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Abstract. The present article deals with the study of propagation of plane wave and 
fundamental solution in the thermoporoelastic medium. It is found that for two dimensional 
model, their exist three longitudinal waves, namely 𝑃𝑃1-wave, 𝑃𝑃2-wave and T-wave in addition 
to transverse wave. Characteristics of waves like phase velocity, attenuation coefficient, 
specific loss and penetration depth are computed numerically and depicted graphically. The 
representation of the fundamental solution of the system of equations in the thermoporoelastic 
medium in case of steady oscillations is considered in term of elementary functions. Some basic 
properties of the fundamental solution are established. Some special cases are also deduced. 
Keywords: plane wave; fundamental solution; thermoporoelastic medium; steady oscillations.  
 
 
1. Introduction 
Poroelastisity is the mechanics of poroelastic solids with pores filled with fluid. Mathematical 
theory of poroelastisity deals with the mechanical behaviour of fluid saturated porous medium. 
Pore fluid generally includes gas, water and oil. Due to different motions of solid and fluid 
phases and complicated geometry of pore structures, it is very difficult to study the mechanical 
behaviour of a fluid saturated porous medium. The discovery of fundamental mechanical effects 
in saturated porous solids and the formulation of the first porous media theories are mainly due 
to Fillunger [1],Terzaghi [2,3 ,4] and their successors. 

Based on the work of Von Terzaghi [2,3], Biot [5] proposed a general theory of three 
dimensional consolidation. Taking the compressibility of the soil into consideration, the water 
contained in the pores was taken to be incompressible. Biot [6,7] developed the theory for the 
propagation of stress waves in porous elastic solids containing a compressible viscous fluid and 
demonstrated the existence of two types of compressional waves (a fast and a slow wave) along 
with one share wave. Biot’s model was broadly accepted and some of his results have been 
taken as standard references and the basis for subsequent analysis in acoustic, geophysics and 
other such fields.  

For the thermoporoelastisity problems, coupled thermal and poro-mechanical processes 
play an important role in a number of problems of interest in the geomechanics such as stability 
of boreholes and permeability enhancement in geothermal reservoirs. A thermoporoelastic 
approach combines the theory of heat conduction with poroelastic constitutive equations and 
coupling the temperature fields with the stresses and pore pressure. 

Rice and Cleary [8] presented some basic stress-diffusion solutions for fluid saturated 
elastic porous media with compressible constituents. There exists a substantial literature 
treating the extension of the well known isothermal theory to account for the effects of thermal 
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expansion of both the pore fluid and the elastic matrix [eg. Schiffman [9], Bowen[10], 
Noorishad[11]]. 

McTigue [12] developed a linear theory of fluid saturated porous thermoelastic material 
and this theory allows compressibility and thermal expansion of both the fluid and solid 
constituents. He presented a general solution scheme in which a diffusion equation with 
temperature dependent source term governs a combination of the mean total stress and the fluid 
pore pressure. 

Kurashige [13] extends the Rice and Cleary [8] theory to incorporate the heat 
transportation by a pore fluid flow in addition to the effect of difference in expansibility 
between the pore fluid and the skeletal solid and presented a thermoelastic theory of fluid-filled 
porous materials. This theory shows that the displacement field is completely coupled with the 
pore pressure and temperature field in general, however, for irrotational displacement, the first 
field is decoupled from the last two, which are still coupled to each other. This pore pressure-
temperature coupling involves nonlinearity.     

Abousleiman and Ekbote [14] obtained the solutions for the inclined borehole in a 
porothermoelastic transversely isotropic medium. Bai [15] studied the fluctuation responses of 
porous media subjected to cyclic thermal loading. Bai and Li [16] obtained the solution for 
cylindrical cavity in a saturated thermoporoelastic medium. 

Jabbari and Dehbani [17] considered the classical coupled thermoporoelastic model of 
hollow and solid cylinders under radial symmetric loading conditions and presented a unique 
solution. Ganbin et al. [18] obtained the solution in saturated porous thermoviscoelastic 
medium, with cylindrical cavity that is subjected to time dependent thermal load by using 
Laplace transform technique. Gatmiri et al. [19] presented the two-dimensional fundamental 
solutions for non-isothermal unsaturated deformable porous medium subjected to quasi- static 
loading in time and frequency domain. Li et al. [20] presented the study state solutions for 
transversely isotropic thermoporoelastic media in three dimensions.    

Jabbari and Dehbani [21] considered the quasi- static porothermoelasticity model of 
hollow and solid sphere and obtained the displacement, temperature distribution and pressure 
distribution due mechanical, thermal and pressure source. Liu et al. [22] studied the relaxation 
effect of a saturated porous media using the two dimensional generalized thermoelastic theory. 
Belotserkovets and Prevost [23] obtained an analytical solution of thermoporoelastic response 
of fluid-saturated porous sphere. 

Bai [24] derived an analytical method for the thermal consolidation of layered saturated 
porous material subjected to exponential decaying thermal loading. Mixed variation principal 
for dynamic response of thermoelastic and poroelastic continua was discussed by Apostolakis 
and Dargus [25]. Hou et al. [26] discussed the three dimensional Green’s function for 
transversely isotropic thermoporoelastic biomaterial. Jabbari et.al. [27] presented the thermal 
buckling analysis of functionally graded thin circular plate made of saturated porous material 
and obtained the closed form solutions for circular plates subjected to temperature load. 

Liu and Chain [28] discussed a micromechanical analysis of the fracture properties of 
saturated porous media. He et al. [29] studied the dynamic simulation of landslide based on 
thermoporoelastic approach. Nguyen et al. [30] discussed the analytical study of freezing 
behaviour of a cavity in thermoporoelastic medium. Wu et al. [31] presented a refined theory 
of axisymmetric thermoporoelastic circular cylinder. 

Svanadze [32, 33, 34] constructed the fundamental solutions in thermoelasticity with 
microtemperature and micromorphic elastic solid with microtemperature. Svanadze and his co-
workers [35, 36, 37, 38] also constructed the fundamental solution and basic properties in 
thermomicrostretch, micropolar thermoelsticity without energy dissipation and full coupled 
theory of elasticity for solids with double porosity. 
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Kumar and Kansal [39, 40, 41] obtained fundamental solution in thermomicrostrech, 
micropolar thermoelastic diffusion, micropolar thermoelastic diffusion with voids. Kumar and 
Kansal [42] also investigated the plane wave and fundamental solution in thermoelastic 
diffusion. Kumar et.al [43] studied the plane wave and fundamental solution in the theory of an 
electro- microstretch generalized thermoelastic solid.  

Kumar and Gupta [44] studied the plane wave propagation in an anisotropic thermoelastic 
medium with fractional order derivative and void. Sharma and Kumar [45] studied the 
propagation of Plane waves and fundamental solution in thermoviscoelastic medium with 
voids. Plane wave propagation in microstretch thermoelastic medium with microtemperature 
was studied by Kumar and Kaur [46]. Fundamental and plane wave solution in swelling porous 
medium was studied by Kumar et.al [47].  

Scarpetta et.al [48] constructed the fundamental solution in the theory of thermoelasticity 
for solids with double porosity. Kumar and Gupta [49] studied the Plane wave propagation and 
domain of influence in fractional order thermoelastic material with three phase lag heat transfer. 

The present study deals with the study of propagation of plane waves and fundamental 
solution in the thermoporoelastic medium. Characteristics of waves like phase velocity and 
attenuation coefficient, specific loss and penetration depth are computed numerically and 
depicted graphically. The representation of the fundamental solution of the system of equations 
in the thermoporoelastic medium in the case of steady oscillations is considered in term of 
elementary functions. 
 
2. Basic Equations 
Following Jabbari and Dehbani [50], the field equations are given by 
(λ + µ)∇∇.𝒖𝒖 + 𝜇𝜇∇2𝒖𝒖 − 𝛼𝛼∇𝑝𝑝 − 𝛽𝛽∇𝑇𝑇 = 𝜌𝜌 𝜕𝜕2𝒖𝒖

𝜕𝜕𝑡𝑡2
,  (1) 

𝑘𝑘
𝛾𝛾𝑤𝑤
∇2𝑝𝑝 − 𝛼𝛼𝑝𝑝𝑝̇𝑝 − 𝑌𝑌𝑇̇𝑇 − 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝒖̇𝒖 = 0,  (2) 

𝐾𝐾∇2𝑇𝑇 − 𝑍𝑍𝑇𝑇0𝑇̇𝑇 + 𝑌𝑌𝑇𝑇0𝑝̇𝑝 − 𝛽𝛽𝑇𝑇0𝑑𝑑𝑑𝑑𝑑𝑑𝒖̇𝒖 = 0,  (3) 
where 𝒖𝒖 is the displacement component, 𝑝𝑝 is the pore pressure, 𝜌𝜌 is the bulk mass density, 𝛼𝛼 =
1 − 𝐶𝐶𝑠𝑠

𝐶𝐶
  is the Biot’s coefficient, 𝐶𝐶𝑠𝑠 = 3(1 − 2𝑣𝑣𝑠𝑠)/𝐸𝐸𝑠𝑠 is the coefficient of volumetric 

compression of solid grain, with 𝐸𝐸𝑠𝑠 and 𝑣𝑣𝑠𝑠 being the elastic modulus and Poisson’s ratio of solid 
grain, C = 3(1 − 2𝑣𝑣)/𝐸𝐸 is the coefficient of volumetric compression of solid skeleton, with 𝐸𝐸 
and 𝑣𝑣 being the elastic modulus and Poisson’s ratio of solid skeleton, 𝑇𝑇0 is initial reference 
temperature, 𝛽𝛽 = 3𝛼𝛼𝑠𝑠

𝐶𝐶
 is the thermal expansion factor, 𝛼𝛼𝑠𝑠 is the coefficient of linear thermal 

expansion of solid grain, 𝑌𝑌 = 3(𝑛𝑛𝛼𝛼𝑤𝑤 + (𝛼𝛼 − 𝑛𝑛)𝛼𝛼𝑠𝑠) and 𝛼𝛼𝑝𝑝 = 𝑛𝑛(𝐶𝐶𝑤𝑤 − 𝐶𝐶𝑠𝑠) + 𝛼𝛼𝐶𝐶𝑠𝑠 are coupling 
parameters, 𝛼𝛼𝑤𝑤 and 𝐶𝐶𝑤𝑤 are the coefficients of linear thermal expansion and volumetric 
compression of pore water, n is the porosity, 𝑘𝑘 is the hydraulic conductivity, 𝛾𝛾𝑤𝑤 is the unit of 
pore water and 𝑍𝑍 = (1−𝑛𝑛)𝜌𝜌𝑠𝑠𝑐𝑐𝑠𝑠+𝑛𝑛𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤

𝑇𝑇0
 is coupling parameter, 𝜌𝜌𝑤𝑤 and 𝜌𝜌𝑠𝑠 are densities of pore water 

and solid grain and 𝑐𝑐𝑤𝑤 and 𝑐𝑐𝑠𝑠  are heat capacities of pore water and solid grain and 𝐾𝐾 is the 
coefficient of heat conductivity. 
 
3. Formulation of the problem 
We consider a homogeneous thermoporoelastic medium. For two dimensional problems, we 
take displacement vector 𝒖𝒖 as: 
𝒖𝒖 = (𝑢𝑢1, 0,𝑢𝑢3)  (4) 

We define the dimensionless quantities as:  
𝒙𝒙′ = 𝜔𝜔∗

𝑐𝑐1
𝒙𝒙, 𝒖𝒖′  = 𝜔𝜔∗𝜌𝜌𝑐𝑐1

𝛽𝛽𝑇𝑇0
𝒖𝒖, 𝑝𝑝′ = 𝑝𝑝

𝛽𝛽𝑇𝑇0
 , 𝑐𝑐12 = λ+2𝜇𝜇

𝜌𝜌
,  

𝑡𝑡′ = 𝜔𝜔∗𝑡𝑡 , 𝑇𝑇′ = 𝑇𝑇
𝑇𝑇0

 , 𝜔𝜔∗ = 𝑍𝑍𝑇𝑇0𝑐𝑐12

𝐾𝐾
 ,  (5) 
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𝑖𝑖 = 1,2,3.   
The displacement components 𝑢𝑢1 and 𝑢𝑢3 are related to the potential functions 

𝛷𝛷(𝑥𝑥1, 𝑥𝑥3, 𝑡𝑡),  𝛹𝛹(𝑥𝑥1, 𝑥𝑥3, 𝑡𝑡) as: 
𝑢𝑢1 = 𝜕𝜕𝛷𝛷

𝜕𝜕𝑥𝑥1
− 𝜕𝜕𝛹𝛹

𝜕𝜕𝑥𝑥3
,  𝑢𝑢3 = 𝜕𝜕𝛷𝛷

𝜕𝜕𝑥𝑥3
+ 𝜕𝜕𝛹𝛹

𝜕𝜕𝑥𝑥1
  (6) 

Using equation (4) on (1)-(3) and applying the dimensionless quantities defined by (5), 
with the aid of (6), after suppressing the prime, yield  
∇2𝛷𝛷 − 𝛼𝛼𝛼𝛼 −  𝑇𝑇 − 𝜕𝜕2𝛷𝛷

𝜕𝜕𝑡𝑡2
= 0,  (7) 

𝛿𝛿2∇2𝛹𝛹 − 𝜕𝜕2𝛹𝛹
𝜕𝜕𝑡𝑡2

= 0, (8) 

𝑏𝑏1∇2𝑝𝑝 − 𝑏𝑏2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑏𝑏3

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕

𝜕𝜕𝜕𝜕
[∇2𝛷𝛷] = 0,  (9) 

𝑏𝑏4∇2𝑇𝑇 − 𝑏𝑏5
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑏𝑏6
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕

𝜕𝜕𝜕𝜕
[∇2𝛷𝛷] = 0, (10) 

where 

𝛿𝛿2 = µ
𝜆𝜆+2µ

,  𝑏𝑏1 = 𝑘𝑘𝜔𝜔∗𝜌𝜌 
𝛾𝛾𝑤𝑤𝛼𝛼

,  𝑏𝑏2 = 𝛼𝛼𝑝𝑝𝜌𝜌𝑐𝑐12 
𝛼𝛼

, 𝑏𝑏3 = 𝑌𝑌𝜌𝜌𝑐𝑐12 
𝛼𝛼

,  𝑏𝑏4 = 𝐾𝐾𝜔𝜔∗𝜌𝜌 
𝛽𝛽2𝑇𝑇0

,  𝑏𝑏5 = 𝑍𝑍𝜌𝜌𝑐𝑐12 
 𝛽𝛽2

, 𝑏𝑏6 = 𝑌𝑌𝑌𝑌𝑐𝑐12

𝛽𝛽2
   

and 𝑒𝑒 = 𝜕𝜕𝑢𝑢1
𝜕𝜕𝑥𝑥1

+ 𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥3

 , ∇2= 𝜕𝜕2

𝜕𝜕𝜕𝜕12
+ 𝜕𝜕2

𝜕𝜕𝜕𝜕22
 .    

 
4. Solution of Plane waves 
For Plane harmonic waves, we assume the solution of the form: 
(𝛷𝛷,𝛹𝛹,𝑝𝑝,𝑇𝑇) = �𝛷𝛷,𝛹𝛹, 𝑝𝑝,𝑇𝑇�𝑒𝑒𝑖𝑖[ξ(𝑥𝑥1𝑙𝑙1+𝑥𝑥3𝑙𝑙3)−ωt],  (11) 
where 𝜔𝜔(= 𝜉𝜉 𝑐𝑐) is the frequency and 𝜉𝜉 is the wave number and 𝑐𝑐 is the phase velocity. 
𝛷𝛷,𝛹𝛹,𝑝𝑝,𝑇𝑇 are undetermined constants that are independent of time t and coordinates 𝑥𝑥1, 𝑥𝑥3. 𝑙𝑙1 
and 𝑙𝑙3are the direction cosines of the wave normal to the 𝑥𝑥1𝑥𝑥3 –plane with the property  
𝑙𝑙12 + 𝑙𝑙32 = 1. 

Using (11) in (7), (9) and (10), we obtain a system of three homogeneous equations in 
three unknowns and these equations has non-trivial solution if the determinant of the 
coefficients of the system vanish, which yields the following characteristic equation in 𝑐𝑐 as:  
𝐻𝐻1c6 + 𝐻𝐻2c4 + 𝐻𝐻3c2 + 𝐻𝐻4 = 0,  (12) 
where 
𝐻𝐻1 = 𝐹𝐹4

𝜔𝜔6 ,𝐻𝐻2 = 𝐹𝐹3
𝜔𝜔4 ,𝐻𝐻3 = 𝐹𝐹2

𝜔𝜔2 ,𝐻𝐻4 = 𝐹𝐹1, 
𝐹𝐹1 = −𝑏𝑏1𝑏𝑏4 , 𝐹𝐹2 = 𝑏𝑏1𝑏𝑏4𝜔𝜔2 + 𝑖𝑖𝑖𝑖(𝑏𝑏1𝑏𝑏5 + 𝑏𝑏2𝑏𝑏4 + 𝛼𝛼𝑏𝑏4 + 𝑏𝑏1), 
𝐹𝐹3 = −𝑖𝑖𝜔𝜔3(𝑏𝑏1𝑏𝑏5 + 𝑏𝑏2𝑏𝑏4) + 𝜔𝜔2(𝑏𝑏2𝑏𝑏5 + 𝑏𝑏3𝑏𝑏6 − 𝛼𝛼𝑏𝑏3 + 𝛼𝛼𝑏𝑏5 + 𝑏𝑏6 + 𝑏𝑏2), 
𝐹𝐹4 = −𝜔𝜔4(𝑏𝑏2𝑏𝑏5 + 𝑏𝑏3𝑏𝑏6) . 

The complex coefficient implies that three roots of this equation may be complex. The 
complex phase velocities of the longitudinal waves, given by 𝑐𝑐𝑖𝑖, 𝑖𝑖 = 1, 2, 3, will be varying 
with the direction of phase propagation. The complex velocity of a longitudinal wave, i.e.  
𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑅𝑅 + 𝑖𝑖𝑐𝑐𝐼𝐼, defines the phase propagation velocity 𝑉𝑉𝑖𝑖  = (𝑐𝑐𝑅𝑅2 + 𝑐𝑐𝐼𝐼2) 𝑐𝑐𝑅𝑅⁄ , attenuation quality 
factor 𝑄𝑄𝑖𝑖−1 = −2 𝑐𝑐𝐼𝐼 𝑐𝑐𝑅𝑅⁄  , Specific loss 𝑅𝑅𝑖𝑖  = 4𝜋𝜋 �𝑐𝑐𝐼𝐼

𝑐𝑐𝑅𝑅
�, Penetration depth 𝑆𝑆𝑖𝑖  = |(𝑐𝑐𝑅𝑅2 + 𝑐𝑐𝐼𝐼2) 𝜔𝜔𝜔𝜔𝐼𝐼⁄ | 

for the corresponding wave. Therefore, three waves propagating in such a medium are 
attenuating. The same directions of wave propagation and attenuation vector of these waves 
make them homogeneous wave. The waves with phase velocity, attenuation quality factor, 
specific loss and penetration depth i.e. 𝑉𝑉𝑖𝑖,𝑄𝑄𝑖𝑖−1,𝑅𝑅𝑖𝑖  and 𝑆𝑆𝑖𝑖(𝑖𝑖 = 1, 2, 3, ) may be named as 
𝑃𝑃1-wave, 𝑃𝑃2-wave and T-wave that are propagating with the descending order of their 
velocities, respectively. 

Substituting the value of 𝛹𝛹 from (11) in (8), we obtain:  
(𝜔𝜔2 − 𝛿𝛿2ξ2)𝛹𝛹 = 0, (13) 
which yield  
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c = ±𝛿𝛿  (14) 
The equation (13) corresponds to transverse wave which travel with phase velocity 𝛿𝛿. 

 
5. Special Case 
In the absence of porosity effect, characteristic equation reduces to: 
𝐻𝐻5c4 + 𝐻𝐻6c2 + 𝑏𝑏4 = 0, (15) 
where 
𝐻𝐻5 = 𝐹𝐹6

𝜔𝜔4 ,𝐻𝐻6 = 𝐹𝐹5
𝜔𝜔2 ,  𝐹𝐹5 = −𝑏𝑏4𝜔𝜔2 − 𝑖𝑖𝑖𝑖(𝑏𝑏50 + 1), 𝐹𝐹6 = 𝑖𝑖𝜔𝜔3𝑏𝑏50,  

where 𝑏𝑏50 = 𝜌𝜌𝑠𝑠2𝑐𝑐𝑠𝑠𝑐𝑐12 
 𝛽𝛽2𝑇𝑇0

 
and the equation (13) remains the same because it is not effected by porous effect. 
 
6. Steady Oscillations 
For steady oscillations, we assume the displacement vector, pressure and temperature change, 
of the form: 
(𝒖𝒖(𝒙𝒙, 𝑡𝑡),𝑝𝑝(𝒙𝒙, 𝑡𝑡),𝑇𝑇(𝒙𝒙, 𝑡𝑡) = (𝒖𝒖�, 𝑝̅𝑝,𝑇𝑇�)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖  (16) 

Making use of dimensionless quantities defined by (5), in (1)-(3) and with the aid of (16) 
yields: 
(1 − 𝛿𝛿2)∇∇.𝒖𝒖 + (𝛿𝛿2∇2 + 𝜔𝜔2)𝒖𝒖 − 𝛼𝛼∇𝑝𝑝 − ∇𝑇𝑇 = 0,  (17) 
𝑎𝑎1∇2𝑝𝑝 + 𝑖𝑖𝑖𝑖𝑎𝑎2𝑝𝑝 + 𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑖𝑖𝑖𝑖𝑎𝑎3 𝑑𝑑𝑑𝑑𝑑𝑑𝒖𝒖 = 0, (18) 
𝑎𝑎4∇2𝑇𝑇 + 𝑖𝑖𝑖𝑖𝑎𝑎5𝑇𝑇 + 𝑖𝑖𝑖𝑖𝑎𝑎6𝑝𝑝 + 𝑖𝑖𝑖𝑖𝑎𝑎7𝑑𝑑𝑑𝑑𝑑𝑑𝒖𝒖 = 0,  (19) 
where  
𝑎𝑎1 = 𝑘𝑘𝜔𝜔∗𝛽𝛽 

𝛾𝛾𝑤𝑤𝑌𝑌𝑐𝑐12
, 𝑎𝑎2 = 𝛼𝛼𝑝𝑝 𝛽𝛽

𝑌𝑌
, 𝑎𝑎3 = 𝛼𝛼 𝛽𝛽

𝑌𝑌𝑌𝑌𝑐𝑐12
, 𝑎𝑎4 = 𝑘𝑘𝜔𝜔∗ 

𝑐𝑐12
, 𝑎𝑎5 = 𝑍𝑍𝑇𝑇0,  𝑎𝑎6 = 𝑌𝑌𝛽𝛽𝑇𝑇0,  𝑎𝑎7 = 𝛽𝛽2𝑇𝑇0

𝜌𝜌𝑐𝑐12
 . 

We introduce the matrix differential operator:  
𝑭𝑭(𝑫𝑫𝒙𝒙) = �𝐹𝐹𝑔𝑔ℎ(𝑫𝑫𝒙𝒙)�

5×5
,  (20) 

where 
𝐹𝐹𝑚𝑚𝑚𝑚(𝑫𝑫𝒙𝒙) = (𝛿𝛿2∇2 + 𝜔𝜔2)𝛿𝛿𝑚𝑚𝑚𝑚 + (1 − 𝛿𝛿2) ∂2

∂𝑥𝑥m ∂𝑥𝑥n
, 𝐹𝐹𝑚𝑚4(𝑫𝑫𝒙𝒙) = −𝛼𝛼 ∂

∂𝑥𝑥m
 , 

𝐹𝐹𝑚𝑚5(𝑫𝑫𝒙𝒙) = − ∂
∂𝑥𝑥m

,  𝐹𝐹4𝑛𝑛(𝑫𝑫𝒙𝒙) = 𝑖𝑖𝑖𝑖𝑎𝑎3
∂
∂𝑥𝑥n

,  𝐹𝐹5𝑛𝑛(𝑫𝑫𝒙𝒙) = 𝑖𝑖𝑖𝑖𝑎𝑎7
∂
∂𝑥𝑥n

, 
𝐹𝐹44(𝑫𝑫𝒙𝒙) = 𝑖𝑖𝑖𝑖𝑎𝑎2 + 𝑎𝑎1∇2,  𝐹𝐹45(𝑫𝑫𝒙𝒙) = 𝑖𝑖𝑖𝑖,  𝐹𝐹54(𝑫𝑫𝒙𝒙) = 𝑖𝑖𝑖𝑖𝑎𝑎6, 
𝐹𝐹55(𝑫𝑫𝒙𝒙) = 𝑖𝑖𝑖𝑖𝑎𝑎5 + 𝑎𝑎4∇2, 𝑚𝑚,𝑛𝑛 = 1,2,3,  (21) 
and 𝛿𝛿𝑚𝑚𝑚𝑚 is the Kronecker delta. 

The system of equations (17)-(19) can be written as: 
𝑭𝑭(𝑫𝑫𝒙𝒙)𝑼𝑼(𝒙𝒙) = 0, (22) 
where  𝑼𝑼 = (𝒖𝒖,𝑝𝑝,𝑇𝑇) is a five component vector function on 𝐸𝐸3. 

We assume that 
𝛿𝛿2𝑎𝑎1𝑎𝑎4 ≠ 0  (23) 

If the condition (23) is satisfied, then 𝑭𝑭 is an elliptic differential operator, H𝑜̈𝑜rmander 
[55]. 

Definition: The fundamental solution of the system of equations (17)-(19) (the 
fundamental matrix of operator 𝑭𝑭) is the matrix 𝑮𝑮(𝒙𝒙) = �𝐺𝐺𝑔𝑔ℎ(𝒙𝒙)�

5×5
, satisfying condition, 

H𝑜̈𝑜rmander [51]: 
𝑭𝑭(𝑫𝑫𝒙𝒙)𝑼𝑼(𝒙𝒙) = 𝛿𝛿(𝒙𝒙)𝑰𝑰(𝒙𝒙),  (24) 
where 𝛿𝛿() is the Dirac delta function, 𝑰𝑰 = �𝛿𝛿𝑔𝑔ℎ�5×5

 is the unit matrix and 𝒙𝒙 = 𝐸𝐸3. 
Now we construct 𝑮𝑮(𝒙𝒙) in terms of elementary functions. 
6.1 Fundamental solution of system of equations of steady oscillations. We consider 

the system of equations: 
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𝛿𝛿2∇2𝒖𝒖 + (1 − 𝛿𝛿2)∇∇.𝒖𝒖 + 𝑖𝑖𝑖𝑖𝑎𝑎3∇𝑝𝑝 + 𝑖𝑖𝑖𝑖𝑎𝑎7∇𝑇𝑇 + 𝜔𝜔2𝒖𝒖 = 𝑯𝑯; (25) 
−𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝒖𝒖 + (𝑖𝑖𝑖𝑖𝑎𝑎2 + 𝑎𝑎1∇2)𝑝𝑝 + 𝑖𝑖𝑖𝑖𝑎𝑎6𝑇𝑇 = 𝐿𝐿; (26) 
−𝑑𝑑𝑑𝑑𝑑𝑑𝒖𝒖 + 𝑖𝑖𝑖𝑖𝑖𝑖 + (𝑖𝑖𝑖𝑖𝑎𝑎5 + 𝑎𝑎4∇2)𝑇𝑇 = 𝑀𝑀, (27) 
where 𝑯𝑯 is three components of vector function on 𝐸𝐸3 and 𝐿𝐿, 𝑀𝑀 are scalar functions of 𝐸𝐸3.The 
system of equations (25)-(27) may be written in the form: 
𝑭𝑭𝑡𝑡𝑡𝑡(𝑫𝑫𝒙𝒙)𝑼𝑼(𝒙𝒙) = 𝑸𝑸(𝒙𝒙),  (28) 
where 𝑭𝑭𝑡𝑡𝑡𝑡 is the transpose of 𝑭𝑭, 𝑸𝑸 = (𝑯𝑯, 𝐿𝐿,𝑀𝑀) and 𝒙𝒙 = 𝐸𝐸3.  

Applying the operator 𝑑𝑑𝑑𝑑𝑑𝑑 to (25), we obtain: 
(∇2 + 𝜔𝜔2)𝑑𝑑𝑑𝑑𝑑𝑑𝒖𝒖 + 𝑖𝑖𝑖𝑖𝑎𝑎3∇2𝑝𝑝 + 𝑖𝑖𝑖𝑖𝑎𝑎7∇2𝑇𝑇 + 𝜔𝜔2𝑑𝑑𝑑𝑑𝑑𝑑𝒖𝒖 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑯𝑯  (29) 

The equations (26), (27) and (29) can be written in the form: 
𝑵𝑵(∆)𝑺𝑺 = 𝑸𝑸� , (30) 
where 𝑺𝑺 = (𝑑𝑑𝑑𝑑𝑑𝑑𝒖𝒖,𝑝𝑝,𝑇𝑇),𝑸𝑸� = (𝑑𝑑1,𝑑𝑑2,𝑑𝑑3) = (𝑑𝑑𝑑𝑑𝑑𝑑𝑯𝑯, 𝐿𝐿,𝑀𝑀), and 

𝑵𝑵(∆) = ‖𝑁𝑁𝑚𝑚𝑚𝑚(∆)‖3×3 = �
∇2 + 𝜔𝜔2

−𝛼𝛼
−1

𝑖𝑖𝑖𝑖𝑎𝑎3∇2

𝑖𝑖𝑖𝑖𝑎𝑎2 + 𝑎𝑎1∇2
𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖𝑎𝑎7∇2
𝑖𝑖𝑖𝑖𝑎𝑎6

𝑖𝑖𝑖𝑖𝑎𝑎5 + 𝑎𝑎4∇2
� (31)  

The equation (30) can also be written as: 
𝛤𝛤1(∆)𝑺𝑺 = 𝜳𝜳, (32) 
where 𝜳𝜳 = (𝛹𝛹1,𝛹𝛹2,𝛹𝛹3)  , 𝛹𝛹𝑛𝑛 = 𝑒𝑒∗ ∑ 𝑁𝑁𝑚𝑚𝑚𝑚∗3

𝑚𝑚=1 𝑑𝑑𝑚𝑚 , 
𝛤𝛤1(∆) = 𝑒𝑒∗ det  𝑵𝑵(∆), 𝑒𝑒∗ = 1

𝑎𝑎1𝑎𝑎4
, 𝑛𝑛 = 1,2,3,  (33) 

and 𝑁𝑁𝑚𝑚𝑚𝑚∗  is the cofactor of the elements 𝑁𝑁𝑚𝑚𝑚𝑚 of the matrix 𝑵𝑵. 
From (31) and (33), we see that 

𝛤𝛤1(∆) = ∏ (∆ + 𝜆𝜆𝑚𝑚2 )3
𝑚𝑚=1 ,  (34) 

where 𝜆𝜆𝑚𝑚2 ,𝑚𝑚 = 1,2,3 are the root of the equation 𝛤𝛤1(−𝜅𝜅) = 0 (with respect to 𝜅𝜅). 
Applying operator 𝛤𝛤1(∆) on (25), we have: 

𝛤𝛤1(∆)[𝛿𝛿2∇2𝒖𝒖 + (1 − 𝛿𝛿2)∇∇.𝒖𝒖 + 𝑖𝑖𝑖𝑖𝑎𝑎3∇𝑝𝑝 + 𝑖𝑖𝑖𝑖𝑎𝑎7∇𝑇𝑇 + 𝜔𝜔2𝒖𝒖] = 𝛤𝛤1(∆)𝑯𝑯  
𝛤𝛤1(∆)[𝛿𝛿2∇2𝒖𝒖 + 𝜔𝜔2𝒖𝒖] = 𝛤𝛤1(∆)𝑯𝑯− 𝑔𝑔𝑔𝑔ad[(1 − 𝛿𝛿2)𝛹𝛹1 + 𝑖𝑖𝑖𝑖𝑎𝑎3𝛹𝛹2 + 𝑖𝑖𝑖𝑖𝑎𝑎7𝛹𝛹3]   
𝛤𝛤1(∆) �∇2 + 𝜔𝜔2

𝛿𝛿2
� 𝒖𝒖 = 1

𝛿𝛿2
[𝛤𝛤1(∆)𝑯𝑯− 𝑔𝑔𝑔𝑔ad{(1 − 𝛿𝛿2)𝛹𝛹1 + 𝑖𝑖𝑖𝑖𝑎𝑎3𝛹𝛹2 + 𝑖𝑖𝑖𝑖𝑎𝑎7𝛹𝛹3}]  

𝛤𝛤1(∆)[∇2 + 𝜆𝜆42]𝒖𝒖 = 1
𝛿𝛿2

[𝛤𝛤1(∆)𝑯𝑯− 𝑔𝑔𝑔𝑔ad{(1 − 𝛿𝛿2)𝛹𝛹1 + 𝑖𝑖𝑖𝑖𝑎𝑎3𝛹𝛹2 + 𝑖𝑖𝑖𝑖𝑎𝑎7𝛹𝛹3}]  
𝛤𝛤1(∆)[∇2 + 𝜆𝜆42]𝒖𝒖 = 𝜳𝜳′′, (35) 
where 𝜆𝜆42 = 𝜔𝜔2

𝛿𝛿2
, 

 𝜳𝜳′′ = 1
𝛿𝛿2

[𝛤𝛤1(∆)𝑯𝑯− 𝑔𝑔𝑔𝑔ad{(1 − 𝛿𝛿2)𝛹𝛹1 + 𝑖𝑖𝑖𝑖𝑎𝑎3𝛹𝛹2 + 𝑖𝑖𝑖𝑖𝑎𝑎7𝛹𝛹3}]  (36) 
From equations (32) and (35), we obtain: 

𝚯𝚯(∆)𝑼𝑼(𝒙𝒙) = 𝜳𝜳� (𝒙𝒙),  (37) 
where 𝜳𝜳� (𝒙𝒙) = (𝜳𝜳′′,𝛹𝛹2,𝛹𝛹3), 
and 𝚯𝚯(∆) = �Θ𝑔𝑔ℎ(∆)�

5×5
; Θ𝑚𝑚𝑚𝑚(∆) = 𝛤𝛤1(∆)[∇2 + 𝜆𝜆42], 𝑚𝑚 = 1,2,3; 

Θ44(∆) = Θ55(∆) = 𝛤𝛤1(∆), Θ𝑔𝑔ℎ(∆) = 0,  𝑔𝑔,ℎ = 1,2,3, 4,5,   𝑔𝑔 ≠ ℎ. 
The equations (33) and (36) can be written in the form: 

𝜳𝜳′′  =     1
𝛿𝛿2

[𝛤𝛤1(∆)𝑯𝑯− 𝑔𝑔𝑔𝑔ad(1 − 𝛿𝛿2)𝑒𝑒∗ ∑ 𝑁𝑁𝑚𝑚1∗3
𝑚𝑚=1 𝑑𝑑𝑚𝑚 + 𝑖𝑖𝑖𝑖𝑎𝑎3 𝑔𝑔𝑔𝑔ad 𝑒𝑒∗ ∑ 𝑁𝑁𝑚𝑚2∗3

𝑚𝑚=1 𝑑𝑑𝑚𝑚 +
𝑖𝑖𝑖𝑖𝑎𝑎7 𝑔𝑔𝑔𝑔ad 𝑒𝑒∗ ∑ 𝑁𝑁𝑚𝑚3∗3

𝑚𝑚=1 𝑑𝑑𝑚𝑚], 
𝜳𝜳′′ = 1

𝛿𝛿2
𝛤𝛤1(∆)𝑯𝑯 + 1

𝛿𝛿2
𝑒𝑒∗𝑔𝑔𝑔𝑔ad 𝑑𝑑𝑑𝑑𝑑𝑑 𝑯𝑯{−(1 − 𝛿𝛿2)𝑁𝑁11∗ + 𝑖𝑖𝑖𝑖𝑎𝑎3𝑁𝑁12∗ + 𝑖𝑖𝑖𝑖𝑎𝑎7𝑁𝑁13∗ )} +

1
𝛿𝛿2
𝑒𝑒∗𝑔𝑔𝑔𝑔ad 𝐿𝐿{−(1− 𝛿𝛿2)𝑁𝑁21∗ + 𝑖𝑖𝑖𝑖𝑎𝑎3𝑁𝑁22∗ + 𝑖𝑖𝑖𝑖𝑎𝑎7𝑁𝑁23∗ )} + 1

𝛿𝛿2
𝑒𝑒∗𝑔𝑔𝑔𝑔ad 𝑀𝑀{−(1 − 𝛿𝛿2)𝑁𝑁31∗ +

𝑖𝑖𝑖𝑖𝑎𝑎3𝑁𝑁32∗ + 𝑖𝑖𝑖𝑖𝑎𝑎7𝑁𝑁33∗ )}, 
𝜳𝜳′′ = � 1

𝛿𝛿2
𝛤𝛤1(∆)𝑱𝑱+ 𝑞𝑞11(∆)𝑔𝑔𝑔𝑔ad 𝑑𝑑𝑑𝑑𝑑𝑑�𝑯𝑯 + 𝑞𝑞21(∆)𝑔𝑔𝑔𝑔ad 𝐿𝐿 + 𝑞𝑞31(∆)𝑔𝑔𝑔𝑔ad 𝑀𝑀,  

𝛹𝛹2 = 𝑞𝑞12(∆) 𝑑𝑑𝑑𝑑𝑑𝑑𝑯𝑯 + 𝑞𝑞22(∆) 𝐿𝐿 + 𝑞𝑞32(∆) 𝑀𝑀,  (38) 
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𝛹𝛹3 = 𝑞𝑞13(∆) 𝑑𝑑𝑑𝑑𝑑𝑑𝑯𝑯 + 𝑞𝑞23(∆) 𝐿𝐿 + 𝑞𝑞33(∆) 𝑀𝑀, 
where 𝑱𝑱 = �𝛿𝛿𝑔𝑔ℎ�3×3

 is the unit matrix and 

𝑞𝑞11(∆) = 1
𝛿𝛿2
𝑒𝑒∗{−(1 − 𝛿𝛿2)𝑁𝑁11∗ + 𝑖𝑖𝑖𝑖𝑎𝑎3𝑁𝑁12∗ + 𝑖𝑖𝑖𝑖𝑎𝑎7𝑁𝑁13∗ )}, 

𝑞𝑞21(∆) = 1
𝛿𝛿2
𝑒𝑒∗{−(1 − 𝛿𝛿2)𝑁𝑁21∗ + 𝑖𝑖𝑖𝑖𝑎𝑎3𝑁𝑁22∗ + 𝑖𝑖𝑖𝑖𝑎𝑎7𝑁𝑁23∗ )}, 

𝑞𝑞31(∆) = 1
𝛿𝛿2
𝑒𝑒∗{−(1 − 𝛿𝛿2)𝑁𝑁31∗ + 𝑖𝑖𝑖𝑖𝑎𝑎3𝑁𝑁32∗ + 𝑖𝑖𝑖𝑖𝑎𝑎7𝑁𝑁33∗ )}, 

𝑞𝑞𝑚𝑚2(∆) = 𝑒𝑒∗𝑁𝑁𝑚𝑚2∗  , 𝑞𝑞𝑚𝑚3(∆) = 𝑒𝑒∗𝑁𝑁𝑚𝑚3∗ , m=1,2,3. 
Now from equations (38), we have: 

𝜳𝜳� (𝑥𝑥) = 𝑹𝑹𝑡𝑡𝑡𝑡(𝑫𝑫𝒙𝒙)𝑸𝑸(𝒙𝒙), (39) 
where 𝑹𝑹𝑡𝑡𝑡𝑡 is the transpose of 𝑹𝑹, and 
𝑹𝑹 = ‖𝑅𝑅𝑚𝑚𝑚𝑚‖5×5, 
𝑅𝑅𝑚𝑚𝑚𝑚(𝑫𝑫𝒙𝒙) = 1

𝛿𝛿2
𝛤𝛤1(∆)𝛿𝛿𝑚𝑚𝑚𝑚 + 𝑞𝑞11

𝜕𝜕2

𝜕𝜕𝜕𝜕𝑚𝑚𝜕𝜕𝜕𝜕𝑛𝑛
 , 𝑅𝑅𝑚𝑚4(𝑫𝑫𝒙𝒙) = 𝑞𝑞21

𝜕𝜕
𝜕𝜕𝜕𝜕𝑚𝑚

, 𝑅𝑅𝑚𝑚5(𝑫𝑫𝒙𝒙) = 𝑞𝑞31
𝜕𝜕

𝜕𝜕𝜕𝜕𝑚𝑚
, 

𝑅𝑅4𝑛𝑛(𝑫𝑫𝒙𝒙) = 𝑞𝑞12
𝜕𝜕
𝜕𝜕𝜕𝜕𝑛𝑛

, 𝑅𝑅5𝑛𝑛(𝑫𝑫𝒙𝒙) = 𝑞𝑞13
𝜕𝜕
𝜕𝜕𝜕𝜕𝑛𝑛

, 𝑚𝑚, 𝑛𝑛 = 1,2,3,  
𝑅𝑅45(𝑫𝑫𝒙𝒙) = 𝑞𝑞22,  𝑅𝑅46(𝑫𝑫𝒙𝒙) = 𝑞𝑞32,  𝑅𝑅54(𝑫𝑫𝒙𝒙) = 𝑞𝑞23 ,  𝑅𝑅55(𝑫𝑫𝒙𝒙) = 𝑞𝑞33.  (40) 

Now from equations (28), (37) and (39), we have: 
𝚯𝚯𝑼𝑼 = 𝑹𝑹𝑡𝑡𝑡𝑡𝑭𝑭𝑡𝑡𝑡𝑡𝑼𝑼. (41) 

It implies that 𝑹𝑹𝑡𝑡𝑡𝑡𝑭𝑭𝑡𝑡𝑡𝑡 = 𝚯𝚯, and hence 
𝑭𝑭(𝑫𝑫𝒙𝒙)𝑹𝑹(𝑫𝑫𝒙𝒙) = 𝚯𝚯(∆). (42) 

We assume that: 𝜆𝜆𝑚𝑚2 ≠ 𝜆𝜆𝑛𝑛2 ≠ 0 , 𝑚𝑚,𝑛𝑛 = 1,2,3,4, 𝑚𝑚 ≠ 𝑛𝑛. 
Let 𝒀𝒀(𝒙𝒙) = ‖𝑌𝑌𝑟𝑟𝑟𝑟(𝒙𝒙)‖5×5,  𝑌𝑌𝑚𝑚𝑚𝑚(𝒙𝒙) = ∑ 𝑟𝑟1𝑛𝑛ξ𝑛𝑛(𝒙𝒙)4

𝑛𝑛=1 , 𝑚𝑚 = 1,2,3, 
 𝑌𝑌44(𝒙𝒙) = 𝑌𝑌55(𝒙𝒙) = ∑ 𝑟𝑟2𝑛𝑛ξ𝑛𝑛(𝒙𝒙)3

𝑛𝑛=1   
𝑌𝑌𝑢𝑢𝑢𝑢(𝒙𝒙) = 0,    𝑢𝑢, 𝑣𝑣 = 1,2,3,4,5,    𝑢𝑢 ≠ 𝑣𝑣, 
where  
ξ𝑛𝑛(𝒙𝒙) = − 1

4𝜋𝜋|𝑥𝑥| exp(𝑖𝑖𝜆𝜆𝑛𝑛|𝒙𝒙|) , 𝑛𝑛 = 1,2,3,4,   
𝑟𝑟2𝑙𝑙 = ∏ (𝜆𝜆𝑚𝑚2 − 𝜆𝜆𝑙𝑙2)−1 ,      𝑙𝑙 = 1,2,3,4,4

𝑚𝑚=1,𝑚𝑚≠𝑙𝑙   
𝑟𝑟2𝑣𝑣 = ∏ (𝜆𝜆𝑚𝑚2 − 𝜆𝜆𝑣𝑣2)−1,     𝑣𝑣 = 1,2,3,4,4

𝑚𝑚=1,𝑚𝑚≠𝑣𝑣   (43)  
We will prove the following Lemma: 

The matrix 𝒀𝒀 defined above is the fundamental matrix of operator 𝚯𝚯(∆), that is  
𝚯𝚯(∆)𝒀𝒀(𝒙𝒙) = 𝛿𝛿(𝒙𝒙)𝑰𝑰(𝒙𝒙). (44) 

Proof: To prove the lemma, it is sufficient to prove that: 
𝛤𝛤1(∆)(∆ + 𝜆𝜆42)𝑌𝑌11(𝒙𝒙) = 𝛿𝛿(𝒙𝒙) ,𝛤𝛤1(∆)𝑌𝑌44(𝒙𝒙) = 𝛿𝛿(𝒙𝒙). (45) 

We find that: 
𝑟𝑟11 + 𝑟𝑟12 + 𝑟𝑟13 + 𝑟𝑟14 = 𝑡𝑡1+𝑡𝑡2+𝑡𝑡3+𝑡𝑡4

𝑡𝑡5
,  (46) 

𝑡𝑡1 = (𝜆𝜆22 − 𝜆𝜆32)(𝜆𝜆22 − 𝜆𝜆42)(𝜆𝜆32 − 𝜆𝜆42) , 𝑡𝑡2 = (𝜆𝜆12 − 𝜆𝜆32)(𝜆𝜆12 − 𝜆𝜆42)(𝜆𝜆32 − 𝜆𝜆42), 
𝑡𝑡3 = (𝜆𝜆12 − 𝜆𝜆22)(𝜆𝜆12 − 𝜆𝜆42)(𝜆𝜆22 − 𝜆𝜆42) , 𝑡𝑡4 = (𝜆𝜆12 − 𝜆𝜆22)(𝜆𝜆12 − 𝜆𝜆32)(𝜆𝜆22 − 𝜆𝜆32), 
𝑡𝑡5 = (𝜆𝜆12 − 𝜆𝜆22)(𝜆𝜆12 − 𝜆𝜆32)(𝜆𝜆12 − 𝜆𝜆42)(𝜆𝜆22 − 𝜆𝜆32)(𝜆𝜆22 − 𝜆𝜆42)(𝜆𝜆32 − 𝜆𝜆42). (47) 

Using (47) in (46), yield 
𝑟𝑟11 + 𝑟𝑟12 + 𝑟𝑟13 + 𝑟𝑟14 = 0,  (48) 
𝑟𝑟12(𝜆𝜆12 − 𝜆𝜆22) + 𝑟𝑟13(𝜆𝜆12 − 𝜆𝜆32) + 𝑟𝑟14(𝜆𝜆12 − 𝜆𝜆42) = 0,  (49) 
𝑟𝑟13(𝜆𝜆12 − 𝜆𝜆32)(𝜆𝜆22 − 𝜆𝜆32) + 𝑟𝑟14(𝜆𝜆12 − 𝜆𝜆42)(𝜆𝜆22 − 𝜆𝜆42) = 0, (50) 
𝑟𝑟14(𝜆𝜆12 − 𝜆𝜆42)(𝜆𝜆22 − 𝜆𝜆42)(𝜆𝜆32 − 𝜆𝜆42) = 1, (51) 
(∆ + 𝜆𝜆42)ξ𝑛𝑛(𝒙𝒙) = 𝛿𝛿(𝒙𝒙) + (𝜆𝜆𝑚𝑚2 − 𝜆𝜆𝑛𝑛2)ξ𝑛𝑛(𝒙𝒙) , 𝑚𝑚,𝑛𝑛 = 1,2,3,4. (52) 

Now consider: 
𝛤𝛤1(∆)(∆ + 𝜆𝜆42)𝑌𝑌11(𝒙𝒙) = (∆ + 𝜆𝜆12)(∆ + 𝜆𝜆22)(∆+ 𝜆𝜆32)(∆ + 𝜆𝜆42)∑ 𝑟𝑟1𝑛𝑛ξ𝑛𝑛(𝒙𝒙)4

𝑛𝑛=1 =  
= (∆ + 𝜆𝜆22)(∆+ 𝜆𝜆32)(∆ + 𝜆𝜆42)∑ 𝑟𝑟1𝑛𝑛[𝛿𝛿(𝒙𝒙) + (𝜆𝜆12 − 𝜆𝜆𝑛𝑛2)ξ𝑛𝑛(𝒙𝒙)]4

𝑛𝑛=1 = 
= (∆ + 𝜆𝜆22)(∆+ 𝜆𝜆32)(∆ + 𝜆𝜆42)[𝛿𝛿(𝒙𝒙)∑ 𝑟𝑟1𝑛𝑛 + ∑ 𝑟𝑟1𝑛𝑛(𝜆𝜆12 − 𝜆𝜆𝑛𝑛2)ξ𝑛𝑛(𝒙𝒙)]4

𝑛𝑛=2
4
𝑛𝑛=1 =  
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= (∆ + 𝜆𝜆22)(∆+ 𝜆𝜆32)(∆ + 𝜆𝜆42)∑ 𝑟𝑟1𝑛𝑛(𝜆𝜆12 − 𝜆𝜆𝑛𝑛2)ξ𝑛𝑛(𝒙𝒙)4
𝑛𝑛=2 =  

= (∆ + 𝜆𝜆32)(∆+ 𝜆𝜆42)∑ 𝑟𝑟1𝑛𝑛(𝜆𝜆12 − 𝜆𝜆𝑛𝑛2)[𝛿𝛿(𝒙𝒙) + (𝜆𝜆22 − 𝜆𝜆𝑛𝑛2)ξ𝑛𝑛(𝒙𝒙)]4
𝑛𝑛=2 =  

= (∆ + 𝜆𝜆32)(∆+ 𝜆𝜆42)∑ 𝑟𝑟1𝑛𝑛(𝜆𝜆12 − 𝜆𝜆𝑛𝑛2)(𝜆𝜆22 − 𝜆𝜆𝑛𝑛2)ξ𝑛𝑛(𝒙𝒙)4
𝑛𝑛=2 =  

= (∆ + 𝜆𝜆42)∑ 𝑟𝑟1𝑛𝑛(𝜆𝜆12 − 𝜆𝜆𝑛𝑛2)(𝜆𝜆22 − 𝜆𝜆𝑛𝑛2)[𝛿𝛿(𝒙𝒙) + (𝜆𝜆32 − 𝜆𝜆𝑛𝑛2)ξ𝑛𝑛(𝒙𝒙)]4
𝑛𝑛=3 =  

= (∆ + 𝜆𝜆42)∑ 𝑟𝑟1𝑛𝑛(𝜆𝜆12 − 𝜆𝜆𝑛𝑛2)(𝜆𝜆22 − 𝜆𝜆𝑛𝑛2)(𝜆𝜆32 − 𝜆𝜆𝑛𝑛2)ξ𝑛𝑛(𝒙𝒙)4
𝑛𝑛=3 =  

= (∆ + 𝜆𝜆42)ξ𝑛𝑛(𝒙𝒙) = 𝛿𝛿(𝒙𝒙). (53) 
Similarly, 𝛤𝛤1(∆)𝑌𝑌44(𝒙𝒙) = 𝛿𝛿(𝒙𝒙), can be proved. 
We introduce the matrix: 

𝐆𝐆(𝒙𝒙) = 𝑹𝑹(𝐃𝐃𝒙𝒙)𝒀𝒀(𝒙𝒙). (54) 
From equations (42), (44) and (54), we have: 

𝑭𝑭(𝐃𝐃𝒙𝒙)𝐆𝐆(𝒙𝒙) = 𝑭𝑭(𝐃𝐃𝒙𝒙)𝑹𝑹(𝐃𝐃𝒙𝒙)𝒀𝒀(𝒙𝒙) = 𝛿𝛿(𝒙𝒙)𝑰𝑰(𝒙𝒙), (55) 
hence 𝐆𝐆(𝒙𝒙) is the solution to the equations (24). 

Therefore we have proved the following theorem. 
Theorem: The matrix 𝐆𝐆(𝒙𝒙) defined by (54) is the fundamental solution of the system of 
equations (17)-(19). 

6.2 Basic properties of the matrix 𝐆𝐆(𝒙𝒙). 
Property 1. Each column of the matrix 𝐆𝐆(𝒙𝒙) is the solution of system of equations (17)-(19) to 
every point 𝒙𝒙 ∈ 𝐸𝐸3 except the origin. 
Property 2. The matrix 𝐆𝐆(𝒙𝒙) can be written in the form: 
𝑮𝑮 = �𝐺𝐺𝑔𝑔ℎ�5×5

, 
𝐺𝐺𝑚𝑚𝑚𝑚(𝑥𝑥) = 𝑅𝑅𝑚𝑚𝑚𝑚(𝑫𝑫𝒙𝒙)𝑌𝑌11(𝒙𝒙),  𝐺𝐺𝑝𝑝4(𝒙𝒙) = 𝑅𝑅𝑝𝑝4(𝑫𝑫𝒙𝒙)𝑌𝑌44(𝒙𝒙), 
 𝐺𝐺𝑝𝑝5(𝒙𝒙) = 𝑅𝑅𝑝𝑝5(𝑫𝑫𝒙𝒙)𝑌𝑌44(𝒙𝒙),  𝐺𝐺4𝑝𝑝(𝒙𝒙) = 𝑅𝑅4𝑛𝑛(𝑫𝑫𝒙𝒙)𝑌𝑌44(𝒙𝒙), 𝐺𝐺5𝑝𝑝(𝒙𝒙) = 𝑅𝑅5𝑛𝑛(𝑫𝑫𝒙𝒙)𝑌𝑌44(𝒙𝒙), 
𝑚𝑚,𝑛𝑛 = 1,2,3,   𝑝𝑝 = 1,2,3,4,5.  
 
7. Numerical results and discussion 
With the view of illustrating the theoretical results and for numerical discussion we take a model 
for which the values of the various physical parameters are taken from Jabbari and Dehbani 
[54]: 
𝐸𝐸 = 6 × 105𝑃𝑃𝑃𝑃,  𝜈𝜈 = 0.3,  𝑇𝑇0 = 293 °𝐾𝐾,  𝐾𝐾𝑠𝑠 = 2 × 1010𝑃𝑃𝑃𝑃,  𝐾𝐾𝑤𝑤 = 5 × 109𝑃𝑃𝑃𝑃,  
𝐾𝐾 = 0.5𝑊𝑊/𝑚𝑚 ℃, 𝛼𝛼𝑠𝑠 = 1.5 × 10−51/℃,  𝛼𝛼𝑊𝑊 = 2 × 10−41/℃,  𝑐𝑐𝑠𝑠 = 0.8 𝐽𝐽/𝑔𝑔℃,  
 𝑐𝑐𝑤𝑤 = 4.2 𝐽𝐽/𝑔𝑔℃,  𝜌𝜌𝑠𝑠 = 2.6 × 106 𝑔𝑔/𝑚𝑚3,  𝜌𝜌𝑤𝑤 = 1 × 106𝑔𝑔/𝑚𝑚3,  𝑛𝑛 = 0.4, 𝛼𝛼 = 1  

The software Matlab 7.0.4 has been used to determine the values of phase velocity, 
attenuation coefficient, specific loss and penetration depth of plane waves, i.e. 𝑃𝑃1-wave,  
𝑃𝑃2-wave and T-wave. The variations of phase velocity, attenuation coefficients, specific loss 
and penetration depth with respect to frequency are shown in Figs. 1-12 respectively. In all the 
Figures, the solid line corresponds to thermoporoelastic medium (PTE) and dotted line 
corresponds to thermoelastic medium (TE). 

7.1. Phase velocity. Fig. 1 depicts the variations of phase velocity of 𝑉𝑉1 with frequency 
𝜔𝜔 for PTE and TE. In case of PTE, the value of 𝑉𝑉1 increases exponentially as 𝜔𝜔 increases, 
whereas in case of TE, the value of 𝑉𝑉1 oscillates in the range 0 ≤ 𝜔𝜔 ≤ 2.5 and then increase as 
𝜔𝜔 increases. 

Fig. 2 shows the variations of 𝑉𝑉2 with 𝜔𝜔 for PTE and TE. The value of 𝑉𝑉2 for PTE and 
TE increases gradually but due to the effect of porosity the value of 𝑉𝑉2 is less for PTE as 
compared to TE as 𝜔𝜔 increases.                  

Fig.3 shows that the value of 𝑉𝑉3 for PTE when 𝛼𝛼 = 0.5 increases gradually as 𝜔𝜔 increases 
whereas there is sharp increase in the value of 𝑉𝑉3 when 𝛼𝛼 = 0.75 as 𝜔𝜔 increases. Due to the 
effect of porosity the value of 𝑉𝑉3, when 𝛼𝛼 = 0.5 is more as compared to 𝛼𝛼 = 0.75  in the range 
0 ≤ 𝜔𝜔 ≤ 0.4 and then show the opposite behaviour for higher values of 𝜔𝜔. 
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Fig. 1. Variation of phase velocity w.r.t. frequency.  
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Fig. 2. Variation of phase velocity w.r.t. frequency. 
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Fig. 3. Variation of phase velocity w.r.t.  frequency. 

7.2. Attenuation quality factor. Fig. 4 shows the variation of 𝑄𝑄1 with 𝜔𝜔 for PTE and 
TE. The value of 𝑄𝑄1 for PTE and TE increases gradually as 𝜔𝜔 increases but due to the effect of 
porosity the value of 𝑄𝑄1 for PTE is more as compared to TE as 𝜔𝜔 increases. 

The variation of 𝑄𝑄2 with 𝜔𝜔 for PTE and TE is shown in Fig.5. The value of 𝑄𝑄2 is 
consistent for PTE whereas for TE, there is a small increase in the value of 𝑄𝑄2 as 𝜔𝜔 increases. 
The value of 𝑄𝑄2 for TE is more as compared to PTE due to the effect of porosity as 𝜔𝜔 increases. 
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Fig. 6 depicts the variations of 𝑄𝑄3 with frequency 𝜔𝜔 for PTE. When 𝛼𝛼 = 0.5, there is a 
small increase in the value of 𝑄𝑄3 as 𝜔𝜔 increases, whereas for 𝛼𝛼 = 0.75, the value of 𝑄𝑄3 
decreases exponentially for higher values of 𝜔𝜔.  
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Fig. 4. Variation of attenuation quality factor  w.r.t frequency. 
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Fig. 5. Variation of attenuation quality factor w.r.t frequency. 
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Fig. 6. Variation of attenuation quality factor w.r.t .  frequency. 
 
7.3. Specific loss. The variation of specific loss 𝑅𝑅1 with frequency 𝜔𝜔 is shown in Fig. 7. 

There is a small increase in the value of 𝑅𝑅1 for PTE as 𝜔𝜔 increases whereas for TE, the value 
of 𝑅𝑅1 increases exponentially as 𝜔𝜔 increases. Due to the effect of porosity the value of 𝑅𝑅1 for 
PTE is more as compared to TE as 𝜔𝜔 increases. 

Fig. 8 shows the variations of 𝑅𝑅2 with 𝜔𝜔 for PTE and TE. The value of 𝑅𝑅2 for PTE 
increases in the range 0 ≤ 𝜔𝜔 ≤ 3.5 then starts decreasing as 𝜔𝜔 increases whereas for TE, the 
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value of 𝑅𝑅2 decreases exponentially for higher values of 𝜔𝜔. The value of 𝑅𝑅2 for PTE is less as 
compared to TE due to the effect of porosity as 𝜔𝜔 increases. 

Fig. 9 shows the variation of 𝑅𝑅3 with frequency 𝜔𝜔 for PTE. There is small increase in the 
value of 𝑅𝑅3 for PTE when 𝛼𝛼 = 0.5 as 𝜔𝜔 increases whereas for = 0.75, the value of 𝑅𝑅3 decreases 
sharply for higher values of 𝜔𝜔.  
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Fig. 7. Variation of specific loss w.r.t frequency. 
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Fig. 8. Variation of specific loss w.r.t frequency. 
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Fig. 9. Variation of specific loss w.r.t frequency. 

 
7.4. Penetration depth. The variation of 𝑆𝑆1 with 𝜔𝜔 for PTE and TE is shown in Fig.10. 

The value of 𝑆𝑆1, for PTE, decreases exponentially whereas for TE, with small initial decrease, 
the value of 𝑆𝑆1 becomes consistent for higher values of 𝜔𝜔. Due to the effect of porosity the 
value of 𝑆𝑆1 for PTE is more as compared to TE as 𝜔𝜔 increases. 
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Fig. 11 depicts the variation of 𝑆𝑆2 with frequency 𝜔𝜔.The value of 𝑆𝑆2 decreases gradually 
for all values of 𝜔𝜔 for PTE and TE but the value of PTE is less as compared to TE in the range 
0 ≤ 𝜔𝜔 ≤ 3 and then show the opposite behaviour for higher values of 𝜔𝜔 due to the effect of 
porosity.  

Fig. 12 shows the variations of 𝑆𝑆3 with 𝜔𝜔 for PTE. The value of 𝑆𝑆3 for PTE decreases 
gradually for both values of 𝛼𝛼, but due to the effect of porosity, the value of 𝑆𝑆3 is less for  
𝛼𝛼 = 0.5 as compared to the value of 𝛼𝛼 = 0.75. 
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Fig. 10. Variation of penetration depth w.r.t frequency. 
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Fig. 11. Variation of penetration depth w.r.t frequency. 
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Fig. 12. Variation of penetration depth w.r.t frequency. 
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8. Conclusion 
The present study deals with the propagation of plane wave and fundamental solution in the 
thermoporoelastic medium. It is found that for two dimensional model, their exist three 
longitudinal waves, namely 𝑃𝑃1-wave, 𝑃𝑃2-wave and T-wave in addition to transverse wave. The 
phase velocity, attenuation coefficient, specific loss and penetration depth are computed 
numerically and depicted graphically. The fundamental solution of the system of equations in 
the thermoporoelastic medium in the case of steady oscillations is considered in term of 
elementary functions.   

Due to the presence of porous effect, the phase velocities of 𝑃𝑃1-wave for PTE remains 
more in comparison to TE, whereas the phase velocity of T-wave is less for PTE in comparison 
to TE for all values of frequency.                

Attenuation quality factor, penetration depth and specific loss of 𝑃𝑃1-wave for PTE is more 
in comparison to TE and reverse behaviour is shown in case of T-wave. The value of attenuation 
quality factor, penetration depth and specific loss of 𝑃𝑃2-wave for 𝛼𝛼 = 0.5 is less as compared 
to 𝛼𝛼 = 0.75 and opposite behaviour is shown for penetration depth whereas the value of phase 
velocity of 𝑃𝑃2-wave is more for 𝛼𝛼 = 0.5 as compared to 𝛼𝛼 = 0.75 for initial values of 𝜔𝜔 and 
shows the opposite behaviour for higher values of 𝜔𝜔.     
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