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Abstract. Free vibration analysis of rotating piezoelectric bar of circular cross-section 

immersed in fluid is discussed using three-dimensional theory of piezoelectricity. The 

equations of motion of the bar are formulated using the constitutive equations of a 

piezoelectric material. The equations of motion of the fluid are formulated using the 

constitutive equations of an inviscid fluid. Three displacement potential functions are 

introduced to uncouple the equations of motion, electric conduction. The perfect-slip boundary 

conditions are applied at the solid-fluid interfaces to obtain the frequency equation of the 

coupled systems. The frequency equations are obtained for longitudinal and flexural 

(symmetric and antisymmetric) modes of vibration and are studied numerically for PZT-4 

material. The computed wave number and electro mechanical coupling is presented in the form 

of dispersion curves. The secant method is used to obtain the roots of the frequency equation.  
 

 

1. Introduction 

The development in piezoelectric sensors and actuators is important for the design and 

construction of light weighted and high performance smart structures. Piezoelectric polymers 

allow their use in a multitude of compositions and geometrical shapes for a large variety of 

applications from transducers in acoustics, ultrasonic’s and hydrophone applications to 

resonators in band pass filters, power supplies, delay lines, medical scans and some industrial 

non-destructive testing instruments. Some of the applications of these polymers include Audio 

device-microphones, high frequency speakers, tone generators and acoustic modems; Pressure 

switches – position switches, accelerometers, impact detectors, flow meters and load cells; 

Actuators- electronic fans and high shutters. The rotating piezoelectric bar of circular cross 

section has gained importance in construction of gyroscope to measure the angular velocity of 

a rotating body. 

Most of the studies in elastic wave propagation in cylindrical waveguides are concerned 

with isotropic cylinders. The wave propagation in elastic solid has been discussed extensively 

in details by Graff [1]. The propagation of compressional elastic waves along an anisotropic 

circular cylinder with hexagonal symmetry was first studied by Morse [2]. Theoretical studies 

on electroelastic wave propagation in anisotropic piezoceramic cylinders have also been 

pursued for many years. The approach usually applied for piezoelectric solids is the 

simplification of Maxwell’s equations by neglecting magnetic effects, conduction, free 

charges, and displacement currents. Studies by Tiersten [3] should be mentioned among the 

early notable contributions to the topic of the mechanics of piezoelectric solids. Electroelastic 

governing equations of piezoelectric materials are presented by Parton and Kudryavtsev [4]. 

Shul’ga [5] studied the propagation of axisymmetric and non-axisymmetric waves in 

anisotropic piezoceramic cylinders with various prepolarization directions and boundary 

conditions. 
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Paul and Venkatesan [6-7] studied the wave propagation in infinite piezoelectric solid 

cylinders of arbitrary cross-section using Fourier expansion collocation method, formulated 

by Nagaya [8]. Rajapakse and Zhou [9] solved the coupled electroelastic equations for a long 

piezoceramic cylinder by applying Fourier integral transforms. Paper by Wang [10] should be 

mentioned among the studies of cylindrical shells with a piezoelectric coat. Ebenezer and 

Ramesh [11] analyzed axially polarized piezoelectric cylinders with arbitrary boundary 

conditions on the flat surfaces using the Bessel series. Berg et al. [12] assumed electric field 

not to be constant over the thickness of piezoceramic cylindrical shells. Later Botta and Cerri 

[13] extended this approach and compared their results with those in which the effect of 

variable electric potential was not considered. Kim and Lee [14] studied piezoelectric 

cylindrical transducers with radial polarization and compared their results with those obtained 

experimentally and numerically by the finite-element method.   

Berliner and Solecki [15] have studied the wave propagation in a fluid loaded 

transversely isotropic cylinder. In that paper, Part I consists of the analytical formulation of 

the frequency equation of the coupled system consisting of the cylinder with inner and outer 

fluid and Part II gives the numerical results. Guo and Sun [16] discussed the propagation of 

Bleustein - Gulyaev wave in 6mm piezoelectric materials loaded with viscous liquid using the 

theory of continuum mechanics. Qian et al [17] analyzed the propagation of Bleustein-

Gulyaev waves in 6mm piezoelectric materials loaded with a viscous liquid layer of finite 

thickness. Dayal [18] investigated the free vibrations of a fluid loaded transversely isotropic 

rod based on uncoupling the radial and axial wave equations by introducing scalar and vector 

potentials. Nagy [19] studied the propagation of longitudinal guided waves in fluid-loaded 

transversely isotropic rod based on the superposition of partial waves. Guided waves in a 

transversely isotropic cylinder immersed in a fluid were analyzed by Ahmad [20]. Ponnusamy 

and Selvamani [21, 22] have studied respectively, the three dimensional wave propagation of 

transversely isotropic magneto thermo elastic cylindrical panel and flexural vibration in a heat 

conducting cylindrical panel embedded in a Winkler elastic medium in the context of the 

linear theory of thermo elasticity. The dynamic response of a heat conducting solid bar of 

polygonal cross section subjected to moving heat source is discussed by Selvamani [23] using 

the Fourier expansion collocation method (FECM). 

Zhang [24] investigated the parametric analysis of frequency of rotating laminated 

composite cylindrical shell using wave propagation approach. Body wave propagation in 

rotating thermo elastic media was investigated by Sharma and Grover [25]. The propagation 

of waves in conducting piezoelectric solid is studied for the case when the entire medium 

rotates with a uniform angular velocity by Wauer [26]. Roychoudhuri and Mukhopadhyay 

[27] studied the effect of rotation and relaxation times on plane waves in generalized thermo 

visco elasticity. Hua and Lam [28] has studied the frequency characteristics of a thin rotating 

cylindrical shell using general differential quadrature method. Sergiu et al. [29] studied the  

energy dissipation and critical speed of granular flow in a rotating cylinder and they found 

that the coefficient of friction have the greatest significance on the centrifuging speed.  

The aim of the present article is to study the free wave propagation in a rotating 

piezoelectric bar of circular cross-section immersed in fluid. The frequency equations are 

obtained from the solid-fluid interfacial boundary conditions. The computed wave number 

and electromechanical coupling with respect to frequency are plotted in the form of dispersion 

curves for longitudinal and flexural modes of vibrations for the material PZT-4.  
 

2. Governing field equations 

The linear constitutive equations of coupled elastic and electric field in a piezoelectric 

medium are given by 
 

     
T

C e E        ,      
T

D e E         ,       (1) 
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where the stress vector   , the strain vector  e , the electric field vector  E  and the 

electric displacement vector  D  are given in the cylindrical coordinate system  , ,r z  

(Fig. 1) by 
 

  , , , , ,
T

rr zz r z rz           ,     , ,
T

r zE E E E
 
  , 

 

  , , , , ,
T

rr zz r z rze e e e e e e     ,     , ,
T

r zD D D D
 
  ,        (2) 

 

where C 
  ,     and     denotes the matrices of elastic constants, piezoelectric constants and 

dielectric constants respectively. 
 

 
 

Fig. 1. Rotating bar immersed in fluid. 
 

The matrices C 
  ,     and     for the transversely isotropic material is given by 
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.   (3) 

 

By considering a homogeneous transversely isotropic piezoelectric rotating circular bar of 

infinite length immersed in fluid, the equations of motion in the absence of body force are  
 

  2

,
2

1
( ( ) 2( ))

rr r
trr r rz

u
u u

r r z r t





 
    
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   
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   
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 
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
   



  
   

   
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2
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2

1
( ( ) 2( ))rz z

trz z zz

u
u u

r r z r t



    



  
         

   
.     (4) 

 

The electric displacements ,rD D and zD  satisfy the Gaussian equation is 
 

 
1 1

0z
r

D D
rD

r r r r




 
  

  
.           (5) 

 

The elastic, the piezoelectric, and dielectric matrices of the 6mm crystal class, the 

piezoelectric relations are 
 

11 12 13 31rr rr zz zc e c e c e e E     ,   12 11 13 31rr zz zc e c e c e e E      , 
 

13 13 33 33zz rr zz zc e c e c e e E     ,  66r rc e   , 44 15z zc e e E     ,  44 152rz rz rc e e E   ,   (6) 
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and 
 

15 11r rz rD e e E  ,   15 11zD e e E    ,    31 33 33z rr zz zD e e e e e E     ,     (7) 
 

where are the stress components, , , , , ,rr zz r z rze e e e e e    are the strain components, 

11 12 13 33 44, , , ,c c c c c  and  66 11 12 2c c c   are the five elastic constants, 31 15 33, ,e e e  are the 

piezoelectric constants, 11 33,   are the dielectric constants,   is the mass density. The 

comma in the subscripts denotes the partial differentiation with respect to the variables. The 

displacement equation of motion has the additional terms with a time dependent centripetal 

acceleration ( )u  and ,2( )tu  where, ( ,0, )u u w  is the displacement vector and 

(0, ,0)   is the angular velocity.   

The strain 
ije  are related to the displacements are given by 

 

,rr r re u ,    1

,re r u u  

  ,   
,zz z ze u ,       (8a) 

 

 1

, ,r r re u r u u   

   ,    1

, ,z z ze u r u  

  ,   
, ,rz z r r ze u u  .    (8b) 

 

The comma in the subscripts denotes the partial differentiation with respect to the variables. 

Substituting the Eqs. (6), (7) and (8) in the Eqs. (4) and (5), results in the following 

three-dimensional equations of motion, electric conductions as follows: 
 

       1 2 2 2 1

11 , , 11 66 , 66 , 44 , 44 13 , 66 12 ,rr r r r r r r zz z rz rc u r u r u r c c u r c u c u c c u r c c u    

             

    2

31 15 , , ,2rz t r tte e V u w u        ,       (9a) 
 

       1 2 1 2 2 1

12 66 , 66 11 , 66 , , 11 , 44 , 44 13 ,r r r rr r zz z zr c c u r c c u c u r u r u r c u c u r c c u        

              

  31 15 , ,z tte e V u    ,         (9b) 
 

      1 2 1

44 , , , 44 13 , , 44 13 , 33 , 33 ,z rr z r z r z z r rz z zz zzc u r u r u r c c u u c c u c u e V  

             

   1 2 2

15 , , , , ,2rr r t z tte V r V r V w u u           ,     (9c) 
 

    1 2 1 1

15 , , , 31 15 , , , 33 , 33 ,z rr z r z r zr r z z z zz zze u r u r u e e u r u r u e u V                  

 1 2

11 , , , 0rr rV r V r V      .        (9d) 

 

3. Solutions of the field equation 

To obtain the propagation of harmonic waves in piezoelectric circular solid bar, we assume 

the solutions of the displacement components to be expressed in terms of derivatives of 

potentials, which are taken from Paul [6]. Thus, we seek the solution of the Eqs. (9) in the 

form of Paul [6] are 
 

     1

, ,, , ,
i kz t

r ru r z t r e


  
  ,       1

, ,, , ,
i kz t

ru r z t r e


   
  ,     

, , ,
i kz t

z

i
u r z t We

a




 
 
 

, 

 

   
, , ,

i kz t
V r z t iVe





 ,    

,, , ,
i kz t

r rE r z t E e





 ,    1

,, , ,
i kz t

E r z t r E e


 
  , 

 

   
,, , ,

i kz t

z zE r z t E e





 ,         (10) 
 

where 1i   , k  is the wave number,  is the angular frequency,    , , ,r W r   , 
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 ,r   and  ,E r   are the displacement potentials and  ,V r   is the electric potentials and 

a  is the geometrical parameter of the bar. By introducing the dimensionless quantities such as

x r a , ka  , 2 2 2

44a c  , 11 11 44c c c , 13 13 44c c c , 33 33 44c c c , 66 66 44c c c , 

2 2

2

R




 


 and substituting Eq.(9) in Eqs.(10), we obtain 

 

     2 2 2

11 13 15 311 0c c W e e V            
 

, 

 

     2 2 2 2 2 2

13 33 151 0c c W e V              
 

, 

 

     2 2 2 2 2

15 31 15 33 11 0e e e W V              ,     (11) 
 

and 
 

  2 2 2

66 0c       ,        (12) 

 

where 
2 2

2 1 2

2 2
x x

x x 

   
   

  
. 

The Eq. (11) can be written as 
 

 

   

 

2

11 3 6 5

2 2 2 2

6 1 15

2 2 2 2 2

5 15 33 11

, , 0

c g g g

g g e W V

g e

 

  

    

   

     

    

,      (13) 

 

where 2 2

1 33g c   , 2 2

3g    , 2 2

4 11 15g e  , 5 31 15g e e   and 6 131g c  . 

Evaluating the determinant given in Eq. (13), we obtain a partial differential equation of the 

form 
 

  6 4 2 , , 0A B C D W V       ,       (14) 
 

where  2

11 15 11A c e   , 

      2 2 2 2 2

11 11 15 31 15 13 15 11 33 11 13 11 13 11 15 11 131 2 1 2 2 2B c e e e c e c c c c e c e                  , 

         
24 2 2

11 13 11 11 31 15 15 11 33 33 31 15 111 1 2 { 1C c c e e e c c e e                       

     4

31 13 13 33 33 13 152 1 2 }e c c c c e      ,      6 4 2 2 4
33 33 33 331 2 1 1D c c       

 
       . 

Solving the Eq. (14), we get solutions for a circular bar as  
 

 
3

1

cosi n i

i

A J ax n  


 ,   
3

1

cosi i n i

i

W a A J ax n 


 ,   
3

1

cosi i n i

i

V b A J ax n 


 . (15) 

 

Here    
2

0, 1,2,3ia i    are the roots of the algebraic equation 
 

     
6 4 2

0A a B a C a D      .       (16) 

 

The solutions corresponding to the root  
2

0ia   is not considered here, since  0nJ  is 

zero, except for 0n  . The Bessel function nJ  is used when the roots    
2
, 1,2,3ia i   are 
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real or complex and the modified Bessel function nI  is used when the roots    
2
, 1,2,3ia i   

are imaginary. 

The constants ,i ia b  defined in the Eq. (15) can be calculated from the equations 
 

      2 2 2

13 31 15 111 i i ic a e e b c a           , 

 

         
2 2 22 2 2

33 15 13 1i i i i ia c a e a b c a             .    (17) 

 

Solving the Eq. (12), we obtain 
 

 4 4 sinnA J ax n   ,         (18) 
 

where  
2 2 2

4a    . If  
2

4 0a  , the Bessel function nJ  is replaced by the modified 

Bessel function nI .  

 

4. Equations of motion of the fluid  

In cylindrical polar coordinates ,r   and z  the acoustic pressure and radial displacement 

equation of motion for an in viscid fluid are of the form Achenbach [30] 
 

  1

, , ,

f f f f f f

r r r z zp B u r u u u 

            (19) 

 

and 
 

2

, ,

f

f r tt rc u   ,           (20) 
 

respectively, where fB  is the adiabatic bulk modulus, f  is the density, 
f f

fc B   is the 

acoustic phase velocity in the fluid, and  
 

  1

, , ,

f f f f

r r r z zu r u u u 

     .        (21) 

 

Substituting 
 

,

f f

r ru  , 
1

,

f fu r 
  and ,

f f

z zu          (22) 
 

and seeking the solution of Eq.(19) in the form 
 

     

0

, , , cos
i kz tf f

n

n

r z t r n e


    






 .       (23) 

 

The fluid that represents the oscillatory wave propagating away is given as 
 

   1

5 5

f

nA H ax  ,          (24) 
 

where  
2 2 2

5

f

a B     , in which f   , 
44

f
fB B c , 

 1
nH  is the Hankel 

function of first kind. If  
2

5 0a  , then the Hankel function of first kind is to be replaced by 

nK , where nK  is the modified Bessel function of the second kind. By substituting Eq. (23) in 

Eq. (19) along with Eq. (24), the acoustic pressure for the fluid can be expressed as 
 

     12

5 5

0

cos ai z Tf

n

n

p A H ax n e


  






  ,       (25) 
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4.1. Electro mechanical coupling. The electromechanical coupling 2( )  for a 

cylindrical bar is important for alteration of structural responses through applied electric fields 

in the design of sensors and surface acoustic damping wave filters. By Teston et al. [31], the 

electro mechanical coupling is defined as  
 

2 e f

e

V V

V



 ,           (26) 

 

where eV  and fV  are the Phase velocities of the wave under electrically shorted and charge 

free boundary conditions at the surface of the bar. 

 

5. Boundary conditions and frequency equations 

In this problem, the free vibration of transversely isotropic rotating piezoelectric solid bar of 

circular cross-section immersed in fluid is considered. In the solid-fluid interface problems, 

the normal stress of the bar is equal to the negative of the pressure exerted by the fluid and the 

displacement component in the normal direction of the lateral surface of the cylinder is equal 

to the displacement of the fluid in the same direction. These conditions are due to the 

continuity of the stresses and displacements of the solid and fluid boundaries. Since the 

inviscid fluid cannot sustain shear stress, the shear stress of the outer fluid is equal to zero. 

For the solid-fluid problems, the continuity conditions require that the displacement 

components, the surface stress components and electric potential must be equal. The boundary 

conditions can be written as 
 

   , , , , ,0,0,0, ,f f

rr r rz r ri
V u p u r a      .      (27) 

 

Substituting the solutions given in the Eqs. (15), (18) and (26) in the boundary condition in 

the Eq. (27), we obtain a system of five linear algebraic equations as follows: 
 

    0A X  ,          (28) 
 

where A 
   is a 5 5  matrix of unknown wave amplitudes, and  X  is an 5 1  column vector 

of the unknown amplitude coefficients 1 2 3 4 5, , , ,A A A A A . The components of A 
   are defined 

in the Appendix A. The solution of Eq. (28) is nontrivial when the determinant of the 

coefficient of the wave amplitudes  X  vanishes, that is  
 

0A  .          (29) 
 

Eq. (29) is the frequency equation of the coupled system consisting of a transversely isotropic 

rotating piezoelectric solid circular bar immersed in inviscid fluid. 

 

6. Numerical results and discussion 

The frequency equation given in Eq. (28) is transcendental in nature with unknown frequency 

and wave number. The material chosen for the numerical calculation is PZT-4. The material 

properties of PZT-4 is taken from Berlincourt et al. [32] are used for the numerical calculation 

is given below: 10 2

11 13.9 10c Nm  , 10 2

12 7.78 10c Nm  , 10 2

13 7.43 10c Nm  , 
10 2

33 11.5 10c Nm  , 10 2

44 2.56 10c Nm  , 10 2

66 3.06 10c Nm  , 2

31 5.2e Cm  , 
2

33 15.1e Cm , 2

15 12.7e Cm , 9 2 1 2

11 6.46 10 C N m     , 9 2 1 2

33 5.62 10 C N m     , 

27500 Kgm   and for fluid the density 31000f Kgm  , phase velocity 
11500 secc m   

and used for the numerical calculations. 
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In this problem, there are two kinds of basic independent modes of wave propagation 

have been considered, namely, the longitudinal and flexural modes. By choosing respectively 

n=0 and n=1, we can obtain the non-dimensional frequencies of longitudinal and flexural 

modes of vibrations.  

The dispersion curves are drawn in Figs. 2-4 for wave number versus the frequency for 

longitudinal and flexural (symmetric and anti symmetric) modes of piezoelectric circular bar 

immersed in fluid. From the Figs. 2-4, it is observed that the wave numbers are increased with 

respect to its frequencies. The increase in angular velocities in all the modes is significant and 

the flexural modes are getting dispersed compared with longitudinal mode.  
 

 
 

Fig. 2. Dispersion of wave number with frequency for longitudinal modes of piezoelectric 

rotating bar immersed in fluid. 
 

 
 

Fig. 3. Dispersion of wave number with frequency for flexural symmetric modes of 

piezoelectric rotating bar immersed in fluid. 
 

 
 

Fig. 4. Dispersion of wave number with frequency for flexural antisymmetric modes of 

piezoelectric rotating bar immersed in fluid. 
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A comparison is made among the electro mechanical coupling with respect to frequency for 

longitudinal and flexural (symmetric and antisymmetric) modes of vibration in the Figs. 5-7, 

respectively. From the Figs. 5-7, it is clear that, the modes of electro mechanical coupling are 

merges for a particular period of frequency after that, it starts increase and decreases.  
 

 
 

Fig. 5. Dispersion of electro mechanical coupling with frequency for longitudinal modes of 

piezoelectric rotating bar immersed in fluid. 
 

 
 

Fig. 6. Dispersion of electro mechanical coupling with frequency for flexural symmetric 

modes of piezoelectric rotating bar immersed in fluid. 
 

 
 

Fig. 7. Dispersion of electro mechanical coupling with frequency for flexural antisymmetric 

modes of piezoelectric rotating bar immersed in fluid. 
 

The cross-over points between the modes of electro mechanical coupling with respect to the 

increasing angular velocities shows that, there is energy transfer between the modes of 

vibrations due to the extra added force of rotating and hosting fluid. 
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7. Conclusion 

The propagation of waves in a piezoelectric solid bar of circular cross-section immersed in 

fluid is discussed using three-dimensional theory of piezoelectricity. Three displacement 

potential functions are introduced to uncouple the equations of motion, electric conduction. 

The frequency equation of the coupled system consisting of bar and fluid is developed under 

the assumption of perfect-slip boundary conditions at the fluid-solid interfaces. The frequency 

equations are obtained for longitudinal and flexural modes of vibration and are studied 

numerically for PZT-4 material bar immersed in fluid. The effect of rotation and the hosting 

fluid is pronounced in the dispersion of wave number and electromechanical coupling. 

 

Appendix A 

            
2

1 66 11 13 31 66 12 1 2 , 1,2,3i i i i n i i n ia c n n c a c a e b J a c a J a i           , 

        14 66 4 4 1 42 1 n na c n n J a a J a     ,  
   12

15 5

f

na H a   , 

        12 2 1 , 1,2,3nni i i ia n n J a a J a i      , 

         24 4 4 4 1 4

2
2 1 2n na a n n J a a J a   

  
  
  

    ,  25 0a  , 

         3 15 1 , 1,2,3i i i n i i n ia a e b nJ a a J a i        ,   34 4na n J a  ,  35 0a  , 

 4 , 1,2,3i i n ia b J a i  ,  44 450, 0a a  ,            11
5 1 , 1,2,3i n i i ina nH a a H a i     , 

 54 4na nJ a ,            11
55 5 5 51n na nH a a H a     . 
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