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Abstract. The bending of a rectangular clamped thin plate under the uniformly distributed 
transverse load is considered. The solution of the Sophie Germaine equation is constructed by 
the method of initial functions (MIF). On two opposite sides the boundary conditions are 
satisfied exactly. Then, on the two remaining ones, the boundary conditions are satisfied 
approximately by the collocation method. The results of calculations of the stress-strain state 
at the corner points of the plate are given. 
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1. Introduction 
The history of building analytical solutions for the problem of bending of a clamped thin plate 
is dated over 140 years and a very good review of various approaches to this problem is 
presented in [1]. However this theme continues to attract attention of modern scientists. 
Various analytical approaches to get exact or approximate solution for the clamped thin 
elastic plane in the context of solution of the biharmonic equation appear nowadays [2-7]. 
These investigations have a special attention in getting such solution which can model a 
behavior of the clamped bending plate in the neighborhood of the corner point. The results 
presented in this paper are based on the solution received by the method of initial function. It 
should be noted that under the approach presented  the solution satisfies exactly the 
differential equation of bending of the plate and also boundary conditions on the two opposite 
sides of the plate, while boundary conditions on other pair of the plate’s sides are satisfied 
approximately. So it can judge the accuracy of the solution built on the accuracy of satisfying 
the boundary conditions on this pair of sides. 

 
2. MIF solution 
Consider an isotropic rectangular clamed thin plate in the rectangular coordinate system Oxy 
with original in the center of the plate 2 2a x a− ≤ ≤ , 2 2b y b− ≤ ≤  with a thickness 

max( , )a bδ << . A deflection w  of the middle surface of a thin plate is defined by the 
biharmonic differential equation 

4 4 4

4 2 2 42w w w q
x x y y D

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
, (1) 

where q  is an intensity of a normal load subjected to the upper plate’s surface, 

( )3 212 1D Eδ ν= −  is a cylindrical rigidity, E  is a modulus of elasticity and ν  is a Poisson’s 
ratio. The boundary conditions are as follows 
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In (2) ( / 2, )x a yθ ± , ( , / 2)y x bθ ± are the angles of rotation respectively of the sections 
/ 2x a= ±  and / 2y b= ± . 

The solution of the differential equation (1) under the assumption that it is regarded as 
an ordinary differential equation with respect to the variable x  with the symbolic parameter 
of differentiation with respect to the variable y  can be received by the MIF in the operator 
form 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
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0
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, ,
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θ θβ β β

β
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+ +
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where ( )0w y , ( )0
x yθ , ( )0

xM y , ( )0
xV y  are respectively the deflection, the angle of rotation, 

the bending moment, the generalized shearing force on the initial line 0x =  (so called the 
initial functions), ( ),wwL xβ , ( ),wL xθ β , ( ),wML xβ , ( ),wVL xβ  are the MIF operator-
functions, 𝛽𝛽 is a symbol of differentiation in the respect of the variable 𝑦𝑦 and partw  is a partial 
solution of the nonhomogeneous equation (1). 

The MIF operators in (3) have the following form [8] 
( ) ( ) ( ) ( )
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The partial solution is taken as ( )4 24partw qx D= . 
Since the problem is symmetric about the axes Ox and Oy it is sufficient to perform the 

analysis of the plate in one of the quarters of the coordinate system, for example, in the first 
one. In this case the boundary conditions will be as follows 

0, / 2 : (0, ) ( / 2, ) 0, (0, ) ( / 2, ) 0,
0, / 2 : ( ,0) ( , / 2) 0, ( ,0) ( , / 2) 0.y

x x

yy

xx a y a y V y w a y
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θ θ
θ θ

= = = = =
= = = = =

  (4) 

Here yθ  and yV  are respectively the angle of rotation and the generalized shearing force 
on the sections y const=  of the plate. 

Assuming in (1) that 0
xθ  and 0

xV  are zero (according with the boundary conditions (4)), 
calculating the displacement and the rotation angle on the side 2x a=  and setting them equal 
to zero, a system of differential equations for finding the unknown initial functions 0w , 0

xM  
will be obtained 
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The solution of (5) is a sum the solutions of the homogeneous system 0 ( )homw y , 
0
, ( )x hom yM  and the partial solutions 0 ( )partw y , 0

, ( )x part yM  of the nonhomogeneous system. The 
homogeneous solutions can be received using one function ( )yφ  
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The function ( )yφ  satisfies an ordinary differential equation 
sin( )1 ( ) 0.yβ φ
β

 
+ = 

 
   (7) 

The common integral of the equation (7) has a form 

( )
1

( ) exp .i i
i

y C k yφ
=

∞

=∑    (8) 

Here iC  are arbitrary constants and ik are the roots of the characteristic transcendental 
equation 1 sin( ) 0k k+ = . Note that these roots are complex quantities. 

The partial solutions can be taken as 0 3( ) 384partw y qa D= , 0 3
, ( ) 24x partM y qa D= . So 

the solution of the system (5) taking into account (6) and (7) is obtained in the form 
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Substituting (9) into (3) with performing the operations of differentiation with respect to 
the variable y  the representation of the function  ( ),w x y  containing arbitrary constants iC  is 
received. Note that solution (9) satisfies exactly the biharmonic differential equation (1) and 
the boundary conditions (4) on the sides 0, 2x a= . For satisfying the boundary conditions (4) 
on the sides 0, 2y b=  of the plate the collocation method is used. 

 

 

Fig. 1. The dimensionless displacement wD  (a) and the rotation angle yθ  (b) along  the side 
/ 2y b=  (b). 

 
For this the displacement ( , / 2)w x b , the rotation angles ( , / 2)y x bθ , ( ,0)y xθ  and the 

shear force ( ,0)yV x  on the indicated sides are evaluated  using (3) taking into account the 
expressions obtained for all initial functions. Then the real parts of the expressions obtained 
(they are complex) are calculated. After this using collocation method for the components of 
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the stress-strain state on the sides 0, 2y b=  a linear algebraic system for determining 
coefficients iC  is built. The number of the collocation points should be such that the resulting 
system of linear algebraic equations with respect to a finite number of arbitrary constants iC  
stored in the solution (9) turned out to be closed. Have solved this system an approximate 
analytical representations for all components of the stress-strain state of a rigidly clamped 
plate will be obtained. 

 
3. Numerical results 
Using this approach the analysis of a square isotropic plate with dimensions 1a b m= =  has 
been performed ( 52 10E MPa= ⋅ , 0.3ν = , 21q N m= ).  
 

 

Fig. 2. The generalized shear force yV  on the side / 2x a=  (a); in a neighborhood of a corner 
point ( )/ 2, / 2a b  (b). 

 
As noted earlier our solution satisfies exactly as the biharmonic equation of the problem 

as the boundary conditions on the sides 0, / 2x a= . Thus in order to judge its accuracy it is 
necessary to check meeting the boundary conditions on the sides 0, / 2y b= . Fig. 1 shows the 
graphics of the dimensionless displacement wD  and the rotation angle yθ  (b) along the side 

/ 2y b=   with different number of roots ik  of the transcendental equation (40, 60, 90). Note 
that the maximum value of the displacement is in the center 0x y= =  of the plate and its 
dimensionless value is equal to 0.001265 and the maximum value of the angle of rotation is of 
the order 710− . So the boundary conditions on this side can be considered as equal to zero. 

Fig. 2 presents the graphics of the generalized shear force yV  along the side / 2y b= . It 
should be noted that its maximum value at the center of the indicated side coincides with 
calculations by other methods, for example, [2, 5, 6]. However, the behavior in the vicinity of 
the angular point differs somewhat from that of other authors. In [2] the value of this force in 
the corner point is assumed to be zero, whereas in [5] this assumption is not made and the 
computed value coincides with the solution presented in this paper when 40 roots of the 
presentation (8) are taken into account.  

The general solution in [5] is constructed in the form of a series of eigenfunctions of the 
operator of the problem, and calculations were performed with retention of 37 eigenfunctions. 
However, the results are not given when retaining a larger number of eigenfunctions. We 
expect that the graphs will behave similarly as graphs taking into account 60 and 90 roots in 
Fig. 2 and won’t be equal to zero. 
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4. Conclusion 
The results are in agreement with other studies but for the generalized shear force there are 
differences in the neighborhood of the corner point. 

Here one of the possible methods for calculating an elastic system using MIF is 
presented. In combination with the superposition method, the MIF is used to solve complex 
elastic systems [9, 10] with satisfaction of arbitrary boundary conditions. 
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