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Abstract. In the present paper boundary value problems of three-dimensional micropolar 
theory of elasticity with constrained rotation are considered in thin region of the plate. On the 
basis of the previously developed hypotheses an applied theory of micropolar thin plates with 
constrained rotation is constructed, where transverse shear strains are taken into account. The 
energy balance equation is obtained and the corresponding variation functional is constructed. 
The finite element method is developed for the boundary problems (statics and natural 
oscillation) of micropolar plates with constrained rotation. On the basis of the analysis of the 
corresponding numerical results main properties of the micropolarity of the material are 
established. 
Keywords: micropolar elasticity; constrained rotation; thin plate; applied theory; finite element 
method. 
 
 
1. Introduction  
Along with the model of the three-dimensional moment (asymmetric, micropolar) elastic 
medium [1-3] and starting from the article [4], two- and one-dimensional generalized models 
were also developed, i.e. models of beams, plates and shells. The model, proposed in paper [4], 
has become one of the most general models of beams, plates and shells and the method of 
construction (direct method) has been further developed in papers [5-11]. This method initially 
treats the shell as a material surface, a plate as a material plane, a beam as a material line and 
establishes the laws of their deformation under the action of generalized internal and external 
forces and moments. Essentially, this method ignores the spatial structure of the shell (plate) 
along the thickness, the beam-along the section and does not give constructive methods for 
reconstructing the volume fields of displacements, rotations, strains, stresses and moment 
stresses in these thin bodies. 

A review of the work of the micropolar model of elastic thin shells and plates is given in 
papers [12-14]. 

In papers [15-20], on the basis of the asymptotic properties of the solutions of the three-
dimensional micropolar theory of elasticity with free rotation in thin regions, rather general 
hypotheses are formulated and applied theories of micropolar elastic thin beams, plates and 
shells with free fields of displacements and rotations are constructed. In papers [21,22], a finite 
element method for solving boundary value problems of the statics and dynamics of micropolar 
elastic thin beams and plates with free rotation is developed. 

In paper [23], with the help of hypotheses method [15-20] applied theory of micropolar 
elastic thin shells with constrained rotation [24,25] is constructed. 
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In this paper, based on the hypotheses method [15-20,23], an applied theory of micropolar 
elastic thin plates with constrained rotation is constructed, in which transverse shear 
deformations are taken into account. The energy balance equation is obtained and a general 
variation functional is constructed. Further, the finite element method is developed for solving 
boundary value problems of the applied theory of statics and free vibrations of micropolar 
elastic thin plates with constrained rotation. Concrete bending problems and natural oscillations 
of micropolar thin plates are considered, which are solved by the finite element method. 
Concrete numerical results are obtained, on the basis of analysis of them the effective properties 
of micropolar materials are approved compared with their classical analogues. 

 
2. Problem statement 
An isotropic micropolar elastic plate of constant thickness h2  is considered, as a thin three-
dimensional body. The axes 1x  and 2x  of the Cartesian coordinate system are directed to the 
middle plane of the plate, the axis 3x  is perpendicular to this plane. 

We start from the basic equations of the three-dimensional micropolar (moment, 
asymmetric) static theory of elasticity with constrained rotation: 

Equilibrium (motion) equations: 
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Physical relations of elasticity: 
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Geometrical relations: 
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Here ( )321 ,, VVV  – components of the displacement vector; ( )321 ,, ωωω  – components of 
the rotation vector; 231312332211 ,,,,, εεεεεε  – components of the deformation tensor; 

,,,, 12332211 χχχχ 3231231321 ,,,, χχχχχ  – components of the bending-torsions tensor; 
,,,,,, 132112332211 σσσσσσ ,, 2331 σσ 32σ  – components of the stresses tensor; 

−322331132112332211 ,,,,,,,, µµµµµµµµµ components of the moment stresses tensor; 

−
+

= εγ
ν

µν ,,
)1(2

E,,E  elastic coefficients of an isotropic micropolar material; −ρ material 

density; −J  measure of inertia of the material during rotation. 
On the face planes ( )hx3 ±=  it is assumed, that values of stresses 3231333231 ,,,, µµσσσ  

are given, and on the lateral surface, in general, can be given: either stresses and moment 
stresses, or displacements and rotations, or mixed conditions. 

In the case of the dynamic problem, it is assumed that the initial conditions for the 
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From equations (1)-(5) we can pass to the energy balance equation for the three-
dimensional micropolar theory of elasticity with constrained rotation: 

,AW2 =   (7) 
where W is the potential energy of deformation:  
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A is work of external surface stresses and moment stresses; 0W is the density of potential energy 
of deformation: 
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Considering that the plate is thin, our aim is to construct an applied theory of bending of 
micropolar plate and to develop finite element method for solving boundary problems of this 
applied theory. It should be noted that in the problem of plate bending 213 ,,V ωω are even 
functions by 3x , and 321 ,V,V ω are odd functions by 3x . 

 
3. Basic hypotheses. Displacements and rotations, deformations, bending-torsion, stresses 
and moment stresses 
Following rather general hypotheses should be accepted [23]: 

1) Kinematic hypothesis of Timoshenko: in the process of deformation, initially straight 
and normal to the middle plane of the fiber element freely rotates in space at some angle as a 
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whole rigid body, without changing its length and without remaining perpendicular to the 
deformed middle plane. 

The accepted hypothesis mathematically can be written as follows: tangential 
displacements are distributed linearly along the thickness of the plate, and the normal 
displacement does not depend on the transverse coordinate ,3x  i.e. 

( ) ( ).t,x,xwV     ;2,1i   ,t,x,xxV 21321i3i === ψ   (10) 
In this case, for the angles of rotation of the points of the body, we obtain: 
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2) The assumption that the plate is thin (assumption of the plate thickness ,1
a
h21 ≈+  

where h2  is the plate thickness, −a  linear minimum plate size in plan); 
3) Stress 33σ  in the generalized Hooke's law for 2211 ,εε  can be neglected in relation to 

the stresses 2211 ,σσ ; 
4) In the expression for 3iχ (from (3)) the moment stresses i3µ  can be neglected in 

relation to ( )2,1i3i =µ . 
5) For determination the deformations, bending-torsion, stresses and moment stresses, for 

stresses ( )2,1i   i3 =σ  we take: 

( ) .1,2)(i   t,x,x 21i3
0

i3 ==σσ   (12) 
After determination of the mentioned quantities, values of i3σ 1,2)(i =  finally can be 

obtained as the sum of the values (12) and the result of integration the first and second 
equilibrium equations (motion) of (1) requiring the condition for each integral that the averaged 
quantities along the plate thickness are equal to zero. 

We begin our study of the problem of bending of micropolar elastic plate with the 
determination of the components of the strain tensors and torsion-twists, on the basis of the 
hypotheses adopted above. 

Having formulas for the displacements (10) and the rotations (11), using expressions (4) 
and (5) for the components of the strain tensors and torsion-twisting, it is obtained:  
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where the following notations are obtained: 
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Now we turn to the study of the stresses and moment stresses in the plate.  
Using hypotheses 3), 4) and 5), on the basis of expressions of the generalized Hooke's 

law (2), (3) and equilibrium equations, for stresses and moment stresses we obtain: 
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It should be noted that inertial terms should not be taken into account in the formulas (18) 
- (20) in the case of static problem (this remark must be taken into account in the future), and 
they should be taken into account in the case of dynamic problems (according to D'Alembert's 
principle). 

It is easy to see, that using expressions for stresses ,,,,, 3231333231 µµσσσ  we can satisfy 
the boundary conditions on the planes hx3 ±=  (in bending): 
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4. Applied theory of bending deformation of micropolar plates with constrained rotation  
For the construction of the applied theory of the micropolar plate, we accept averaged integral 
characteristics over its thickness: forces, moments and hypermoments: 
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On the basis of formulas for stresses ),,,,( 3231333231 µµσσσ , satisfying the boundary 
conditions (21), we obtain the equilibrium (motion) equations of the applied theory of 
micropolar elasticity with constrained rotation for the thin plate:  
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The elasticity relations of the applied moment theory of the bending of thin plates with 
constrained rotation will be obtained on the basis of the expressions for the Hooke law in the 
form (15)-(17): 
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Geometric relations (14) should be added to the equations (23) and (24). 
The equilibrium (motion) equations (23), the elasticity relations (24) and the geometric 

relations (14) determine the model of micropolar elastic thin plate with constrained rotation. 
Boundary conditions (and initial conditions in the case of dynamics) should be added to this 
basic system of equations. What boundary conditions can be set on the contour of the middle 
plane of the plate? This will be seen below, when we obtain a formula for calculating the work 
of forces and moments on the specified contour. 

The energy balance equation for the applied theory of micropolar elastic thin plates with 
constrained rotation can be obtained if in the corresponding equation of the three-dimensional 
theory (7) we take into account the formulas for displacements (10), rotations (11), 
deformations and bending torsions (13): 

,A~W~2 =  (25) 
where W~  is the potential energy of deformation, A~  is the work of external forces and moments. 

Potential energy of deformation is determined by the relation: 
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(26) 

where ( )S  is area occupied by the median plane of the plate, 0W~  is the density of the potential 
deformation energy of a micropolar plate under bending, which is expressed by the following 
formula: 
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and the work of external distributed forces and moments is determined by the formula: 
( ) ( )[ ]

( )
∫∫ ++++++=
S

3221132211 dshmmmwphphpA~ ιΩΩψψ  

( ) ( )[ ] +++++++ ∫ dlLLwNMM
1l

1321211113212111 ιΛΩΩψψ
   

(28) 

( ) ( )[ ] .dlLLwNMM
2l

2322212123222121∫ ++++++ ιΛΩΩψψ
 
 

The variation principle of Lagrange for the applied theory of micropolar elastic thin plates 
with constrained rotation can be written as follows:  

,0~ =Πδ  where .A~W~~ −=Π   (29) 
 
5. The stiffness matrix of finite element of a micropolar elastic plate with constrained 
rotation 
The obtaining of the equations of the finite element method in displacements and rotations is 
based on the Lagrange variation principle (29). 

We consider rectangular finite element. The main kinematic parameters in the problem 
of the bending of a micropolar plate with constrained rotation are the displacement of the point 
of the median plane w ; the angles of rotation of a linear element normal to the median plane in 
the planes 31xx  and 32 xx - 1ψ , 2ψ . We will approximate the distribution of the accepted basic 
kinematic variables along the element of the rectangle of the middle plane of the element plate 
by polynomials. For the deflection )x,x(w 21  it is necessary to put: 

,xxxxx

xxxxxxxxxxx)x,x(w
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++

+++++++++=

  
(30) 

for 21 ,ψψ  we have completely analogous expressions as for w , but with other constant 
coefficients the designation of which begins with 13α  in 1ψ  and ends with 36α  in the expression 
for 2ψ .  

Vector of nodal kinematic parameters of a finite four-node element eδ  in general form is 

represented as ,i
T

e }{δδ =  where iδ 1,2,3,4)(i =  is the vector of unknown i nodes; “T” is the 
symbol of the transpose operation and 
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Further transformations can be performed in accordance with the algorithm for deriving 
the finite element stiffness matrix (FEM). 

Realizing the variation algorithm of the FEM theory, we get the system of equilibrium 
equations for the finite element of the plate: 

,eee FδK =    (31) 
where eK is stiffness matrix of  finite element of a micropolar plate of dimension 36×36; eF is 
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vector of equivalent nodal forces and moments; eδ - vector of nodal kinematic parameters of 
the finite element. 

Equilibrium equations of the whole plate in the matrix representation can be represented 
as follows: 

,∑∑ = FΔK    (32) 
where ∑K is global stiffness matrix of micropolar plate; ∑F - global vector of equivalent nodal 
forces and moments of the whole plate; Δ- global vector of nodal unknowns: 

,T
Ni21 }δ,...,δ,...,δ,{δΔ=  

where N is the total number of nodes in the system. 
From the solution of the global system of equilibrium equations obtained with allowance 

for the boundary conditions, we determine the distributions of the node parameters along the 
middle plane of the plate. 

 
6. Model calculation of micropolar elastic plates with constrained rotation 
As an example, we’ll consider a micropolar square plate, which is simple supported on all four 
sides and bends by a normal load constp3 = , (in this case 

0m,0m,0m ,0p,0p ,0p 321321 ===≠== ). For the simple supported boundary conditions we 
have: 

0   ,0    ,0    ,0L    ,0M    ,0w 13211211 ====== ΛψΩ , on a;0x1 =  
0   ,0    ,0    ,0L    ,0M    ,0w 23122122 ====== ΛψΩ , on .a;0x2 =   (33) 

After construction the stiffness matrix ∑K  and the vector of equivalent nodal forces and 
moments ∑F , taking into account the boundary conditions (33) we formulate a system of linear 
algebraic equations corresponding to the problem under consideration, for different numbers of 
smashing the plate into finite elements. 

It is very important to know what accuracy can be achieved in the problem under 
consideration when the size of the elements decreases. We note, that we can estimate the error 
in this model problem by comparing the numerical solution with the known exact solution 
(which can be obtained in the form of a trigonometric Fourier series [15]). 

The calculations were carried out with the following data: 

,
m
N105.0p 2

2
3 ⋅=  ,m101.0h,m 1.0ba 2−⋅===  

2
8

m
N1006,3E ⋅= , 2

8

m
N10093.1 ⋅=µ , 

,399.0=ν ,N24=γ .N24=ε  
 
Table 1. The maximum deflections of the micropolar and classical plate. 

 Micropolar plate Classical plate 
class
max

mic
max

class
max

w
ww −  Exact 

value 
4 

element 
16 

element 
Exact 
value 

4 
element 

16 
element 

maxw
m 

4106.0 −⋅  41051.0 −⋅  41058.0 −⋅  4108.0 −⋅  41072.0 −⋅  4108.0 −⋅  0.275 

 
As can be seen from the given values of Table 1, the micropolarity of the material of the 

plate increases the stiffness of the plate compared with the classical case of the material. 
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7. Dynamic problem of a micropolar elastic plate with constrained rotation 
The general form of the functional of the total mechanical energy (the sum of the potential 
energy of deformation and kinetic energy) of a micropolar-elastic plate is expressed as follows: 
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   (34) 

With free oscillations, we represent the main kinematic functions of the problem in this 
way:  

(
) ,tsinxxxxx
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3
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2
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2
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2
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++

+++++++++=

 
(35) 

where ω  is frequency of natural oscillation. For 21 ,ψψ  we have completely analogous 
expressions as for w , but with other constant coefficients, starting from 13α  (for 1ψ ) and 
ending with 36α  (for 2ψ ).  

Substituting (35) into (34), minimizing the functional (34) we obtain the minimum of the 
function of thirty-six independent variables:  

.36)1,2,3,...,(k     0U
36

==
∂
∂
δ

 

Calculating the corresponding partial derivatives, we obtain the following matrix 
equation:  
( ) ,0}{MK 2 =⋅− δω    (36) 
where K is stiffness matrix of finite element, М is matrix of masses of a finite element. 

We present the results of numerical calculations, the data of the problem as follows: 

2
11

m
N102E ⋅= , 2

10

m
N107 ⋅=µ , ,3.0=ν  ,N24=γ

 
N24=ε ; density and measure of inertia 

when the material rotates: .
m
kg103.5J ,

m
kg7700 6

3
−⋅==ρ  

 
Table 2. The lowest frequency of free oscillation ω . 

  Micropolar plate 
sec-1 

Classical plate 
sec-1 

ba =
)m(  

h  
)m(  

Exact 
value 

4 
element 

16 
element 

 

Exact 
value 

4 
element 

16 
element 

3102 −⋅
710−

810−  

5105 −⋅
9105,0 −⋅
10105,0 −⋅

 

61084,0 ⋅
111034,1 ⋅
121034,1 ⋅  

61074,0 ⋅
111094,0 ⋅
121094,0 ⋅

 

61079,0 ⋅
111098,0 ⋅
121098,0 ⋅

 

61074,0 ⋅
91099,2 ⋅
101099,2 ⋅

 

61065,0 ⋅
91073,2 ⋅

101073,2 ⋅  

61069,0 ⋅
91099,2 ⋅

101099,2 ⋅  

 
As can be seen from the tables above, the micropolarity of the material increases the 

frequency of oscillations, and in the nanosized region, the frequencies are in the terahertz range. 
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8. Conclusion 
In the present paper applied theory of micropolar elastic thin plates with constrained rotation is 
constructed, taking into account transverse shear deformations. The energy balance equation is 
obtained and the functional of the general variation principle is constructed. The finite element 
method is developed for solving boundary value problems of the applied theory of micropolar 
elastic thin plates with constrained rotation. The finite element method is used to solve problems 
of static equilibrium and free oscillations of micropolar elastic rectangular plates. On the basis 
of numerical analysis, some effective properties of calculation of the micropolarity of the 
material are established. 
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