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Abstract. The present study is devoted to problem of propagating surfaces of weak 

discontinuities of translational displacements, microrotations and temperature in type-I 

micropolar (MP) thermoelastic (TE) continuum. Geometrical and kinematical compatibility 

conditions due to Hadamard and Thomas are used to study possible wave surfaces of weak 

discontinuities in MPTE-I continua. Weak discontinuities are discriminated according to 

spatial orientations of the discontinuities polarization vectors (DPVs). It is shown that the 

surfaces of weak discontinuities can propagate exist without weak discontinuities of the 

temperature field. 

 

 

1. Preliminary remarks  

A notion of micropolar continua takes its origin from the classical E. & F. Cosserat paper [1]. 

Micropolar continuum theories include not only translational displacements but also 

additional degrees of freedom. These degrees of freedom are due to changes of a trihedron 

associated with microvolume. In contrary to conventional elasticity a continuum with 

microstucture is described by the asymmetric strain and stress tensors known from many 

previous discussions. Thus the asymmetric elasticity theory is characterized by a 

comparatively large number of constitutive elastic constants need to be determined from the 

experimental observations. There are several phenomena (for example, the anomalous 

piezoelectric effect in quartz, the dispersion of elastic waves, as well as a number of other 

experimentally observed elastic properties of the pure crystals) being beyond the scope of the 

conventional thermoelasticity (CTE) and piezoelectroelasticity. That is why a development of 

complex theories seems to be actual. 

Type-I micropolar thermoelastic (MPTE-I) continuum may be described from 

viewpoint of the Green-Naghdi thermoelasticity (GN-theory). Now such mathematical 

frameworks of the thermoelastic behavior of solids are rapidly refined [2, 3]. They are based 

on different modifications of the classical Fourier law of heat conduction. The refinements 

aim at derivations of hyperbolic partial differential equations of coupled thermoelasticity. 

Those are to simultaneously fulfill the following conditions: 1.) Finiteness of the heat signal 

propagation velocity, and 2.) Spatial propagation of the thermoelastic waves without 

attenuation, and 3.) Existence of distortionless wave forms akin to the classical d'Alembert 

type waves.  

In-depth study of plane harmonic type-I thermoelastic waves is given in [4]. It is shown 

that dispersion equation has exactly two complex wavenumbers for a given frequency. 
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Moreover their real and imaginary parts are strictly positive. In [4] the linear symmetrical 

thermoelasticity is employed.  

 

2. Gaverning equations of the MPTE-I continuum 

The system of coupled partial differential equations of motion and heat conduction for a linear 

isotropic type-I micropolar thermoelastic continuum in the absence of mass forces, moments, 

and heat sources can be written as [5]  
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Hereafter u  is the translational displacements; φ  – the microrotations;   – the temperature 

increment over the referential temperature;   – the mass density;   – the microinertia;   – 

the three-dimensional Hamiltonian operator (the nabla symbol); dot over a symbol denotes 

partial differentiation with respect to time at fixed spatial coordinates; , , , , ,       are 

isothermal constitutive constants of  MPTE-I continuum; ,   are constitutive constants 

providing coupling of equations of motion and heat conduction; is the heat capacity (per unit 

volume) at constant (zero) strains; *  is the thermal conductivity. Constants ,   depend not 

only on the mechanical properties of the continuum, but also depend on the thermal 

properties. 

 

3. Weak discontinuities in the MPTE-I continuum 

System of partial differential equations (1) includes partial derivative of the order not higher 

than the second. Let a wave surface   of weak discontinuities translational displacements u , 

microrotations φ  and temperature   be propagating with normal velocity G  in three-

dimensional space. 

Kinematical and geometrical compatibility conditions of the second order due to 

Hadamard and Thomas read 
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where square brackets denote jump across surface of weak discontinuities. B , A , S  are 

fields defined on this surface. A  and S  are the DPVs of translational displacements and 

microrotations respectively. The equalities 0B  , A 0 , S 0  cannot be satisfied 

simultaneously at any point of the surface, if the surface   in fact is the surface of weak 

discontinuities. 

Equations (1) and (2) give the following relations between the DPVs: 
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The DPVs A , S  can be decomposed into sums of projections onto the tangent plane 

and on the normal direction to the wave surface: 
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where τ  is the tangential unit vector and n  is the normal unit one respectively. Taking 

account of equations (4) the system (3) after rearrangements is transformed into 
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4. A classification of weak discontinuities in the MPTE-I continuum 

The 16 cases can be discriminated according to (5). These cases are gathered into the 

following Table 1. We proceed by considering the discriminated cases separately. For the case 

(I) A 0 , S 0  and returning to (3) the scalar equation in (3) is satisfied identically, so the 

surface   is actually not a surface of weak discontinuities. In the case (II), the first equation 

of system (5) is valid only on a wave surface propagating with normal velocity 

|| ( 2 )G с      . In the case (III) a weak discontinuity of translational displacements 

exists only on the surface propagating with the velocity ( )G с      . The case (IV) 

implies existence of a weak discontinuity of microrotations. Then the fourth equation of 

system (5) is satisfied only on the surface of weak discontinuities propagating with normal 

velocity ( 2 )G с      . In the case (V), the third equation of the system (5) allows 

to compute the propagation velocity of a weak discontinuities of microrotations 

( )G с      . 

As is it seen from the third equation in (3) a weak discontinuity of temperature is not 

associated with the tangential projections of polarization vectors of weak discontinuities A  

and S . 

In cases (VI), (XII), (XIV), (XVI) the weak discontinuities of temperature can be 

derived from third equation in (4). In these cases propagating longitudinal waves are possible, 

if normal projections of the DPVs A  and S  satisfy the equation  
 

|| ||S A      
 

and simultaneously 0.B   
 

Table 1. Discriminated cases for DPVs and scalar intensity B . 

No Projections of DPV A  Projections of DPV S  Intensity B  

I || 0A   0A   || 0S   0S   0B   

II || 0A   0A   || 0S   0S   0B   

III || 0A   0A   || 0S   0S   ||

*

G
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IV || 0A   0A   || 0S   0S   0B   

V || 0A   0A   || 0S   0S   ||
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VII || 0A   0A   || 0S   0S   0B   

VIII || 0A   0A   || 0S   0S   ||

*

G
B A
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In other cases propagating wave surfaces of weak discontinuities displacements, 

microrotations and temperature do not exist if the constitutive characteristics of the MPTE-I 

continuum do not satisfy the limitations as determined by (5). 
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