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Abstract. The present paper is devoted to the problem of describing materials capable of 
structural transformations. Basing on two-component model of material with nonlinear internal 
force, we investigate the existence of non-stable constitutive curve containing a decreasing 
segment. For this purpose a kinematic loading of two-component rod is considered. The main 
goal is to determine the influence of the relative displacement on the stress-strain dependence 
and to establish the expression, connecting the position of the critical point on the diagram with 
the parameters of the microstructure. 
Keywords: non-monotone constitutive curve; two-component model; structural 
transformations. 

1. Introduction.
In numerous papers devoted to materials experiencing phase transitions, the assumption of a 
non-monotone dependence between stress and strain is introduced [1,2,3,4]. In the present 
paper we consider the possibility of obtaining such constitutive relation, basing on a two-
component model of material. If Hooke’s law is valid for each component, then its dynamic 
equations in 1D case are given by [5]: 
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Here ( 1,2)ku k =  denotes the displacement of each component, kE  is Young's modulus 
and 0kρ  is the density. The interaction force is denoted by R . Taking into account the periodic 
structure of the lattice, the simplest expression for interaction force can be chosen as: 

sinR K zλ= ,  (2) 

where K  defines its maximum value and the parameter 2
d
πλ =  is inversely proportional to the 

period of the lattice d . Function 1 2z u u= −  signifies the relevant displacement, which performs 
the role of an additional degree of freedom corresponding to the microstructure of material. 
Then it is convenient to rewrite equations (1) with respect to the relative displacement 
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 [ 6]. In statics they can be 

presented as: 
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where the following notation is used: 2 1 1 2
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2. Kinematic loading
Consider a kinematic loading of the two-component rod of length l . One of the butts of the rod 
is fixed and another one is extended accordingly to the prescribed function of time 0 ( )U t . These 
conditions can be written down as: 
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It is clearly seen that three boundary conditions are not enough to determine the stress-
strain dependence. So, we need an additional assumption. Let us suppose that the stress 
distribution among the components is proportional to their densities 
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is the total stress in the two-component medium. At least, this 

assumption does not contradict to the rule of summation for stresses. Obviously, if the velocities 
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Therefore, we assume that there is a difference between Young's modulus 2 1
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their densities are equal. After introducing dimensionless variables 
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 the problem is reduced to one equation with mixed 

boundary conditions: 
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where 2 2K lθ β λ= . Equation (6) can be integrated in terms of elliptic functions [7]. However, 
the exact solution seems to be quite complicated for further analysis and we use the Galerkin 
procedure instead, taking for simplicity only one form w ξ= Θ . After multiplying equation (6) 
by ( )f ξ ξ=  and integrating between the limits 0ξ =  and 1ξ =  we obtain the following 
equation: 
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The existence of critical points on the constitutive curve leads to an additional equation 
with respect to Θ : 
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with roots satisfying the inequality 
2

2
2

1
4(1 )

θ θ
δ
δ

< Θ <
+

−

. (9) 

The numerical integrating of problem (6) is performed by applying the program 
AUTO 07P, which is widely used for nonlinear problems [8]. Expressions (8) and (9) allow to 
find the values of the parameters ensuring the existence of a loop-like stress-strain dependence, 
which is determined by the relative displacement at the end of the rod 
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Relation (10) establishes the correlatoion between the microstructure, presented by the 
relative displacements of the components, and the macroparameter of material. The results of 
the numerical calculation are depicted in Fig. 1, where two consitutive curves are shown. 
Young's moduli, the density and grain size were chosen in accordance with the typical values 
for metals, and the value of parameter K  characterizing the ineraction between the components 
performes the role of controlled parameter providing the existence of an unstable segment on 
the stress-strain dependence. 

Fig. 1. Constitutive curves. 

Curve (1) is obtained with the following parameters: 11 2
1 1 10E N m−= ⋅ ⋅ , 

11 2
2 2 10E N m−= ⋅ ⋅ , 3 3

1 2 4 10 kg mρ ρ −= = ⋅ ⋅ , 10 34 10K N m−= ⋅ ⋅ , 3 5 10l m−= ⋅ , when the 
requirement of unambiguous determination of the stress state by a given strain is observed. The 
opposite situation is represented by curve 2, which corresponds to the same values of physical 
characteristics except for the parameter K  whose value was doubled. In this case, we have the 
infinite values for tangent moduli, which shows the impossibility of the material transition to a 
new state at a given type of loading.  
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3. Critical points
The obtained results lead to the problem of defining the critical value for the deformation 
corresponding to the local extremum on the constitutive curve, at which a structural 
transformation begins. To set up its dependence on the parameters of the two-component model, 
we shall seek the solution of equation (6) as the sum: 

1( ) ( ) ( )linw w wξ ξ ξ= + ,  (11) 
where ( )linw ξ  is determined by the solution of linearized problem for near-zero values of 
relative displacements and the second term 1( )w ξ  represents a small perturbation for the 
solution of linear operator. After substitution (11) into (6) we arrive at the following equation 
with variable coefficients and zero boundary conditions: 
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Structural transformation of material corresponds to the rapid changes in the form of the 
solution, when it reaches the turning point. For equation (12) this condition is given by: 
cos( ) 0linw = .   (13) 

Before critical point on the constitutive curve (1) there are no turning points inside the 
gap 0 1ξ≤ ≤ . Fig. 2. demonstrates, how they gradually appears there with increasing the 
deformation 0 ( )tε  

Fig. 2. Returning points. 

Equation (13) allows to determine the critical deformation. Substitutnig into it the 
solution of the linearized problem at 1ξ = , one can obtain: 
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This problem is analogous to the problem of determining the critical load of Euler, which 
is found from the condition of existence of nontrivial solution for boundary value problem. 
Here this condition is formulated as the requirement that the return point belongs to the region 
0 1ξ≤ ≤ . Note that the value 3

0 4 10crε −= ⋅  found using relation (14) correlates well to the 
critical point in Fig. 1. 
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4. Conclusion
Thus, in the present paper the two-component model with nonlinear interaction force depending 
on their relative displacement is proposed. The introduction of this additional degree of freedom 
responsible for structural transformations of material allows to demonstrate the existence of a 
nonmonotonic stress-strain dependence. For this purpose we consider a kinematic loading of 
the rod with complex internal structure. As a result, the relation between its microparameters 
and the critical deformation on the constitutive curve is obtained.   
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