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Abstract. This work presents a direct boundary element method (BEM) in the Laplace 

domain for transient dynamic analysis of the three-dimensional (3D) homogeneous linear 

anisotropic elastic bodies. Proposed boundary element formulation is applied together with 

the modified Durbin’s method for inverse Laplace transform to obtain time domain results. 

Implementation of the proposed method is tested by comparing the numerical results with 

those obtained with the finite element method software. 

 

 

1. Introduction 
The boundary element method is a well-established and powerful numerical method and has 

been widely used for isotropic elastodynamic problems. However, a very few works are 

dedicated to the transient analysis of anisotropic elastic solids because only integral 

representations of the dynamic anisotropic Green’s functions are available [1]. Most of the 

formulations employ the dual reciprocity technique first introduced by Nardini and 

Brebbia [2] because it requires only static fundamental solutions. 

In this paper, a Laplace domain direct BEM formulation for the dynamic problems of 

anisotropic elasticity is presented. Time domain solutions are approximated by a modified 

Durbin’s numerical Laplace transform inversion routine. An example problem is solved using 

the proposed formulation and the results are compared with solutions obtained using the finite 

element method. 

 

2. Problem statement and BEM formulation 

Consider a three-dimensional, homogeneous and linear elastic anisotropic body and let 
3R  denote the region of space occupied by this body. The governing equations for linear 

elasticity without body force are represented in terms of the displacement vector iu  as follows 

iljkijkl uuC ,  in ,  ,3,1,,, lkji  (1) 

where ijklC  is the stiffness tensor and   is the mass density. 

Boundary conditions are given as follows: 
 ii uu  on u , (2) 

 ii tt  on t , (3) 

where jiji nt   is the traction vector with jn  being the outward unit normal vector to the 

boundary ,tu   u  and t  denote the Dirichlet and Neumann boundaries, 

respectively. 
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Durbin [6] developed an approach, namely fast Laplace inverse transform (FLIT) for 

numerical evaluation of the integrals in Eqs. (11) and (12). In this section, we briefly review a 

modifications recently proposed by Zhao [7] in order to overcome a drawback of constant 

integration step in FLIT. 

Let R be large real number so we can rewrite Eqs. (11) and (12) as follows 
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Defining the nodes as Rnn  121 ...0   we approximate Eqs. (13) and (14) as 
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Algorithm 1. In each segment  ,, 1kk   ,,1 nk   the real and imaginary parts of )(sf  

are approximated with linear functions as follows 

),()](Re[
1

1
_

k

kk

kk
k

FF
Fif 


 








  ),()](Im[
1

1
_

k

kk

kk
k

GG
Gif 


 








  (17) 

where )],(Re[ kk ifF    )].(Im[ kk ifG    

Substituting Eq. (17) into Eqs. (15) and (16) and making direct integration we obtain 
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where .1 kkk     

Algorithm 2. The real and imaginary parts of )(sf  are now approximated with 

Subbotin-splines 
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where ,2)( 1 kkk     )],(Re[ kk ifF    )].(Im[ kk ifG    

,kZ  1,1  nk  are determined from the following tridiagonal system 
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,kY  1,1  nk  are determined from 
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Substituting Eqs. (20) and (21) into Eqs. (15) and (16) and making direct integration 

we finally obtain 

,)(
24

1
)0(

1

1 k

n

k

kk
k

k ZZFf 








 






 (24) 



 ,0,)cos)(cos(

)sin)(sin(
1

)(
1

)(
1

)(

11

1

113221
























tttYY

ttZZ
t

tg
t

tg
t

e
tf

kkkk

n

k

kkkk

k

t








 (25) 

where 

,cos)3(
8

1

)3(
8

1
sin)3(

8

1
)(

11

1112111

tYYG

GYYtZZFtg

nnnnn

nnnnn



























 (26) 

.sincos)( 111112 tYtZZtg nnnn     (27) 

 

4. Numerical example 
In order to assess the accuracy of the proposed BEM formulation the following problem is 

solved (see Figure 1): three-dimensional anisotropic elastic prismatic body is clamped at its 

left end, and subjected to uniaxial and uniform impact loading ),(*

22 tHtt   2*

2 mN1t  at 

the right end, )(tH  is a Heaviside step function. The remaining surfaces are traction free. The 

considered material is fully anisotropic with mass density 3kg/m 1600  and with the 

following stiffness tensor [8]: 

GPa.

75.20
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In this example, we employ the following relation to produce the integration steps 

kkk   1  in both Zhao’s algorithms: 
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k e  (29) 

where ,8.0m  750,...,2,1k  and    ,1ln /1

max kx m   with .330max   

To discretize the problem boundary 686 elements with a 688 nodes were used. Figure 2 

shows the displacement )(2 tu  at the center point of the loaded end and tractions )(2 tt  at the 

center point of the clamped end. As it can be observed, BEM results obtained with both 

Zhao’s algorithms are almost identical and in a very good agreement with the corresponding 

FEM solutions. 
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Fig 1. Prismatic body under impact loading. 

 

 
 

Fig 2. Response of displacements );0,3,0(2 tu  and tractions );0,0,0(2 tt using BEM and FEM. 

 

5. Conclusions 
A Laplace domain BEM formulation based on integral representations of the fundamental 

solutions has been presented for the analysis of three-dimensional anisotropic elastodynamic 

problems. To verify the proposed formulation a transient analysis for general anisotropic solid 

is carried out. The accuracy is confirmed by comparing obtained boundary element solutions 

with the corresponding finite element results. The modified Durbin’s method we used to 

invert solution to the time domain is proved to be an accurate and efficient method 

particularly well suited for the dynamic problems of the linear anisotropic elasticity. 
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