2 particulates reinforced Al7075 nano composite for soil nail applications: mechanical, wear, and fracture characterizations  111 
 

Wornout surface of the as-cast and 2.5 % n-TiB2 reinforced MMC sample are depicted in 
Fig. 11, where they display worn surfaces as depicted in SEM images. 

These pictures show different-sized grooves on the wornout surfaces, most likely 
caused by worn debris particles acting as secondary abrasive bodies. Hard particulates 
within the alloy prevented plastic deformation, resulting in the forming of these grooves 
and small patches on the worn surfaces [34]. The n-TiB2 particles significantly increased 
wear resistance by facilitating the development of a protecting effect on the surface 
under the applied load. The beneficial effects of n-TiB2 particulates on the wear 
characteristics of MMCs have been shown by this investigation. The n-TiB2 particles that 
were put into the counterface and test samples caused micro-ploughing on the MMCs' 
contact surfaces. SEM pictures of the fabricated nano composites in Fig. 11(b) reveal 
substantially less debris and more consistent sliding wear tracks. When compared to as-
cast alloys, nano composites exhibit greater wear resistance due to their increased 
density and superior interfacial adhesion between the particles and base matrix. There 
was less wear loss because the steel discs could not penetrate the composite materials 
due to the presence of ceramic particles [35]. 

 
Conclusions 
This work investigated the effects of n-TiB2 weight percentage on both the tribological 
and mechanical characteristics of Al7075/TiB2 composite. The following are the principal 
findings. 

One of the most effective methods for fabricating Al7075/n-TiB2 composites is stir 
casting. When producing nano composites with strong matrix-reinforcement bonding, a 
uniform dispersal of the reinforcement was attained. The developed composites' density 
values increased linearly as the wt. % of n-TiB2 particles increased. Addition of n-TiB2 
particulates improved hardness of developed nano composites. Results show that 
composites reinforced by 2.5 wt. % of n-TiB2 was found to be the hardest with hardness 
of 82 VHN. Tensile strength increased when the weight of n-TIB2 particles increased with 
132 MPA, the maximum tensile robustness was observed for 2.5 % of the nano 
composites reinforced with n-TIB2. The obtained results show that the fabricated 
nanocomposites exhibit improved hardness of 14 %, tensile strength of 9 % and wear 
resistance of 20 % when compared to the base alloy. Fracture research exposed that  
n-TiB2 reinforced aluminum matrix composites and unreinforced aluminum alloy 
exhibited ductile expression in the form of dimples. The equiaxed dimples and low depth 
were found in the particle-reinforced aluminum matrix composite. Compared to the  
Al/n-TiB2 reinforced composites, the unreinforced aluminum alloy had a greater wear 
rate. In the developed nano composites, the wear rate decreased as n-TiB2 concentration 
increased. 
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