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Abstract. This work presents a direct boundary element method (BEM) in the Laplace 

domain for transient dynamic analysis of the three-dimensional (3D) homogeneous linear 

anisotropic elastic bodies. Proposed boundary element formulation is applied together with 

the modified Durbin’s method for inverse Laplace transform to obtain time domain results. 

Implementation of the proposed method is tested by comparing the numerical results with 

those obtained with the finite element method software. 

 

 

1. Introduction 
The boundary element method is a well-established and powerful numerical method and has 

been widely used for isotropic elastodynamic problems. However, a very few works are 

dedicated to the transient analysis of anisotropic elastic solids because only integral 

representations of the dynamic anisotropic Green’s functions are available [1]. Most of the 

formulations employ the dual reciprocity technique first introduced by Nardini and 

Brebbia [2] because it requires only static fundamental solutions. 

In this paper, a Laplace domain direct BEM formulation for the dynamic problems of 

anisotropic elasticity is presented. Time domain solutions are approximated by a modified 

Durbin’s numerical Laplace transform inversion routine. An example problem is solved using 

the proposed formulation and the results are compared with solutions obtained using the finite 

element method. 

 

2. Problem statement and BEM formulation 

Consider a three-dimensional, homogeneous and linear elastic anisotropic body and let 
3R  denote the region of space occupied by this body. The governing equations for linear 

elasticity without body force are represented in terms of the displacement vector iu  as follows 

iljkijkl uuC ,  in ,  ,3,1,,, lkji  (1) 

where ijklC  is the stiffness tensor and   is the mass density. 

Boundary conditions are given as follows: 
 ii uu  on u , (2) 

 ii tt  on t , (3) 

where jiji nt   is the traction vector with jn  being the outward unit normal vector to the 

boundary ,tu   u  and t  denote the Dirichlet and Neumann boundaries, 

respectively. 
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Throughout the paper, zero initial conditions are assumed: 

0),(),(  tutu ii xx   for .0t  (4) 

In order to suppress time variable we employ the Laplace transform 

  ,),(),(),(
0




 dtetfsftfL st
xxx  (5) 

where  is   is the transform parameter. Applying the Laplace transform to Eqs. (1)-(3) 

under zero initial conditions we obtain 

kilkijkl usuC 2

,   in ,  (6) 

 ii uu  on u , (7) 

 ii tt  on t , (8) 

where overline denotes a transformed variable. 

BIE and boundary element formulation. The boundary integral representation of 

Eq. (6) can be obtained by utilizing the reciprocal relation between two elastodynamic states 

with the same Laplace transform parameter s, one of the states being the fundamental solution 

of Eq. (6), and is formulated as 

,,)(d),(),,()(d),(),,(p.v.)(),(  


xyxyxyxyxx stsgsushsuc kjkkjkkjk  (9) 

where (p.v.) denotes a Cauchy principal value of the singular integral, jkc  is the free-term 

matrix, x and y represent the source and the field points, 
ku  and kt  – transformed 

displacement and traction vectors components, jkg  and jkh  are the dynamic anisotropic 

elastic displacement and traction fundamental solutions in the Laplace domain. Since 

closed-forms expressions for fundamental solutions are unavailable, we employ 

corresponding integral representations [1, 3]. In addition, we use interpolation approach 

proposed by Wilson and Cruse [4] to calculate the static parts of the fundamental solutions. 

A numerical implementation of Eq. (9) is carried out by the mixed boundary elements 

approach [5]. The boundary surface   is approximated by quadratic quadrilateral elements, 

the displacements 
ku  and tractions kt  are approximated by quadrilateral linear and constant 

elements, respectively. After applying the collocation technique for spatial discretization of 

Eq. (9) and enforcing the boundary conditions we obtain the resulting system of linear 

equations which is parameterized by the Laplace transform variable s. It only remains to 

invert solution back to the time domain. 

 

3. Numerical inversion of Laplace transform 

The inverse Laplace transform is defined as the following contour integral 

  ,),(
2

1
),(),(1
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xxx  (10) 

where 0  is the arbitrary real constant greater than the real parts of all singularities in 

).,( sf x  

When values of ),( sf x  are available only at the sample points, analytical evaluation of 

integral in Eq. (10) is impossible. Supposing  is   we have the following expressions 

[6] (for convenience the spatial variable x is omitted hereinafter) 
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Durbin [6] developed an approach, namely fast Laplace inverse transform (FLIT) for 

numerical evaluation of the integrals in Eqs. (11) and (12). In this section, we briefly review a 

modifications recently proposed by Zhao [7] in order to overcome a drawback of constant 

integration step in FLIT. 

Let R be large real number so we can rewrite Eqs. (11) and (12) as follows 
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Defining the nodes as Rnn  121 ...0   we approximate Eqs. (13) and (14) as 
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Algorithm 1. In each segment  ,, 1kk   ,,1 nk   the real and imaginary parts of )(sf  

are approximated with linear functions as follows 
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where )],(Re[ kk ifF    )].(Im[ kk ifG    

Substituting Eq. (17) into Eqs. (15) and (16) and making direct integration we obtain 
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where .1 kkk     

Algorithm 2. The real and imaginary parts of )(sf  are now approximated with 

Subbotin-splines 
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where ,2)( 1 kkk     )],(Re[ kk ifF    )].(Im[ kk ifG    

,kZ  1,1  nk  are determined from the following tridiagonal system 
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where )](Re[ 10  ifF  , )].(Re[ 11   nn ifF   
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,kY  1,1  nk  are determined from 
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where )](Im[ 10  ifG  , )].(Im[ 11   nn ifG   

Substituting Eqs. (20) and (21) into Eqs. (15) and (16) and making direct integration 

we finally obtain 
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where 

,cos)3(
8

1

)3(
8

1
sin)3(

8

1
)(

11

1112111

tYYG

GYYtZZFtg

nnnnn

nnnnn



























 (26) 

.sincos)( 111112 tYtZZtg nnnn     (27) 

 

4. Numerical example 
In order to assess the accuracy of the proposed BEM formulation the following problem is 

solved (see Figure 1): three-dimensional anisotropic elastic prismatic body is clamped at its 

left end, and subjected to uniaxial and uniform impact loading ),(*

22 tHtt   2*

2 mN1t  at 

the right end, )(tH  is a Heaviside step function. The remaining surfaces are traction free. The 

considered material is fully anisotropic with mass density 3kg/m 1600  and with the 

following stiffness tensor [8]: 

GPa.

75.20

54.819.21sym.

69.554.918.10

31.828.1582.804.47

47.821.474.336.926.21
28.2560.1569.796.1867.1823.60






























C  (28) 

 

In this example, we employ the following relation to produce the integration steps 

kkk   1  in both Zhao’s algorithms: 

,1)( 
mkx

k e  (29) 

where ,8.0m  750,...,2,1k  and    ,1ln /1

max kx m   with .330max   

To discretize the problem boundary 686 elements with a 688 nodes were used. Figure 2 

shows the displacement )(2 tu  at the center point of the loaded end and tractions )(2 tt  at the 

center point of the clamped end. As it can be observed, BEM results obtained with both 

Zhao’s algorithms are almost identical and in a very good agreement with the corresponding 

FEM solutions. 
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Fig 1. Prismatic body under impact loading. 

 

 
 

Fig 2. Response of displacements );0,3,0(2 tu  and tractions );0,0,0(2 tt using BEM and FEM. 

 

5. Conclusions 
A Laplace domain BEM formulation based on integral representations of the fundamental 

solutions has been presented for the analysis of three-dimensional anisotropic elastodynamic 

problems. To verify the proposed formulation a transient analysis for general anisotropic solid 

is carried out. The accuracy is confirmed by comparing obtained boundary element solutions 

with the corresponding finite element results. The modified Durbin’s method we used to 

invert solution to the time domain is proved to be an accurate and efficient method 

particularly well suited for the dynamic problems of the linear anisotropic elasticity. 
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